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Abstract—We introduce a fast simple method for computing
the real continuous wavelet transform (CWT). The approach has
the following attractive features: It achievesO(N) complexity
per scale, the filter coefficients can be analytically obtained by
a simple integration, and the algorithm is faster than a least
squares approach with negligible loss in accuracy. Our method
is to useP wavelets per octave and to approximate them with
their oblique projection onto a space defined by a compactly
supported scaling function. The wavelet templates are expanded
to larger sizes (octaves) using the two-scale relation and zero-
padded filtering. Error bounds are presented to justify the use of
an oblique projection over an orthogonal one. All the filters are
FIR with the exception of one filter, which is implemented using
a fast recursive algorithm.

I. INTRODUCTION

T HE CONTINUOUS wavelet transform (CWT) is an often
used tool in the analysis of nonstationary and fractal

signals (e.g., EEG) [10], [18]. The typically long length of
these signals and the large number of scales computed in their
analysis provides a motivation for considering fast algorithms
to compute the CWT. Here, we define the real CWT of the
signal as the inner product

(1)

where and are, respectively, the continuously varying
scaling and shifting parameters, and the real function
is the mother wavelet.1

In practice, the variables and are sampled over the plane
of values. Fast algorithms exist for computing the wavelet
transform at the dyadic scales when the wavelet is
associated with a multiresolution [1], [4], [9], [13]. In this
paper, we are interested in a finer sampling of the scale axis.

Previous methods for computing at nondyadic scales include
an algorithm for computing the CWT at the integer sample
values with number of operations per
scale, where is the length of the input signal [18]. Another
approach that computes the CWT along arbitrary scales, again
with complexity per scale, is discussed in [15]. This last
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1To simplify the notation throughout the paper, we use a definition of the

wavelet transform that is a time-reversed version of the conventional one.

method is restricted to Gabor-like wavelets (i.e., modulated
Gaussians). A method that achieved operations per
scale, with no restrictions on the shape of the wavelet, and
with arbitrarily fine exponential sampling along the scale axis
was introduced in [19]. That approach approximated wavelets
at several scales by their orthogonal projection onto a space
defined by a compact scaling function. Most other algorithms
to date are implemented using an FFT-based approach and
require computations per scale [5], [7], [11].

Here, we introduce a more general framework that includes
the method [19] as a particular case while providing advan-
tages from the computational point of view. In particular, we
will show that this new system can result in a much simpler
specification of the wavelet filters. A surprising result is that
this increase in speed, flexibility, and simplicity is achieved
with a negligible loss in accuracy.

In the algorithm, we approximate a set of wavelets by
their oblique projection into a space defined by one compact
scaling function orthogonal to a second compact analysis
function. While this approach yields an approximation to the
actual CWT, we have full control over the approximation error,
and we can achieve any desired level of accuracy.

The algorithm consists of an FIR filter bank (FIR filters
for computing scales or voices per octave) and a fast
recursive IIR filter. The system is shown in Fig. 1, where
the additional FIR filter performs the two scale
stretching of the approximating scaling function. This two-
scale relationship enables us to use the same FIR filters in
computing the CWT for scales within each octave (with
appropriate zero padding between the filter coefficients). In
the simplest form, the filter coefficients for the FIR filter bank
are analytically determined by integration of the wavelet

where the ’s are the corresponding scale parameters.
If, in addition, we perform the approximation using cubic

splines, then the refinement filter is the symmetric
binomial kernel

and the IIR filter

is implemented using an efficient recursive routine that is
described in Appendix A.
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Fig. 1. System diagram for the computation of the CWT in theith octave.
All filters are expanded by the factor2i using zero padding.

The organization of the paper is as follows: In Section II,
we provide all relevant definitions and introduce the oblique
projection operator, after which the equations describing the
system in Fig. 1 quickly follow. In Section III, we study the
approximation error and its properties. In Section IV, we
consider the admissibility of the projected wavelet and its
vanishing moments. In Section V, we present the implemen-
tation as a series of design steps and describe a particular
implementation, providing explicit formulas for determining
the FIR filter coefficients. Finally, in Section VI, we present
some results and compare the performance of the algorithm
with an FFT-based method.

II. GENERAL PRINCIPLE OF THE APPROACH

Our goal is to efficiently compute the CWT at scales
per octave. This will be achieved by constructing a set of
auxiliary wavelets ,
which are the oblique projections of the wavelets

into a space defined by the
scaling function orthogonal to the space defined by the
analysis function In the remainder of the paper, both
functions will be assumed to be compactly supported. Here,
we will list the properties that these functions must satisfy
and introduce the oblique projection operation. The accuracy
of the approximation and the admissibility of the projected
wavelet will be addressed in Sections III and IV, respectively.

A. Scaling Functions and Oblique Projections

An th-order scaling function is a function that
satisfies the following three conditions:

i)

ii) and

for

iii)

where is the Fourier transform of , and
is the th derivative of evaluated at Property i)

ensures that the subspace

is a well-defined (closed) subspace of [2]. Property ii)
implies that reproduces all polynomials of degree ,
which will be of importance with regard to the approximation
errors (cf. Section III). Property iii) is referred to as the two-
scale relation, and it allows us to dilate all the wavelet filters by
a power of two. An analysis function is defined as a function
that satisfies only properties i) and ii).

Criteria for the selection of a scaling or analysis function
should be based on its approximating power, smoothness, and
shortness of its support, to name a few. These properties will
be discussed in detail in Sections III and IV.

For a pair of analysis functions and , the oblique
projection of the wavelet into
orthogonal to can be expressed in terms of the basis
generated by and a set of coefficients , where

(2)

The original wavelet is measured in terms of the analysis
function providing the values

(3)

The coefficients can be obtained from the values
while enforcing a projection constraint by the use of the
digital filter , which is the convolution inverse of the
cross-correlation sequence , i.e.

(cf. [16]). Note that if and both have compact support,
then is an all-pole filter. Thus, if the filter is stable,
the corresponding sequence has exponential decay.

Using the filter to obtain the coefficients , we
have

(4)

Mathematical details of the oblique projection operator are
contained in [16]. Note that if and both have compact
support, then the FIR filters in the filter bank of Fig. 1

also have finite support. In addition, we have
an orthogonal projection if ; in particular,
is the solution considered in [19].

B. CWT Approximation

In order to achieve complexity per scale, we will
replace the computation of the convolution in (1) by its
approximation

(5)
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Fig. 2. Approximation errors for the second derivative Gaussian wavelet.

Substituting (2) into the above, we have the following equa-
tions:

(6)

(7)

In principle, we need a filter for every scale we
wish to compute. However, we will make use of the two-scale
relationship of given as property iii) (hence, is a scaling
function), which allows us to use the same set of filters for
each octave.

In practice, the input signal will actually be the sample
values Computing the continuous convolu-
tion in (6) requires an interpolation of these sample values.
Alternatively, one can use a Riemann approximation for the
convolution integral resulting in the simple initialization

where
Incorporating property iii) into (4), (6), and (7), sampling,

and performing simple algebraic manipulations, we obtain the
following algorithm:

(8)

(9)

(10)

where is with zeros between each sample
(i.e., expanded by a factor of ). Equation (8) performs the
two-scale filtering defined by property iii) for ; equation
(9) is the correction filtering that ensures that we have an

oblique projection of our wavelet; equation (10) is the FIR
filtering that constructs the approximated wavelets in terms
of the scaling function and computes the wavelet coefficients.
These equations describe the algorithm as it is shown in Fig. 1.
Note that only must have property iii)—the two-scale
relationship.

III. T HE APPROXIMATION ERROR

In the previous section, we replaced the convolution of the
CWT by its approximation (5). Here, we consider the behavior
of the approximation error. In particular, we show how we can
tune our algorithm to maintain the error below an acceptable
threshold. Reduction of the error is achieved by selecting the
appropriate functions and and adjusting the fine-scale
resolution

The approximation power of a scaling function depends on
its ability to reproduce polynomials up to a specific degree

This degree plus one provides the order
of accuracy of the approximation function. The properties of
the approximation error for the orthogonal projection case are
given by the Strang–Fix conditions [14] . We will first de-
scribe the relationship between the oblique and the orthogonal
approximation errors and then translate this relationship to the
Strang–Fix conditions.

The oblique projection into orthogonal to
is related to the orthogonal projection into by the
following: (cf. [16, Th. 3])

(11)
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Fig. 3. Approximation errors for the first derivative Gaussian wavelet.

where

orthogonal projection operator into ,
oblique projection operator into orthogonal to

,
largest angle between and

and

As the angle between the subspaces decreases, the bound (11)
becomes tighter, and the oblique projection error approaches
the orthogonal error. In particular, if , then

, and
As already mentioned, the behavior of the least squares

approximation error as a function of the scale is described
by the Strang–Fix theory (cf. [19]). For the th-order scal-
ing function [cf. condition ii)], the theory provides the
relationship

where the constant is a function of , and is
the norm of the th derivative of In other words, the
error typically decays like This bound translates to
a bound on the oblique projection in the following fashion
using relationship (11):

(12)

Hence, we can expect the same kind of decay as in the least
squares case.

In practice, the oblique error is much closer to the orthogo-
nal error than what is indicated by the above worst-case bound.
In fact, it can be shown that the oblique and orthogonal errors
have the same limiting behavior as Specifically, for

sufficiently large, the approximation error behaves as

(13)

where is again the order of approximation of , and

This is exactly the same relation as the one given for the least
squares case in [19] (including the value of the constants).

Fig. 2 displays the approximation error curve for the cubic
LS approximation of a second derivative Gaussian wavelet and
an oblique approximation using the zeroth- and third-degree

-splines for and , respectively. Fig. 3 displays a similar
plot for the first derivative Gaussian wavelet. Remarkably, the
difference between the LS and oblique errors is very small.
It is also clear that both curves have the same asymptote,
which is given by (13) (for cubic splines, the value of the
constant is ) In both examples, the loss
of performance is negligible; in fact, the discrepancy is much
less than the factor (here, predicted
by the theory (worst-case scenario). Thus, we can conclude
that for all practical purposes, the orthogonal and oblique
projections are equivalent in terms of their approximation
power.
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IV. WAVELET PROPERTIES

Here, we consider the admissibility of the projected wavelet
as well as the number of vanishing moments it exhibits.

A. Admissibility

A wavelet is admissible if it satisfies the following
conditions [3, p. 24]:

such that (14)

and

(15)

Here, we will consider only the bounding condition (14)
since the projected wavelet is shown to satisfy the zero mean
property in Section IV-B.

Proposition 4.1: If the analysis function , the scaling
function , and the wavelet all have compact support,
then the oblique projection of into
orthogonal to satisfies for
some , where is the oblique projection of

Proof: Substituting the projected wavelet given by (2)
into (14), we want to guarantee

Since has a compact support, this condition will obviously
be satisfied (for all ) if has exponential decay; that
is, if

for some

Clearly, the sequence has a
finite support. In addition, is the convolution inverse
of and decays exponentially since
is an all-pole filter. From (4), we have
Therefore, satisfies the exponential decay requirement.

B. Vanishing Moments

The ability of the analyzing wavelet to detect a singularity
typically depends on the interaction between its number of
vanishing moments and the Hölder exponent associated with
the singularity [8]. For this reason, wavelets are often designed
with a specific number of vanishing moments. The number of
vanishing moments of the approximated wavelet will depend
on the number in the actual wavelet and on the approximation
power of This is stated in the following proposition.

Proposition 4.2: If is an th-order analysis function,
has vanishing moments (i.e.,

), and and are all compactly supported,
then the oblique projection of into orthogonal to

has vanishing moments.
Proof: From (3), we have in the Fourier domain:

Differentiating times and evaluating at produces

From property ii) in Section II-A and the initial assumptions,
we have

and

which implies that

From (4), we have

Differentiating the above times and evaluating at
leads to

From the proof of Proposition 4.1, we know that decays
exponentially, which ensures that
is finite. Therefore

Now, differentiating times and evaluating at
leads to

Since is compactly supported,
is finite, which implies that

An implication of the above proposition is that in appli-
cations for which a large number of vanishing moments are
required, it is necessary to use a high-order function for
In addition, since the minimum number of vanishing moments
for admissibility is one, we have the following corollary.

Corollary 4.3: If and are
all compactly supported, then the projection of an admissible
wavelet into orthogonal to is admissible as well.

Proof: Using Poisson’s summation formula, we have that

Thus, the conditions

and

are equivalent, and has at least a first order of approxima-
tion The proof now follows from the application of
Propositions 4.1 and 4.2.

Note that the shortest and simplest analysis function that
satisfies this property is the box function: a-spline of degree
zero.
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Fig. 4. Impulse response of the system for the second derivative Gaussian wavelet.

Fig. 5. Impulse response of the system for the first derivative Gaussian wavelet.

V. IMPLEMENTATION

In this section, we will summarize the implementation of
the algorithm as a series of steps, each of which are illustrated
with an example. The performance of our design is discussed
in Section VI.

Step 1: Select the compactly supported wavelet function for
the application at hand. For illustrative purposes, we consider
the following two wavelet shapes: a truncated version of the

first derivative of a Gaussian

otherwise
and a truncated version of the second derivative of a Gaussian

otherwise
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Fig. 6. Comparison of the first derivative Gaussian wavelet and its oblique approximation.

Fig. 7. Comparison of the second derivative Gaussian wavelet and its oblique approximation.

where is a constant ensuring that and is an
offset that guarantees the admissibility of

Step 2: Select the scaling function and the analysis
function Here, it is advantageous to use-splines because
of their attractive features:

i) They are the shortest functions for a given order of
approximation (this will result in shorter filters).

ii) They are symmetrical, which makes them ideal for ap-
proximating symmetrical or anti-symmetrical wavelets.

iii) They have a simple analytical form, which makes them
easy to manipulate.

iv) They are smooth well-behaved functions.

To keep things as simple as possible but still maintain
a high degree of accuracy, we will use the zero degree

-spline (first-order approximation) on the analysis side
and the cubic -spline on the synthesis side

The advantages of this particular selection are as
follows:
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Fig. 8. Speed comparison of FFT based method and the oblique projection method.

i) The FIR filters are determined an-
alytically by simple integration of the wavelet

(16)
ii) The FIR filters are shorter, and the IIR filter is of a

lower order as compared with the orthogonal projection
into considered in [19]. This also implies that
the oblique algorithm will be faster than the orthogonal
(or least squares) one.

iii) The approximation error is very close to the minimum,
which is achieved by the orthogonal projection (cf.
Section III).

In this case, we gain in simplicity and speed with little loss
in accuracy.

Other properties to consider are the approximation power
of the function and the number of vanishing moments desired
in the projected wavelet. The latter is, of course, closely tied
to the first and second steps, and the former is related to the
third step.

Step 3: Select an acceptable error level and, hence, a fine-
scale resolution. This step should actually be performed in
conjunction with the selection of the order of the scaling
function since its approximation power determines the exact
error characteristics. For a particular error threshold, one can
compute a plot such as that shown in Figs. 2 and 3 to determine
a suitable order of approximation and the fine-scale resolution

Here, we selected an error threshold of 0.01, which is
shown as a dashed line in Figs. 2 and 3. This places our fine-
scale resolution at 1.26 for the first derivative wavelet and 1.41
for the second derivative wavelet.

Step 4: Select the number of scales per octave. This will
set the number of FIR filters. We used scales per
octave, where , which corresponds
to the musical notes

With these design steps completed, (16) provides the means
for determining the filter coefficients for the FIR filter bank.
The remaining FIR filter is the refinement filter . For a

-spline of degree odd; , the filter
is given by the binomial coefficients

otherwise.

In the most general -spline implementation with
and , the IIR filter is given by

(17)

where is the -transform of the sampled -
spline kernel of degree (cf. [17]). This filter
is implemented in a fast recursive fashion as described in
Appendix A.

VI. RESULTS

We implemented the algorithm in MATLAB with specific
routines (zero-padded filtering) coded in C to speed up the
computations. The impulse response of the system over four
octaves is shown for the wavelets and in Figs. 4
and 5, respectively. The fine scale within each octave contains
the same worst-case error. The fine-scale slice in the fourth
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TABLE I
ALGORITHM IIR FILTER PARAMETERS

octave for both scalograms is compared with the actual func-
tion in Figs. 6 and 7. Note that the oblique projection is almost
indistinguishable from the actual function.

We compared the performance of our algorithm with an
FFT-based method that used a radix-2 algorithm when the
signal length was a power of 2 and a mixed radix method for
other signal lengths (MATLAB’s FFT algorithm). The input
was an electroencephalograph signal (EEG). Fast algorithms
for analyzing such signals are of interest for applications that
require real-time detection of brain seizures [12].

The length of the signal was varied, and the time required
to compute four octaves is shown as a function of the signal
length in Fig. 8. The dashed line represents the FFT algorithm
when the signal was padded to a power of two. The line with
the circles is the FFT algorithm for various signal lengths. The
solid line, which is the oblique projection algorithm, clearly
demonstrates the characteristics of the method. In this
comparison, the present algorithm appears to be advantageous
even for relatively small signal lengths, e.g., The
speed improvement over the least squares in [19] is roughly
12%. The more important advantage, though, is that the deter-
mination of the wavelet filters is much more straightforward.
For the oblique algorithm, the majority of the computation
was spent in the FIR filter bank. Additional speedup could be
achieved by performing each FIR filter in parallel.

VII. CONCLUSION

We have introduced a method for the rapid computation of
the CWT. The algorithm has the following properties:

• It has a complexity of per computed wavelet coef-
ficient. This constitutes an improvement over
conventional FFT-based methods.

• The FIR filter coefficients are obtained analytically by
simple integration of the wavelet, which is the main prac-
tical advantage over a comparable least squares design.

• The approximation error is simple to control by adjusting
the fine scale resolution or increasing the order of the
scaling function.

• The method is flexible enough to approximate a variety of
wavelet shapes and achieves an arbitrarily fine sampling
of the scale axis.

Finally, the present theoretical formulation is general enough
to contain most previous methods as particular cases.

APPENDIX A
THE IIR FILTER

Here, we discuss the recursive implementation of the IIR
filter

Since is a symmetrical all-pole filter, the-transform of its
upsampled version can be written in the following
standard form:

where and are constant coefficients,
and

The filter is expressed as a cascade of simple first-order
causal/anticausal components

where is defined as

Values of and for different orders are
given in Table I.

The above yields the following recursive filter equations:

for the input . In order to calculate
recursively, we need to know for

These initial values are computed using

where and is a prespecified level
of precision. Likewise, we determine the initial values for
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, using the sum decomposition

and a computation of similar to the above. In computing
the initial values, the signal is extended by using mirror
boundary conditions.
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