
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. IMAGING SCIENCES c© 2014 Society for Industrial and Applied Mathematics
Vol. 7, No. 4, pp. 2226–2257

Total Variation Regularization for Manifold-Valued Data∗

Andreas Weinmann†, Laurent Demaret†, and Martin Storath‡

Abstract. We consider total variation (TV) minimization for manifold-valued data. We propose a cyclic
proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with
�p-type data terms in the manifold case. These algorithms are based on iterative geodesic averaging
which makes them easily applicable to a large class of data manifolds. As an application, we consider
denoising images which take their values in a manifold. We apply our algorithms to diffusion tensor
images and interferometric SAR images as well as sphere- and cylinder-valued images. For the class
of Cartan–Hadamard manifolds (which includes the data space in diffusion tensor imaging) we show
the convergence of the proposed TV minimizing algorithms to a global minimizer.

Key words. total variation minimization, manifold-valued data, proximal point algorithm, diffusion tensor
imaging
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1. Introduction. Data taking values in a manifold appear naturally in various signal and
image processing applications. One example is diffusion tensor imaging, where the data live
in the Riemannian manifold of positive (definite) matrices; see, e.g., [11, 69]. Other examples
are color images based on nonflat color models [23, 84, 57, 58]. Here the data has circle-
or sphere-valued components. Data with values on the circle also appear in the context of
interferometric SAR images [60]. SO(3) and motion group-valued data were considered in
[83, 73].

Processing manifold-valued data has gained a lot of interest in recent years. To mention
only some examples, wavelet-type multiscale transforms for manifold data have been consid-
ered in [83, 50, 86]. Manifold-valued partial differential equations are the subject of study in
the papers [81, 25, 49]. Furthermore, statistical issues on Riemannian manifolds are the topic
of [38, 39, 40, 67, 14, 15, 68].

The present paper deals with total variation (TV) minimization for data taking values in
a manifold. Our main application is the denoising of such manifold-valued data. For scalar
data, TV minimization was shown to be a powerful tool for edge-preserving denoising [75].
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‡Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
(martin.storath@epfl.ch). This author’s research was supported by the European Research Council (ERC) under
the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement 267439.

2226

D
ow

nl
oa

de
d 

11
/1

9/
14

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/siims/7-4/95107.html
mailto:andreas.weinmann@tum.de
mailto:laurent.demaret@helmholtz-muenchen.de
mailto:martin.storath@epfl.ch


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TV REGULARIZATION FOR MANIFOLD-VALUED DATA 2227

For images, the anisotropic version of TV minimization is given by

(1.1) argmin
x∈Mn×m

{
1

p

n,m∑
i,j=1

d(xij , fij)
p + α

n−1,m∑
i,j=1

d(xij , xi+1,j) + α

n,m−1∑
i,j=1

d(xij , xi,j+1)

}
.

Here, fij is the observed data at grid location (i, j) and x is the argument to optimize for
yielding the regularized value xij at the corresponding grid location. For scalar data, the
symbol d(y, z) = |y−z| simply denotes the Euclidean distance between y and z. The distance
to data f is measured in the �p norm. For Gaussian noise, p = 2 is reasonable, whereas, for
noise types with heavier tails such as Laplacian noise, p = 1 is more natural. The natural
generalization of the TV problem for data on a manifold M is given by using the distance d
induced by the Riemannian metric on the manifold instead of the Euclidean distance in (1.1).

We introduce algorithms for the �p-TV problem for general Riemannian manifold data.
Furthermore, we show convergence towards a (global) minimizer for the class of Cartan–
Hadamard manifolds of which the data space in diffusion tensor imaging is a particular mem-
ber. Our experiments show the denoising capability of �p-TV minimization in the manifold
context.

1.1. TV regularization for scalar-valued, vector-valued, and matrix-valued data. TV
regularization was first introduced in the early 1990s by Rudin, Osher, and Fatemi [75]. A
central advantage of TV regularization compared with classical Tikhonov regularization is
that it preserves sharp edges [79, 47]. Especially due to this property, TV minimization has
been used in a vast amount of applications. Examples are biomedical imaging [31], geophysics
[3], and computer vision [89, 27], to mention only a few.

Theoretical properties of TV regularization have been investigated in a series of papers.
For instance, results on existence and uniqueness of minimizers have been proved in [20]. Con-
nections to wavelet shrinkage are shown in [70], and equivalences between diffusion techniques,
thresholding strategies, and TV minimization can be found in [77].

A lot of different algorithms for TV minimization of scalar- and vector-valued images
have been proposed in the last 20 years. In their original work, Rudin, Osher, and Fatemi
[75] consider �2 data terms. They use gradient descent on the Euler–Lagrange equations of
the (scalar-valued) TV functional. Further methods are based on Fenchel duals [19], the
alternating direction method of multipliers [88], and split Bregman methods [46].

Several authors have studied the TV problem with �1 data terms [2, 63, 22]. Approaches
based on the �1-TV functional enjoy the edge-preserving properties of TV regularizers while,
in addition, being more robust to outliers. Various solution strategies have been proposed for
the �1-TV problem. To mention some examples, schemes based on smooth approximations
are presented in [64, 65]; semismooth Newton method–based approaches are the topic of [28];
and primal-dual methods are proposed in [21, 33].

TV regularization for matrix-valued images has recently been considered in [74, 58]. There,
the data manifolds are embedded to a higher-dimensional Euclidean space and the metric in
(1.1) is the Euclidean metric of the ambient space. The minimization problem is then split
into a TV minimization on Euclidean space and a projection step to the data manifold which
are applied alternatingly.
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2228 A. WEINMANN, L. DEMARET, AND M. STORATH

1.2. Proposed algorithms for TV minimization for manifold-valued data. In this paper
we derive algorithms for the TV problem (1.1) on (Riemannian) manifold-valued data. Our
algorithms are based on iterative geodesic averaging. More precisely, we decompose the TV
functional in (1.1) into a sum of functionals in such a way that we are able to explicitly
compute the proximal mappings of these functionals on the general (Riemannian) manifold.
For general (Riemannian) manifolds, we obtain that these proximal mappings are given in
terms of points on certain geodesics. So, in order to make the algorithms work on a concrete
manifold, the only operations we need are those needed for calculating geodesics. The spaces
which frequently occur as data spaces are matrix groups or related symmetric spaces. So
usually, there are explicit formulas available for this task.

Our algorithms are iterative schemes. In each iteration, we apply the above proximal
mappings of the functionals decomposing the TV functional. The first algorithm is a cyclic
proximal point algorithm. This means that we successively apply the proximal mappings using
the output related to the ith summand as a new input for the proximal mapping of the (i+1)st
summand. The second algorithm is a parallel proximal point algorithm. Here the proximal
mappings are calculated for the same initial point and averaged afterwards. Since computing
mean values on a manifold is a relatively expensive iterative procedure, we also consider a
variant which does only approximative averaging (but yields comparable results). We call
this variant a fast parallel proximal point algorithm. Due to the averaging procedure, the
parallel algorithms need more operations in total. However, they have higher potential for
parallelization.

Our algorithms belong to the class of proximal splitting methods (for manifold-valued
data). A survey on proximal splitting methods (for scalar data) is [29]. Section 7 of the paper
[29] also describes a related parallel algorithm. Parallel proximal point algorithms were also
considered in [16]. Cyclical proximal point algorithms have been studied in [13] (for linear
spaces) and in [9], where they are applied for the computation of means and medians in
Hadamard spaces.

Principally, our algorithms work for all �p data terms with p ≥ 1 as well as for regularizing
terms based on qth variation, q ≥ 1, instead of total variation. This in particular includes
the classical Tikhonov regularization which corresponds to p = q = 2. For p, q = 1, 2 we give
nice closed form expressions; in the other cases, one needs the numerical solution of a certain
nonlinear equation. We furthermore consider Huber data terms as well as Huber regularizing
terms (which are sometimes called “Huber-ROF”). The latter are employed to avoid undesired
staircasing effects; see [21].

For the class of Cartan–Hadamard manifolds, we obtain the convergence of our geodesic
averaging–based schemes towards a (global) minimizer of (1.1). Cartan–Hadamard manifolds
are Riemannian manifolds containing many symmetric spaces, such as the data space in
diffusion tensor imaging. Our convergence statements also hold true for the more general
class of Hadamard spaces and for regularization based on qth variation as well as Huber data
and regularization terms.

1.3. Applications. We demonstrate the denoising capabilities of our algorithms on various
data spaces. It is the common observation of all experiments that the TV approach reliably
removes noise from manifold-valued data while preserving edges.
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First, we consider diffusion tensor images. Diffusion tensor imaging (DTI) is a technique
to quantify noninvasively the diffusional characteristics of a specimen [11, 52]. Here the under-
lying data space is the space of positive matrices. According to the model, the diffusivity in
direction v is determined by vTAv, where A is a positive matrix representing data. The space
of positive matrices becomes a Cartan–Hadamard manifold when equipped with a suitable
Riemannian metric. This means that our algorithm provably converges to a minimizer in the
DTI setup. We demonstrate the denoising performance with a real diffusion tensor image of
a human brain and with synthetic data; see Figures 1 and 2.

Next, we consider interferometric synthetic aperture radar (InSAR) data. InSAR is an
important airborne imaging modality for geodesy [60]. In our concrete example, the InSAR
image has the interpretation of a wrapped periodic version of a digital elevation model [72].
Hence the underlying data space is the sphere S1. From the experiment in Figure 4 we see
that TV minimization is capable of removing almost all the noise from the InSAR image. We
further observe that �1 and Huber data terms are slightly more robust to outliers in the data
than the �2 data term.

Our third application is image denoising in nonlinear color spaces. We consider the LCh
space which consists of real-valued luminance and chromaticity components L and C as well
as an S1-valued hue component h. Thus the underlying manifold is the cylinder R2×S1. We
note that, although the underlying manifold R

2×S1 is a product space, the algorithms cannot
be applied separately to the components. In our experiment we obtain a better reconstruction
quality by manifold-valued TV minimization in the LCh color space than by classical vectorial
TV minimization in the standard RGB space; see Figure 5.

We continue with the sphere S2. Data with values in S2 appear in, e.g., chromaticity-
based image processing [23] and as orientation fields of three-dimensional (3D) images [71].
We here consider a synthetic example on which we impose von Mises–Fisher noise. Figure 6
shows that, also for data with values in the sphere S2, the noise is almost perfectly removed
and that the edges are not smoothed out.

We conclude with the rotation group SO(3) as data spaces. Data with values in SO(3)
appear, for example, in the context of aircraft orientations [83], protein alignments [48], and the
tracking of 3D rotational data arising in robotics [34]. We apply our methods to a synthetic
time series on which we imposed noise based on a matrix Fisher distribution. The results
confirm their denoising capability, and they also reveal that a Huber regularizing term is less
affected by staircasing effects; cf. Figure 7.

1.4. Organization of the paper. We start out by developing algorithms for TV minimiza-
tion for manifold-valued data in section 2. Then we show the convergence of our algorithms
towards (global) minimizers of the TV minimization problem (1.1) in Hadamard spaces in
section 3. In section 4, we apply our algorithms to denoising data with values in concrete
manifolds.

2. Algorithms for TV minimization for manifold-valued data. In the following we pro-
pose two algorithms for TV minimization for data which take their values in a manifold. We
consider �1 and �2 as well as Huber data terms. Our algorithms are based on iterative geodesic
averaging. The appearing geodesic averages are the minimizers of certain proximal mappings
which arise as follows: we split the TV functional into basic building blocks and consider the
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proximal mappings of these building blocks. The first algorithm performs the iteration of the
proximal mappings in a cyclical way, whereas the second does so in a parallel way.

2.1. Splitting of the TV functional and proximal mappings. Let us consider the problem
of (bivariate) �p-TVq minimization

(2.1)
1

p

∑
i,j

dp(xij , fij) + α
1

q

∑
i,j

dq(xij , xi+1,j) + α
1

q

∑
i,j

dq(xij , xi,j+1)→ min.

The data fij as well as the arguments xij to minimize take their values in a Riemannian
manifold M . The symbol dp denotes the pth power of the distance induced by the Riemann-
ian metric. For a bounded (complete) Riemannian manifold, the functional obviously has a
minimizer since continuous functions have minima on compact sets. For the unbounded case,
we notice that going too far away from the data f leads to high functional values. Hence the
set of minimizer candidates is actually confined to a bounded set which brings us back to the
already discussed situation and minimizers exist.

Setting q = 1 in (2.1), we get the discrete (anisotropic) TV functional with �p data term.
In particular, if p = 1, we are in the �1-TV setting. The case q = 2 corresponds to the classical
Tikhonov regularization term in the scalar case. We comment on Huber data and regularizing
terms in section 2.5.

We here consider a discrete domain variant of the TV functional. An analysis of continuous
domain TV-type functionals for manifold-valued data has been carried out in [45, 44, 43].

Our approaches towards the minimization of (2.1) are based on rewriting (2.1) as a sum
of simpler functions. We consider the function F : M × · · · ×M → R, which is the data term
given by

(2.2) F (x) =
1

p

n,m∑
i,j=1

dp(xij , fij),

as well as, for i, j, the functions Gij ,Hij : M × · · · ×M → R given by

Gij(x) =
1

q
dq(xij , xi,j+1),

Hij(x) =
1

q
dq(xij , xi+1,j).

(2.3)

Using this notation, the minimization problem (2.1) has the form

(2.4) F (x) + α
∑
i,j

Gij(x) + α
∑
i,j

Hij(x)→ min.

For each summand in (2.4), we consider its proximal mapping [62, 35, 8]. The proximal
mappings of the Gij are defined by the minimization problem

(2.5) proxλGij
x = argmin

y∈Mn×m

(
λGij(y) +

1

2
d2(x, y)

)
,
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where the parameter λ > 0 and the distance d on the product manifold Mn×m is given by
d2(x, y) =

∑n,m
i,j=1 d(xij , yij)

2. The proximal mappings of F and the Hij are defined anal-
ogously. The crucial point is that, using the splitting (2.4), the proximal mappings of all
appearing summands can be explicitly computed as geodesic averages. More precisely, solving
the minimization problem of (2.5) reduces to computing points on shortest geodesics joining
given points. The same is true for the analogous problems for F and the Hij.

The generalization of our approach to more than two-dimensional (2D) (discrete) domains
is straightforward. It is done by introducing new functionals analogous to Gi,j ,Hij—one for
each dimension. In three dimensions, for example, one would consider three analogously
defined functionals Gijk,Hijk, Iijk with three indices i, j, k—one for each dimension of the
domain. Starting from these functionals, the derivation of corresponding algorithms follows
the same scheme as worked out for the 2D case in the following.

A heuristic derivation of the proximal mappings. For illustrative and readability pur-
poses, we first give a heuristic derivation of the proximal mappings of the functionals Gij ,
Hij, and F in the following paragraph. In the subsequent paragraph a precise mathematical
statement concerning these proximal mappings, namely Proposition 1, is formulated. Being
informal in this heuristic derivation, we tacitly assume in this paragraph that the points in the
Riemannian manifold are sufficiently near each other so that the following arguments apply.
Let us consider the proximal mapping of Gij given by (2.5). More precisely, we consider the
mapping y → λGij(y) +

1
2d

2(x, y) in (2.5) which is defined on M × · · · ×M . This means that
we consider all members of y, in particular yij and its neighbors, as varying. A necessary
condition for x′ ∈ Mn×m to be a minimizer of this mapping is that 0 is in the (sub)gradient
of λGij(x

′) + 1
2d

2(x, x′). This immediately implies that, for the (k, l)th component of the
proximal mapping proxλGij

x,

(2.6) (proxλGij
x)kl = xkl for k �= i, and l �= j, j + 1.

For the indices k = i and l = j, j + 1 we use that the gradient of the mapping M → R,
z �→ dp(z, v)/p fulfills (see, e.g., [1, eq. (2.8)])

(2.7) ∇zd
p(z, v)/p =

exp−1
z (v)

d2−p(z, v)
.

We consider the member yij and its neighbor yi,j+1 (both as varying) in the mapping (yij , yi,j+1)
→ Gij(y) +

1
2d

2(x, y). Applying (2.7) we get as necessary conditions for a minimizer x′ in
(2.5) that

λ 1
d2−p(x′

ij ,x
′
i,j+1)

exp−1
x′
ij
(x′i,j+1) + exp−1

x′
ij
(xij) = 0,

λ 1
d2−p(x′

ij ,x
′
i,j+1)

exp−1
x′
i,j+1

(x′ij) + exp−1
x′
i,j+1

(xi,j+1) = 0.

Here exp−1
z denotes the inverse of the Riemannian exponential mapping at the point z. Thus,

both summands in the first condition are tangent vectors at x′ij. They point in opposite
directions, and so the first condition implies that the three points x′i,j, x

′
i,j+1, and xi,j lie on

a common geodesic in M . Analogously, the second condition implies that the three points
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x′i,j, x
′
i,j+1, and xi,j+1 also lie on a common geodesic. Hence, the four points must lie on one

geodesic. In particular, the points x′i,j, x
′
i,j+1—which are the (i, j)th and (i, j+1)st components

of the proximal mapping of Gij applied to x—lie on the geodesic joining xi,j and xi,j+1.
Then, after some technical considerations (cf. the proof of Theorem 2), the locations of

the points x′i,j = (proxλGij
x)i,j and x′i,j+1 = (proxλGij

x)i,j+1 are explicitly given as follows.
We have

(proxλGij
x)ij = [xij, xi,j+1]t,

(proxλGij
x)i,j+1 = [xi,j+1, xij ]t,

(2.8)

where the symbol [·, ·]t denotes the point reached after time t on the unit speed geodesic
starting at the first argument in the direction of the second argument. In the TV case (q = 1),
we have

(2.9) t =

{
λ if λ < 1

2d(xij , xi,j+1),

d(xij , xi,j+1)/2 else.

For q = 2, which corresponds to quadratic variation, we get

(2.10) t =
λ

1 + 2λ
d(xij , xi,j+1).

The proximal mappings of the Hij are obtained in a completely analogous way. It remains
to find the proximal mapping of F , which means finding the proximal mapping of the distance
function in M . This is well known and can be found, e.g., in [35]. They can again be written
as geodesic averages and are explicitly given by

(proxλF )ij(x) = [xij , fij]t,(2.11)

where, for the �2 data term,

t =
λ

1 + λ
d(xij , fij).(2.12)

For the �1 data term,

t =

{
λ if λ < d(xij , fij),

d(xij , fij) else.
(2.13)

This corresponds to the equivalent of soft thresholding in the context of manifolds.

A mathematically rigorous statement on the proximal mappings for general Riemannian
manifolds. After having heuristically obtained formulas for the proximal mappings of the
functionals Gij , Hij, and F , let us now formulate a mathematically precise statement under
which conditions these formulas describe the corresponding proximal mappings. To this end,
we need some preparation. We consider the functional Gij with fixed i, j (analogously for Hi,j

and F ). For given x, we let Y ∗ be given by

(2.14) Y ∗ = argmin
y∈Mn×m

(
λGij(y) +

1

2
d2(x, y)

)
.
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This means that Y ∗ is the set of (global) minimizers of the minimization problem related to
the proximal mapping (2.5). We furthermore define the set Y ′ by

Y ′ = {y ∈Mn×m : yk,l = xk,l for k �= i and l �= j, j + 1,(2.15)

yi,j = [xi,j, xi,j+1]
γ
t , yi,j+1 = [xi,j+1, xi,j]

γ
t for some

shortest geodesic γ in unit speed parametrization}
with t given by (2.9) and (2.10), respectively. This means that Y ′ contains an element y for
every shortest geodesic joining xi,j and xi+1,j . The symbol [xi,j , xi,j+1]

γ
t denotes the point on

the unit speed geodesic γ (which is a shortest path) starting at xi,j reached after time t. Now
we relate Y ∗ and Y ′.

Proposition 1. Let M be a complete connected Riemannian manifold. Then the minimizers
Y ∗ of the proximal mapping related minimization problem for the functional Gij and input x
in (2.5) are precisely the members of Y ′ given by (2.15). Analogous statements hold for the
Hij and F.

In particular, if there is only one shortest geodesic joining the data items xi,j, xi,j+1 (which
is always the case for nearby points and almost everywhere globally), then the proximal mapping
of Gij is well defined (as a single-valued mapping). It is given by (2.6), (2.8). Analogous
statements hold for the Hij and F.

The proof of Proposition 1 is given in Appendix A.

2.2. A cyclic proximal point algorithm for TV minimization for manifold-valued data.
The first algorithm we propose for TV minimization for manifold-valued data is a cyclic
proximal point algorithm based on geodesic averaging. For vector space data, cyclical proximal
point algorithms were considered in [13]. For Hadamard spaces, they were investigated by
Bačák [9], who applied them to the computation of means and medians.

We now derive a cyclic proximal point algorithm for the minimization of the �p-TVq

functional (2.1). We consider the problem in the form F (x) + α
∑

i,j Gij(x) + α
∑

i,j Hij(x)
given by (2.4). We first apply the proximal mapping of F which is given as pointwise geodesic
averages of data fij and the argument of the functional xij; see (2.11). Then we successively
apply the proximal mappings of all the Gij . They are given by (2.6) and (2.8), which is again
based on geodesic averaging. As a last step, the analogous operations are executed for the Hij.

Iteration of all these steps yields the algorithm which is stated as Algorithm 1. During
the iteration, the parameter λr of the proximal mappings is successively decreased. In this
way, the penalty for deviation from the previous iterate is successively increased. It is chosen
in a way such that the sequence λr is square-summable but not summable. This is moderate
enough not to prevent convergence towards a minimizer; cf. Theorem 2.

2.3. A parallel proximal point algorithm for TV minimization for manifold-valued data.
Parallel proximal point algorithms were, for example, considered in [16, 29, 76]. We here apply
a related parallel proximal point algorithm to TV minimization for manifold-valued data. A
great advantage of this approach is its immediate parallelizability.

As for the cyclic algorithm, we split the TV functional into a sum of simpler function-
als. But instead of applying the proximal mappings successively, we apply all the proximal
mappings to the same initial data. Then the results of the different proximal mappings are
averaged.
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2234 A. WEINMANN, L. DEMARET, AND M. STORATH

Algorithm 1: Cyclic proximal point algorithm for �p-TVq for manifold data.

Input: Manifold-valued image f ∈Mn×m, regularization parameter α > 0, parameter
sequence for the proximal mappings λ = (λ1, . . .) ∈ �2 \ �1.

Output: Minimizer x of the �p-TVq problem (2.1).
begin

x← f ;
for r ← 1, 2, . . . do

for i ← 1,. . . ,n; j ← 1,. . . ,m do
t← calc tF (λr, p, q, xij , fij) ; /* Calculate t; see Table 2. */

xij ← [xij , fij ]t ; /* Proximal mapping of F. */

end
for i ← 1,. . . ,n; j ← 1,. . . ,m − 1 do

t← calc tGH(λrα, p, q, xij , xi,j+1) ; /* Calculate t; see Table 1. */

x′
ij ← [xij , xi,j+1]t ; /* Proximal mapping of Gij . */

x′
i,j+1 ← [xi,j+1, xij ]t;

xij ← x′
ij ; xi,j+1 ← x′

i,j+1;

end
for i ← 1,. . . ,n− 1; j ← 1,. . . ,m do

t← calc tGH(λrα, p, q, xij , xi,j+1) ; /* Calculate t; see Table 1. */

x′
ij ← [xij , xi+1,j ]t; /* Proximal mapping of Hij . */

x′
i+1,j ← [xi+1,j , xij ]t;

xij ← x′
ij ; xi+1,j ← x′

i+1,j ;

end

end

end

In order to split the TV functional, we consider the mappings

Ge =
∑

j:j even

∑
i

1

q
dq(xij, xi,j+1),

Go =
∑

j:j odd

∑
i

1

q
dq(xij , xi,j+1).(2.16)

The mappings He,Ho are defined analogously, exchanging the roles of i and j. Then we
have that the �p-TVq functional can be decomposed into F + Ge + Go + He + Ho. Since
Ge =

∑
j:j even

∑
iGij , the proximal mapping of Ge is explicitly given by

(2.17) (proxλGe
x)i,j =

{
[xij, xi,j+1]t1 , j even,

[xij, xi,j−1]t2 , j odd.

Here t1 and t2 are defined by (2.9), (2.10) (cf. the derivation of (2.8)). The proximal mapping
of Go is obtained by exchanging the terms “even” and “odd” in the above formula. For He,Ho,
one exchanges the roles of i and j.

Equipped with these explicit formulas for the proximal mappings, the next step is to
average the results of the application of the proximal mappings. Since our data live in a
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Riemannian manifold, the usual arithmetic mean in a vector space is not available. However,
it is well known (cf. [54, 55, 69, 39]) that

(2.18) z∗ = argmin
z∈M

N∑
i=1

d(z, zi)
2

is the appropriate definition of the mean z∗ = mean(z1, . . . , zN ) of the N elements zi on the
manifold M . The mean is in general not globally defined since the minimization problem has
no unique solution in general. For the zi being in a small ball, however, it is unique. The
size of the ball depends on the sectional curvature of the manifold M . Details and further
information can be found, e.g., in [55, 54].

In order to get the mean in the product manifold Mn×m we need only compute the
componentwise means. Applied to the above proximal mapping, we get one iteration of the
parallel algorithm at pixel i, j by

x
(k+1)
ij(2.19)

= mean([x
(k)
i,j , x

(k)
i,j+1]t1 , [x

(k)
i,j , x

(k)
i,j−1]t2 , [x

(k)
i,j , x

(k)
i+1,j ]t3 , [x

(k)
i,j , x

(k)
i−1,j]t4 , [x

(k)
i,j , fi,j]t5),

where the ti are computed according to (2.12), (2.13) and (2.9), (2.10), respectively. So the
iterate at pixel (i, j) is obtained by the mean of geodesic averages of the old iterate in a
neighborhood. The whole algorithm is summed up as Algorithm 2.

In contrast to the Euclidean case there is no closed form expression of the intrinsic mean
defined by (2.18) in Riemannian manifolds. The methods used for computing the mean are of
iterative nature and are thus more time consuming. Perhaps the most well known method for
computing the intrinsic mean is the gradient descent already mentioned in Karcher’s seminal
paper [54]; cf. also [39], for example. The iteration for computing the intrinsic mean of the
points x1, . . . , xN is given by

(2.20) x(k+1) = expx(k)

N∑
i=1

1
N exp−1

x(k) xi.

Also approaches based on Newton’s method can be found in the literature; see, e.g., [36].
However, it is reported in the literature and also confirmed by the authors’ experience

that the gradient descent converges rather fast; in most cases, 5–10 iterations are enough for
five points. This might explain why this simple method of gradient descent is widely used.

The update pattern of our algorithms is related to classical methods for the linear case
(p = q = 2) and scalar data as follows. For simplicity, we consider the univariate case,
i.e., m = 1. Then the minimization problem (1.1) reduces to a linear system of the form
(αDTD + I)x = f , where D is the first order finite difference matrix and I the identity
matrix. The elementary steps in the cyclic algorithm (Algorithm 1) are simultaneous updates
in the xi and the xi+1 components. The cyclic algorithm uses the result of the ith update
step immediately for the (i+1)st step, and thus it can be seen as a Gauss–Seidel-type update
scheme. In contrast, Algorithm 2 performs the elementary update steps in parallel, which
can be seen as an update pattern of Jacobi type. There is also some similarity to the update
pattern of coordinate descent when replacing the canonical vectors ei by the tuples (ei, ei+1).D
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Algorithm 2: Parallel proximal point algorithm for �p-TVq for manifold data.

Input: Manifold-valued image f ∈Mn×m, regularization parameter α > 0, parameter
sequence for the proximal mappings λ = (λ1, . . .) ∈ �2 \ �1.

Output: Minimizer x of the �p-TVq problem (2.1).
begin

x← f ;
for r ← 1, 2, . . . do

for i← 1, . . . , n; j ← 1, . . . ,m do
t← calc tF (λr, p, q, xi,j , fi,j) ; /* Calculate t; see Table 2. */

z(1) ← [xij , fij ]t ; /* Proximal mapping of F. */

t← calc tGH(λrα, p, q, xi,j , xi,j+1) ; /* Calculate t; see Table 1. */

z(2) ← [xij , xi,j+1]t ; /* Proximal mapping of Ge/Go. */

t← calc tGH(λrα, p, q, xi,j , xi,j−1) ; /* Calculate t by (2.9),(2.10) */

z(3) ← [xij , xi,j−1]t ; /* Proximal mapping of Go/Ge. */

t← calc tGH(λrα, p, q, xi,j , xi+1,j) ; /* Calculate t; see Table 1. */

z(4) ← [xij , xi+1,j ]t ; /* Proximal mapping of Ho/He. */

t← calc tGH(λrα, p, q, xi,j , xi−1,j) ; /* Calculate t; see Table 1. */

z(5) ← [xij , xi−1,j ]t ; /* Proximal mapping of Ho/He. */

x′
ij ← mean(z(1), z(2), z(3), z(4), z(5)) ; /* Intrinsic mean. */

Alternative: x′
ij ← approx mean(z(1), z(2), z(3), z(4), z(5)) ; /* Fast

approximative variant (cf. (2.24)). */

end
for i← 1, . . . , n; j ← 1, . . . ,m do

xij ← x′
ij ;

end

end

end

2.4. Speedup of the parallel proximal point algorithm. In Algorithm 2, we calculate the
intrinsic mean of the five points z(i) in the inner loop. Each step of the gradient descent (2.20)
in the computation of the mean of the z(i) takes about half of the time needed for computing
the points z(i) by geodesic averaging. Since we typically need at least five iterations for the
gradient descent, computing the means is the most time consuming part of Algorithm 2.

In order to reduce the computation time, we propose replacing the mean by another
construction (known as geodesic analogues in the subdivision context [85]) which is computa-
tionally less demanding. This construction approximates the mean, the results are comparable
(cf. Figure 2), and we can also show convergence towards a minimizer (cf. Theorem 3).

In order to explain the construction, we rewrite the Euclidean mean x of n points x1, . . . , xn
as iterative convex combinations of only two points (in a binary tree like fashion):

(2.21) x =
∑

1
nxi = convt1(convt2(. . . , . . . convtl(xil , xjl) . . .), convt3(. . . , . . .)).

Here, we use the notation conv(y, z)t for the convex combination (1 − t)y + tz of points y, z.
For example, for n = 5 points, we have the following representation:

(2.22) x = conv0.2(conv0.5(conv0.5(x1, x2), conv0.5(x3, x4)), x5).D
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Table 1
Geodesic path length for proximal point problems associated to G and H for the regularization terms con-

sidered in this paper.

Regularizer Geodesic path length (value of calc tGH(λ, p, q, y, z))

TV min(λ, d(y, z)/2)

TV2 λ
1+2λ

d(y, z)

Huber

{
2λτ2

1+4λτ2 d(y, z) if d(y, z) < ω(1+4λτ2)√
2τ

,

min
(
d(y, z)/2,

√
2λωτ

)
otherwise.

We note that the above representation is not unique. The idea is now to replace each Euclidean
convex combination convt(x, y) in (2.21) by the corresponding Riemannian one, i.e., the point
[x, y]td(x,y) on the geodesic joining x and y. Then (2.21) reads as

(2.23) x = [[. . . , . . . [xil , xjl ]t′l . . .]t
′
2
, [. . . , . . .]t′3 ]t′1 ,

where t′k = tkdk and dk denotes the distance of the elements in the bracket to which the dk
is attached. (This technicality arises since we consider unit speed geodesics.) We consider
the above decomposition (2.22) and transport it to the Riemannian setting (2.23). Then,
instead of using the mean in Algorithm 2 we propose using the alternative procedure (called
“approx mean” in Algorithm 2) given by

(2.24) x = [[[z(1), z(2)]0.5d1 , [z
(3), z(4)]0.5d2 ]0.5d3 , z

(5)]0.2d4 .

Here each dk again denotes the distance of the elements in the bracket to which the di is
attached. The points z(i) are the results of the application of the proximal mappings in
Algorithm 2.

The full algorithm is given by Algorithm 2 using the part referred to as “Alternative.”

2.5. Huber regularizing and data terms. TV regularized images may suffer from the
undesirable creation of steps in the solution. This is often called staircasing effect. An
effective way to decrease staircasing is to replace the total variation by the Huber regularizer,
sometimes called the Huber-ROF model [21]. To this end, we replace dq in the definition of
the TVq functional (2.1) by h ◦ d, which is the concatenation of the distance on the manifold
and the Huber function h. The Huber function h is defined, for s > 0, by

(2.25) h(s) =

{
τ2s2 for s < ω/(

√
2τ),

ω
√
2τs− ω2/2 otherwise,

τ, ω > 0.

It is a square function (for small arguments) smoothly glued with an absolute value func-
tion (for large arguments). In analogy to (2.3) and (2.4) we write the Huber regularizer as∑

i,j G
h
ij +

∑
i,j H

h
ij with Gh

ij(x) = h ◦ d(xij , xi,j+1) and Hh
ij(x) = h ◦ d(xij , xi+1,j). As in (2.6)

and (2.8), the proximal mappings of the Gh
ij are given by (cf. the proof of Theorem 2)

(2.26) (proxλGh
ij
x)kl =

⎧⎪⎨
⎪⎩
[xij, xi,j+1]t, k = i and l = j,

[xi,j+1, xij ]t, k = i and l = j + 1,

xkl otherwise,
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Table 2
Geodesic path length for the proximal point problem associated to F for the data terms considered in this

paper.

Data term Geodesic path length (value of calc tF (λ, p, q, y, z))

�1 min(λ, d(y, z))

�2 λ
1+λ

d(y, z)

Huber

{
2λτ2

1+2λτ2 d(y, z) if d(y, z) < ω(1+2λτ2)√
2τ

,

min
(
d(y, z),

√
2λωτ

)
otherwise.

where

t =

{
2λτ2

1+4λτ2 d(xi,j , xi,j+1) if d(xij , xi,j+1) <
ω(1+4λτ2)√

2τ
,

min
(
d(xij , xi,j+1)/2,

√
2λωτ

)
otherwise.

(2.27)

So replacing the procedure to calculate the geodesic length t in Algorithms 1 and 2 by the
procedure to calculate t given by (2.27) yields cyclic and parallel minimization algorithms
with the Huber regularizing term.

We can use the Huber function for the data term; i.e., we let Fh(x, f) =
∑

i,j h◦d(xij , fij).
For small distances the Huber data term behaves like the �2 data term, but it is more robust
to outliers. The proximal mapping of Fh is given by (cf. the proof of Theorem 2)

(proxλFh
)ij(x) = [xij , fij]t,(2.28)

where t =

{
2λτ2

1+2λτ2
d(xij , fij) if d(xij , fij) <

ω(1+2λτ2)√
2τ

,

min
(
d(xij , fij),

√
2λωτ

)
otherwise.

Using the proximal mapping of the Huber data term (2.28) instead of the proximal mapping of
F in Algorithms 1 and 2, respectively, yields cyclic and parallel TV minimization algorithms
with the Huber data term.

3. Convergence in Hadamard spaces. In this section, we show the convergence of Algo-
rithms 1 and 2 to a global minimizer for a certain class of spaces on which the TV functionals
we consider are convex.

For general Riemannian manifolds, the �p-TVq functional (2.1) is not necessarily convex.
The perhaps simplest example where convexity fails is the one-dimensional (1D) sphere S1

(cf. [78]). In the nonconvex case, the study of (global) convergence becomes much more
involved and is out of the scope of this paper. Here we treat the quite large class of Cartan–
Hadamard manifolds where we still have convexity. These are complete Riemannian manifolds
of nonpositive sectional curvature. Prominent examples are the spaces of positive matrices
(which are the data space in diffusion tensor imaging) and the hyperbolic spaces. For details
we refer the reader to [32] or to [10].

The proofs in this section work in the more general setup of Hadamard spaces without
additional effort. Hadamard spaces are certain metric spaces generalizing the concept of
Cartan–Hadamard manifolds. Examples of Hadamard spaces which are not Cartan–Hadamard
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manifolds are the metric trees of [80]. Since there is no additional effort, we consider Hadamard
spaces as underlying spaces in this section.

A Hadamard space is a geodesic space, i.e., for each two points x, y there is an arc con-
necting them and the length of the shortest such arc connecting x and y equals the distance
of the points; see, e.g., [80]. Furthermore, there is a certain condition ensuring that the
geodesic triangles are “not fat.” (Triangles on the sphere are “fat.”) This condition provid-
ing the essential properties of Cartan–Hadamard manifolds in this metric space setting is as
follows. For given x0, x1 there is a point y on the geodesic joining them such that for every z,
d2(z, y) ≤ 1

2d
2(z, x0) +

1
2d

2(z, x1)− 1
4d

2(x0, x1). For details on Hadamard spaces we refer the
reader to [80] and the references therein or to the book [17].

We note that the �p-TVq functionals given by (2.1) are convex in a Hadamard space. This
is because the distance function is doubly convex in Hadamard spaces; see [80].

We formulate our convergence results for Algorithms 1 and 2 in section 3.1. The proofs
are derived in section 3.2.

3.1. Formulation of the main results on convergence. Our first result is the convergence
of Algorithm 1, which is the geodesic averaging algorithm based on cyclical application of
proximal mappings.

Theorem 2. For data in a (locally compact) Hadamard space, Algorithm 1 converges to-
wards a minimizer of the �p-TVq functional. The statement remains true when using Huber
data and regularizing terms based on (2.25).

Furthermore, we obtain the convergence of the parallel proximal point algorithm, Al-
gorithm 2, and its fast variant (with the approximate mean calculation from (2.23)) in a
Hadamard space.

Theorem 3. The parallel proximal algorithm for �p-TVq minimization (Algorithm 2) and
its approximative variant converge towards a minimizer in every (locally compact) Hadamard
space. The statement remains true when using Huber regularization and Huber data terms
based on (2.25).

3.2. Proof of the main results on convergence. Our first goal is to show Theorem 2,
which ensures the convergence of Algorithm 1. This is the geodesic averaging algorithm based
on the cyclical application of proximal mappings.

Proof of Theorem 2. We first show that, in a Hadamard space, the proximal mappings of
the functions F,Gij , and Hij are given by (2.11), (2.6), and (2.8) and their analogues for Hij.
We also show that the proximal mappings of the Huber regularizing and data terms are given
by (2.26), (2.27), and (2.28), respectively. We start with the mappings Gij . The proximal
mapping of Gij is given by

(3.1) proxλGij
x = argmin

y
λ1
qd(yij, yi+1,j)

q + 1
2

∑
k,l

d(ykl, xkl)
2.

Hence, every minimizer y∗ must fulfill y∗kl = xkl for k �= i and l �= j, j + 1. Otherwise, letting
y∗kl = xkl for k �= i and l �= j, j + 1 would decrease the functional value, which contradicts the
minimizer property. This implies (2.6).

Now let y∗ be a minimizer of (3.1). We show that the four points xij, xi,j+1, y
∗
ij, y

∗
i,j+1

lie on one geodesic. We may assume that d(xij , y
∗
ij) ≤ d(xij , xi,j+1) since, otherwise, setting
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y′ij = y′i,j+1 = xi,j+1 would yield a lower functional value in (3.1). By the same argument, we
may assume that d(xi,j+1, y

∗
i,j+1) ≤ d(xij , xi,j+1).

We define the point z = [xij , xi,j+1]t1 as the point reached on the unit speed geodesic
starting at xij after time t1 = d(xij , y

∗
ij). Analogously, we let z′ = [xi,j+1, xi,j+1]t2 be the

point on the same geodesic when starting from xk+1 after time t = d(xk+1, y
∗
k).

We first consider the case with ordering xij, z, z
′, xi,j+1 when running on the geodesic

starting at xk (including the case z = z′.) Since these points lie on a geodesic, we have that

d(xij , xi,j+1) = d(xij , z) + d(z, z′) + d(z′, xi,j+1)(3.2)

≤ d(xij , y
∗
ij) + d(y∗ij , y

∗
i,j+1) + d(y∗i,j+1, xi,j+1).

Here the inequality is true since every geodesic is a shortest path in a Hadamard space. By
our choice of t1, t2, this implies d(z, z′) ≤ d(y∗ij, y

∗
i,j+1). As a consequence, the functional value

a(z, z′) ≤ a(y∗ij, y
∗
i,j+1), where

(3.3) a(v, v′) = 1
2d(v, xij)

2 + λ1
qd(v, v

′)q + 1
2d(v

′, xi,j+1)
2.

This is the essential part of the functional in (3.1), meaning that minimizing the functional in
(3.1) is equivalent to minimizing a. Hence, since geodesics are unique in a Hadamard space,
z = y∗ij and z′ = y∗i,j+1. Thus, these four points lie on a geodesic.

Next, we consider the case with ordering xij, z
′, z, xi,j+1 when running on the geodesic

starting at xk. Then we have that a(z, z) ≤ a(z, z′) since d(z, xij) < d(z, xi,j+1). Hence, we
obtain a lower functional value, which means that this situation cannot occur for a minimizer
of (3.1).

Summing up, we know that the points xij, y
∗
ij , y

∗
i,j+1, xi,j+1 lie on a geodesic in this order-

ing.
Next, we need the precise position of y∗ij, y

∗
i,j+1 on the geodesic. We consider the real

numbers d = d(xij , xi,j+1) and the time points t1 and t2 given above. Minimization of a is
now equivalent to minimizing, for 0 ≤ t1, t2 ≤ d/2,

a′(t1, t2) = 1
2t

2
1 + λ1

q (d− t1 − t2)
q + 1

2t
2
2.

By symmetry and uniqueness, a minimizer fulfills t1 = t2. Hence, we have to find a minimizer
of

a′′(t) = t2 + λ
q (d− 2t)q.

For q = 1, we get the solution
t = min(λ, d/2),

and for q = 2,

t =
λd

2 + 2λ
.

This implies (2.8) and the subsequent formulas (2.9) and (2.10). The corresponding proof for
the Hij is analogous.

Next, we consider the Huber data term Fh based on (2.25). We show that its proximal
mapping is given by (2.28). Similarly as above, we define the point z = [xij , fij]t, where
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t = d(xij , y
∗
ij) and y∗ij is the (i, j)th component of the proximal mapping of λFh at x. Modifying

the arguments above, we see that z = y∗ij . Thus the three points xij , y
∗
ij, fij lie on one geodesic

and it remains to determine t. This leads to minimizing the scalar problem t �→ 2λh(d− t)+ t2

under the constraint 0 ≤ t ≤ d, where we let d = d(xij , fij). To solve this problem one applies
a calculation analogous to that in Example 4.5 of [24] and concludes (2.28). The corresponding
proof of (2.11) for the �p-type data term F is analogous.

It remains to consider the Huber regularizer Gh+Hh from section 2.5. We proceed analo-
gous to the proof for the regularizer G+H to obtain that the four points xij , y

∗
ij, y

∗
i,j+1, xi,j+1

lie on a geodesic in this ordering which shows (2.26). Then proceeding as in the proof for the
Huber data term Fh with a similar calculation as in [24] we obtain the formula (2.27).

Since Algorithm 1 produces only convex combinations of the points involved, we have
that the iterates produced by the algorithm stay in the convex hull of the data (fi,j)i,j . Since
all functions F,Gij ,Hij are continuous, they are Lipschitz on that convex hull. Hence the
assumptions of [9, Thm. 3.4] are fulfilled, and the application of this theorem yields the
convergence of Algorithm 1.

The goal of the rest of this section is to show that Algorithm 2 and its fast variant (with
the approximate mean calculation from (2.23)) converge in a Hadamard space. To this end,
we first show a generic convergence statement for parallel proximal point algorithms.

Theorem 4. We consider a convex function g defined on a Hadamard space which has a
minimizer. Let g = g1 + · · · + gn, and assume that all summands are convex and lower
semicontinuous. Assume further that the positive parameter sequence λ = (λ1, . . .) is square-
summable but not summable. We consider the iteration

(3.4) xk+1 = mean
(
proxλkg1

xk, . . . ,proxλkgn
xk
)
.

Here mean is the intrinsic mean in the Hadamard space defined by (2.18). If there is a constant
L > 0 such that, for all gi and all k,

(3.5) gi(x
k)− gi(proxλkgix

k) ≤ L · d(xk,proxλkgix
k),

then the iteration (3.4) converges to a minimizer of g.
The proof of this statement is an adaption of the proof of Theorem 3.4 in [9] to the parallel

setting. In [9], the applied method of proof is addressed to [13]. We need the following two
lemmas, which are Lemmas 2.6 and 3.2 of [9].

Lemma 5. Let ak, bk, ck be sequences of positive numbers. Assume that
∑

ck < ∞ and
that, for all k, ak+1 < ak − bk + ck. Then the sequence ak converges and

∑
bk <∞.

Lemma 6. Consider a convex and lower semicontinuous function h on a (locally compact)
Hadamard space. Then

h(proxλhx)− h(y) ≤ 1
2λ

(
d(x, y)2 − d(proxλhx, y)

2
)

(3.6)

for any y in the Hadamard space.
Related results in the context of Riemannian manifolds (and not Hadamard spaces) can

be found in [4, 5]. Equipped with these preparations, we show Theorem 4.
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Proof of Theorem 4. The function x �→ d(x, y)2 is uniformly convex (cf. [80]). Thus, using
Jensen’s inequality (cf. [80]), we get, for the intrinsic mean in the Hadamard space xk+1, that

(3.7) d(xk+1, y)2 ≤
n∑

i=1

1
nd(proxλkgi

xk, y)2

for all y. In the following, we use the notation x̃k+1
i = proxλkgi

xk for the proximal mapping

of gi at the previous iterate xk. Using Lemma 6, we estimate

d(x̃k+1
i , y)2 ≤ d(xk, y)2 − 2λk

(
gi(x̃

k+1
i )− gi(y)

)
(3.8)

= d(xk, y)2 − 2λk

(
gi(x

k)− gi(y)
)
+ 2λk

(
gi(x

k)− gi(x̃
k+1
i )

)
.

We combine the estimates (3.7) and (3.8) to obtain

d(xk+1, y)2(3.9)

≤ 1

n

n∑
i=1

d(xk, y)2 − 2λk

n

n∑
i=1

(gi(xn)− gi(y)) +
2λk

n

n∑
i=1

(
gi(xn)− gi(x̃

k+1
i )

)

= d(xk, y)2 − 2λk

n
(g(xn)− g(y)) +

2λk

n

n∑
i=1

(
gi(xn)− gi(x̃

k+1
i )

)
.

The next goal is to estimate the last summand on the right-hand side. To this end, we use
that, by assumption,

gi(x
k)− gi(x̃

k+1
i ) ≤ Ld(xk, x̃k+1

i ).

Furthermore, since x̃k+1
i minimizes the expression in the definition of the proximal mapping,

we obtain

gi(x̃
k+1
i ) + 1

2λk
d(xk, x̃k+1

i ) ≤ gi(x
k).

Applying these estimates successively yields

gi(x
k)− gi(x̃

k+1
i ) ≤ Ld(xk, x̃k+1

i )(3.10)

≤ L2λk
gi(x

k)− gi(x̃
k+1
i )

d(xk, x̃k+1
i )

≤ 2λkL
2.

This allows us to estimate the last summand on the right-hand side of (3.9) by

2λk

n

n∑
i=1

(
gi(xn)− gi(x̃

k+1
i )

)
≤ 2λk

n

n∑
i=1

2λkL
2 = 4λ2

kL
2.

Thus, (3.9) now reads as

d(xk+1, y)2 ≤ d(xk, y)2 − 2λk

n
(g(xn)− g(y)) + 4λ2

kL
2.(3.11)
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Next, we consider a minimizer y∗ of g and plug it into (3.11) above. Then g(xn)−g(y∗) ≥ 0,
and we may apply Lemma 5 to (3.11). This yields that d(xk, y∗) converges as n → ∞ and
that

(3.12)
∑
n∈N

2λk

n
(g(xn)− g(y)) <∞.

Since the parameter sequence λ = (λ1, . . .) is not summable, (3.12) implies that g(xkl)→ g(y∗)
on a subsequence kl. Since d(xk, y∗) is bounded and the underlying space is locally compact,
we may choose another subsequence klr such that xk converges on this subsequence; call the
limit x∗. Then by the lower semicontinuity of g, we have g(x∗) ≤ g(y∗). Then, since y∗ is a
minimizer, also x∗ is a minimizer. We apply Lemma 5 for a second time, but now for y = x∗.
As a result d(xk, x∗) converges. Moreover, d(xk, x∗) → 0 since this is true on a subsequence.
This completes the proof.

For the fast variant of the parallel proximal algorithm introduced in section 2.4 we re-
placed the intrinsic mean by the approximation (2.23). In order to obtain convergence of the
corresponding algorithm, we need the following result.

Theorem 7. The statement of Theorem 4 remains true if we replace the intrinsic mean
(2.18) by its approximation (2.23).

Proof. We show that (3.7) remains true if we replace the intrinsic mean by the construction
given in (2.23). By the convexity of the function a(z) = d(z, y)2 we have that a([z, y]td(z,y)) ≤
(1 − t)a(z) + ta(y) for all z, y ∈ M . We successively apply this inequality to every geodesic
average in (2.23) (in a top-down fashion). As a first step, we obtain

a(x) ≤ (1− t′1)a([. . . , . . . [xil , xjl ]t′l . . .]t′2) + t′1a([. . . , . . .]t′3).

Proceeding further, we get

(3.13) a(x) ≤ c1a(x1) + · · ·+ cna(xn),

where the ck are products with factors t′r and (1− t′r). Reversing the construction of the t′r in
(2.21), we see that, for each xk, the factor ck equals 1/n. Plugging the definition a(z) = d(z, y)2

and ck = 1/n in (3.13) yields (3.7) for the construction (2.23). Then we can follow the rest of
the proof of Theorem 4 to conclude the assertion of the present theorem.

Equipped with these preparations we can now prove our main results concerning the
convergence of the parallel proximal algorithm which was formulated as Theorem 3.

Proof of Theorem 3. As a first step, we have to show that the proximal mappings of
the functions Ge, Go,He,Ho given in and below (2.16) are in fact given by (2.17) and the
explanations following (2.17). We consider only Ge since the other cases are analogous. We
use the fact that Ge is a sum of the functions Gij . More precisely, Ge =

∑
j:j even

∑
iGij .

Considering this form of Ge, we see that the minimization problem in the definition of the
proximal mapping separates into minimization problems which require minimizing expressions
of the form (3.3). Hence, the (i, j)th component of the proximal mapping of Ge equals the
corresponding component of the proximal mapping of Gij . This proximal mapping has been
considered in the proof of Theorem 2. Its (i, j)th component agrees with the expression in
(2.17), which proves (2.17).
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For the Huber regularizing term, we consider the functionals Gh
e , G

h
o ,H

h
e ,H

h
o defined in

analogy to Ge, Gh,He,Ho by replacing dq by h ◦ d, where d is the Huber function (2.25)
in (2.16). Then following the argument for Ge in the previous paragraph, we see that the
(i, j)th component of the proximal mappings of Gh

e agrees with the corresponding component
of the proximal mapping of Gh

ij given by (2.26), (2.27). Analogous statements are true for

Gh
o ,H

h
e ,H

h
o . The proximal mappings of the �p-type data term F and the Huber data term Fh

have been shown to agree with (2.11) and (2.28), respectively, in the proof of Theorem 2.
The next step is to apply Theorems 4 and 7 (for the approximative variant). Since the

algorithm produces only convex combinations and intrinsic means, the iterates produced by
the algorithm stay in the convex hull of the data (fi,j)i,j . So the involved functions (which are
all continuous) are Lipschitz on this convex hull, which means that (3.5) is fulfilled. Hence,
we may apply Theorems 4 and 7 and conclude the assertion of the theorem.

4. Applications. In this section, we apply the algorithms proposed in this paper to con-
crete manifolds which frequently occur in applications. The manifolds we consider are the
space of positive matrices Pos3, the spheres S

1 and S2, and the product space S1×R
2 (which

appears in the context of nonlinear color models) as well as the rotation group.
In order to make Algorithms 1 and 2 work in a specific manifold we have to compute

geodesics and distances on this manifold. This is accomplished using the Riemannian ex-
ponential mapping and its inverse. Recall that the exponential mapping expa : TaM → M
returns the point expa v on the manifold which we obtain when following the unit speed
geodesic starting at a into the direction of the given tangent vector v for time ‖v‖a. Con-
versely, the inverse of the exponential mapping exp−1

a : M → TaM gives us the tangent vector
exp−1

a b at the point a which leads to the point b when following the geodesic with respect to
this tangent vector for time ‖ exp−1

a b‖a. Using these mappings, the point [a, b]t reached on
the unit speed geodesic joining a and b after time t is given by

(4.1) [a, b]t = expa(t · exp−1
a (b)).

In order to calculate the geodesic path length t, we further have to calculate distances on
the manifold under consideration (cf. Tables 1 and 2). To this end, we use that the distance
between points a and b is given by the length of the tangent vector exp−1

a (b), i.e.,

(4.2) d(a, b) = ‖ exp−1
a (b)‖a.

Here the length is measured with respect to the Riemannian metric in the tangent space of
a. Hence, in order to apply our algorithms for a specific data space, we need only instan-
tiate the exponential mapping and its inverse for the corresponding manifold. For the data
spaces considered in this paper, the exponential mappings and their inverse have closed ex-
pressions involving only basic arithmetic operations such as trigonometric functions or matrix
exponentials.

The numerical experiments were conducted on a Macbook using a single core of a 2.6 GHz
Intel Core i7 processor. (Parallelized implementations of our algorithms are out of the scope of
this paper.) For the experiments in Figure 5, we optimized the TV parameter α with respect
to the peak signal-to-noise ratio. In the other experiments, α was determined empirically. A
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simple choice for the sequence λr is λr = cr−ω with c > 0. The sequence fulfills the condition
to be in �2 \ �1 for each 0.5 < ω ≤ 1. We here used ω = 0.95 and c = 3. We observed
only little differences when using different parameter pairs. In order to quantitatively assess
the denoising performance of TV regularization on manifolds we use the signal-to-noise ratio
improvement (cf. [82, Chap. 10]). We consider a manifold-valued version of the signal-to-noise
ratio improvement which is given by

ΔSNR = 10 log10

(∑
ij d(gij , fij)

2∑
ij d(gij , xij)

2

)
.

Here f is the noisy data, g the ground truth, and x the regularized restoration.

4.1. The space of positive matrices Pos3: Diffusion tensor imaging. Diffusion tensor
imaging (DTI) is a noninvasive imaging modality based on nuclear magnetic resonance. It
allows one to quantify the diffusional characteristics of a specimen [11, 52]. Applications are
the determination of fiber tract orientations [11] and the detection of brain ischemia [59].
Denoising is an important topic in DTI which has been addressed in various articles; see, e.g.,
[26, 69, 12].

In DTI, the diffusivity of water molecules is captured by a diffusion tensor, i.e., a (sym-
metric) positive (definite) 3× 3 matrix S(p) sitting at pixel p. It is reasonable to consider the
space of diffusion tensors Pos3 as a Riemannian manifold with the Riemannian metric

gD(W,V ) = trace(D−1
2WD−1V D−1

2 );

see [69]. Here the symmetric matricesW,V represent tangent vectors in the pointD. Equipped
with this Riemannian metric the space of positive matrices becomes a Cartan–Hadamard
manifold. Hence, by virtue of Theorems 2 and 3, the cyclic proximal point algorithm and
both variants of the parallel algorithm converge to a global minimizer.

For the space of positive matrices, the Riemannian exponential mapping expD is given by

expD(W ) = D
1
2 exp(D− 1

2WD− 1
2 )D

1
2 .

HereD is a positive matrix and the symmetric matrixW represents a tangent vector inD. The
mapping exp is the matrix exponential. Furthermore, there is also a closed form expression
for the inverse of the Riemannian exponential mapping: we have, for positive matrices D,E,

exp−1
D (E) = D

1
2 log(D− 1

2ED− 1
2 )D

1
2 .

The matrix logarithm log is well defined since the argument is a positive matrix. The matrix
exponential and logarithm can be efficiently computed by diagonalizing the symmetric matrix
under consideration and then applying the scalar exponential and logarithm functions to the
eigenvalues. The distance between D and E is just the length of the tangent vector exp−1

D (E)
which can be explicitly calculated by

d2(D,E) =
3∑

l=1

log(κl)
2,
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where κl is the lth eigenvalue of the matrix D− 1
2ED− 1

2 .
The data actually measured in DTI are so-called diffusion weighted images (DWIs) Dv(p),

which capture the directional diffusivity in the direction v at pixel p. The relation between
the diffusion tensor S(p) and the DWIs Dv(p) at the pixel p is given by the Stejskal–Tanner
equation

(4.3) Dv(p) = A0e
−b vTS(p)v

with constants b,A0 > 0. Typically b = 800 and A0 = 1000. Usually, 6 to 30 DWIs Dv (with
different directions v) are measured [52, sect. 3. IV C]. Being magnetic resonance images the
DWIs are corrupted by Rician noise which arises from complex-valued Gaussian noise in the
original frequency domain measurements [12]. This means that assuming the model (4.3) the
actual measurement in direction v at pixel p is given by

D′
v(p) =

√
(X +Dv(p))2 + Y 2

with the Gaussian random variables X,Y ∼ N(0, σ2). Typically, the tensor S(p) is obtained
from the DWIs via a least square fit using the Stejskal–Tanner equation (4.3). In our synthetic
examples, we impose Rician noise to 15 DWIs D′

v obtained from a synthetic diffusion tensor
image S by (4.3). Then we apply least square fitting to the noisy DWIs to obtain a noisy
diffusion tensor image.

In our experiments we visualize the diffusion tensors by the isosurfaces of the corresponding
quadratic forms. More precisely, the ellipses visualizing the diffusion tensor S(p) at pixel p
are the points x fulfilling (x − p)TS(p)(x − p) = c for some c > 0. We work on slices which
are 2D domains. However, we respect the 3D nature of DTI since the data we use are 3 × 3
matrices.

Denoising DTI images using a Rician noise model was also performed in [37]. There a
smooth anisotropic regularizer is applied, whereas we use a nonsmooth jump preserving TV
term; furthermore, there, a Log-Euclidean metric is used which results in transporting the
problem to the tangent space of the identity matrix and solving it in this linear space; see also
[6, 7]. Our approach is differential-geometric in the sense that it uses no specific base point;
cf. [69]. Approximation by going to a tangent space at a base point b yields good results when
the involved points are near b; when this is not the case, one loses approximation quality.

In Figure 1, we apply �2-TV minimization to real DTI data of a human brain. The data set
stems from the Camino project [30] and is freely accessible. We observe that TV minimization
removes noise and preserves sharp boundaries between oriented structures.

In Figure 2, we apply Algorithm 1 as well as Algorithm 2 and its fast variant for �2-TV
minimization to a synthetic DTI on which we impose Rician noise. We observe the denoising
capabilities of the proposed algorithms under a relatively high noise level; minimization of the
�2-TV functional almost completely removes the noise while preserving sharp boundaries at
the same time.

In Figure 3, we compare our result using Algorithm 1 with the result obtained from TV
minimization using the Euclidean metric on the cone of positive matrices. For TV mini-
mization in the Euclidean case, we use the algorithm of Chambolle and Pock [21]. In the
context of processing DTI data using the Euclidean metric, often a swelling effect is reported

D
ow

nl
oa

de
d 

11
/1

9/
14

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TV REGULARIZATION FOR MANIFOLD-VALUED DATA 2247

Figure 1. Left: Diffusion tensor image of a human brain (axial cut); Right: TV denoising with the �2 data
term using the cyclic proximal point algorithm (Algorithm 1) using α = 0.11. The runtime is 496.0 sec for 4000
iterations. The regularized image is much smoother than the original image. At the same time, strong changes
of the orientations are preserved.

[81, 6]: this means that the determinant of the considered matrices and thus the dispersion
of the corresponding covariance matrices tend to be larger than the original ones [6]. In the
experiment, we also observe a slight swelling in the Euclidean setup. The swelling effect is
less pronounced when using our approach for TV minimization based on the affine-invariant
Riemannian metric.

4.2. The 1D sphere S1: InSAR images. Synthetic aperture radar (SAR) is a radar
technique for sensing the earth’s surface from measurements taken by aircrafts or satellites.
Interferometric synthetic aperture radar (InSAR) images consist of the phase difference be-
tween two SAR images, recording a region of interest either from two different angles of view or
at two different points in times. Important applications of InSAR are the creation of accurate
digital elevation models and the detection of terrain changes; cf. [60, 72].

As InSAR data consist of phase values, the natural data space of InSAR images is the
1D sphere S1. The exponential mapping and its inverse have a particularly simple form when
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(a) Synthetic DT image. (b) Rician noise with σ = 90.

(c) Algorithm 1 (72.2 sec). (d) Algorithm 2 (205.0 sec). (e) Fast variant of Algorithm 2
(129.8 sec).

Figure 2. �2-TV regularization of a diffusion tensor image with high noise level. Algorithm 1 as well as
Algorithm 2 and its fast variant converge to the same solution. The TV regularization (α = 0.70) removes
almost all the noise, and it preserves the sharp transitions. The signal-to-noise-ratio improvement is ΔSNR =
19.03 in all three cases. The numbers in brackets denote the CPU time for 4000 iterations.

regarding S1 as a unit circle in the complex plane. Then the exponential mapping is given by

expa(v) = ei(θ+v),

where a = eiθ and v ∈ ]−π;π[. For two nonantipodal points a and b the inverse exponential
map reads as

exp−1
a (b) = arg(b/a),

which is the polar angle of the complex number b/a. The distance between two points on the
sphere reads as d(a, b) = | arg(b/a)|.

In Figure 4, we apply TV denoising to a real InSAR image taken from [72] originating
from ESA. This experiment shows the different effects of TV regularization using different
data terms. We use �2 and �1 terms as well as the Huber term (with the parameters τ =

√
2

and ω = 1 in the definition of the Huber function (2.25)). We used 600 iterations of the cyclic
proximal point algorithm. We observe that TV regularization reduces the noise significantly.
The �1 data term and the Huber data term appear to be more robust to outliers than the �2

data term.
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(a) Data (Average determi-
nant: 0.12).

(b) Euclidean metric (Aver-
age determinant: 0.16).

(c) Affine-invariant Riemann-
ian metric (Average determi-
nant: 0.12).

Figure 3. TV regularization using the Euclidean norm induces a slight swelling of the diffusion tensors;
that is, the average determinant of the tensors in (b) is higher than that of the data. The affine-invariant
Riemannian metric used in this paper is less affected by the swelling effect.

4.3. R
2 × S1–valued images: Denoising in LCh color space. It was observed that TV-

based denoising may give better results when using certain nonflat color models instead of
the classical RGB color space [23]. One of these nonflat models is the HSV color space, which
leads to cylindrical data living in the product space R

2 × S1.
We here use the LCh color space. Similar to the HSV space it is a cylindrical space

consisting of a luminance component L ∈ R
+
0 , a chroma component C ∈ R

+
0 , and a hue

component h ∈ S1. The difference between HSV and LCh is that the first derives directly
from the RGB space, whereas the latter derives from the Lab color space (also called L∗a∗b∗

space), which is intended to better match the human visual perception than the technically
motivated RGB space. We perform the color space conversions using the built-in functions of
MATLAB. For the hue- and range-preserving enhancement of color images see [66].

The exponential and the logarithmic mappings are given componentwise by the respec-
tive mappings on R

2 and S1. Note that in spite of this separability property, the proposed
algorithm is not equivalent to performing the algorithm on R

2 and S1 separately (except for
p = q = 2). The reason is that the path length calculated according to Tables 1 and 2 except
for p, q = 2 depends nonlinearly on the distance in the product manifold.

In Figure 5 we compare denoising in the RGB space with denoising in the LCh space.
The RGB example was computed using the split Bregman method for TV denoising, which
is a state-of-the-art method for vectorial TV regularization [46, 42]. We optimized the corre-
sponding model parameter with respect to the peak signal-to-noise ratio (PSNR) given by

PSNR(x) = 10 log10

(
3mn · (maxi,j,k |gi,j,k|)2∑

i,j,k |gi,j,k − xi,j,k|2
)
,

where g ∈ R
n×m×3 denotes the ground truth (in RGB space). In Figure 5 we observe that the

LCh color space denoising can indeed lead to better results than the vectorial RGB denoising.

4.4. S2-valued images. We next apply our methods to images taking values in the
2D sphere S2. For example, spherical data appear in image processing in the context of
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(a) InSAR image (real data). (b) �2-TV (α = 0.60). (c) �1-TV (α = 0.60). (d) TV with Huber data
term (α = 0.60).

Figure 4. TV denoising of an InSAR image of dimension 150 × 150. The S1-valued data are visualized
as hue component in the HSV color space. TV minimization reliably removes the noise while preserving the
structure of the image. We observe that �1 and Huber data terms are slightly more robust to outliers. In all
three cases the runtime is about 20 sec for 600 iterations.

chromaticity-based color models [23, 84] and as orientation fields of 3D images [71].
For a unit vector a on the unit sphere S2 in R

3 and a nonzero tangent vector v to the
sphere at the point a, the exponential mapping is given by

expa(v) = a · cos ‖v‖ + a · sin ‖v‖
‖v‖ .

The inverse exp−1
a of the exponential mapping is well defined for nonantipodal points a and b

and is given by

exp−1
a (b) = arccos(〈a, b〉) · b− 〈b, a〉 a

‖b− 〈b, a〉 a‖ ,

where 〈·, ·〉 denotes the standard inner product in R
3. The distance between a and b is d(a, b) =

arccos(〈a, b〉).
We test the denoising potential of our algorithm on a (synthetic) spherical-valued image.

In the context of directional statistics a popular noise model on S2 uses the von Mises–Fisher
distribution having the probability density

f(x) = c(κ) exp(κ 〈x, μ〉).

Here the parameter κ > 0 expresses the concentration around the mean orientation μ ∈ S2—
the higher the κ, the more concentrated the distribution. The constant c(κ) is used for
normalization to obtain a probability measure. For each data point xij ∈ S2, we consider the
above distribution with μ = xij and draw a sample. For the simulation of the distribution
we used the implementation [53]; see [87] for a description of the algorithm. In Figure 6, we
observe that the noise is almost completely removed by TV minimization and that the edges
are retained.

4.5. SO(3) data. Measurements which involve the orientations of rigid objects in 3D
space lead to data which take their values in the rotation group SO(3). Examples of SO(3)-
valued data are aircraft orientations [83] and protein alignments [48]. They also appear in the
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(a) Original image. (b) Gaussian noise (PSNR:
15.64).

(c) �2-TV in RGB space (α =
0.22, PSNR: 23.92).

(d) �2-TV in LCh space (α =
0.90, PSNR: 32.13).

Figure 5. TV denoising in different color spaces. We see that measuring the distance in the nonflat LCh
metric can lead to higher reconstruction quality than in the RGB color space. The runtime is 13 sec for 1000
iterations.

context of tracking 3D rotational data arising in robotics [34]; see also [61] for connections
with directional statistics.

The special orthogonal group SO(3) consists of all orthogonal 3 × 3 matrices with deter-
minant one, i.e.,

SO(3) =
{
Q ∈ GL(3) : QtQ = I3,detQ = 1

}
.

As usual for matrix groups, we consider only the tangent space to SO(3) in the identity matrix
I3. It is given by the space of 3 × 3 skew-symmetric matrices so(3). Identifying the tangent
space at an arbitrary point P with the tangent space at I3 (via the differential of the left
group action) the exponential mapping expP : so(3)→ SO(3) in the point P is given by

expP (W ) = exp(W )P.

Here exp denotes the matrix exponential. For P,Q ∈ SO(3), the “inverse” of the above
exponential mapping reads as

exp−1
P (Q) = log(QP t),

where log denotes the principal logarithm (which may be viewed as the componentwise princi-
pal logarithm on the eigenvalues). The distance between P and Q equals the Frobenius norm
of log(QP t).

For the matrix operations needed above there are closed form expressions available; see,
e.g., [61]. More precisely, to compute the matrix exponential of a skew-symmetric matrix W
we use the Rodrigues formula

exp(W ) = I3 +
sin(a)

a
W +

1− cos a

a2
W 2 for a =

√
trace(W tW ) > 0.

For a = 0, we have exp(W ) = I3. Concerning the principal matrix logarithm of a rotation
matrix P , we let θ = arccos(trace(P )− 1)/2. If θ = 0, then log(P ) = 0, the zero matrix. For
|θ| < π, the principal logarithm of P is given by

log(P ) =
θ · Y

2 sin(θ)
, where Y = (P − P t)/2.
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Figure 6. Denoising of an S2-valued image. The polar angle is coded both as length of the vectors and as
color (red pointing towards the reader, blue away from the reader). Left: Original; Center: Von Mises–Fisher
noise of level κ = 12.7; Right: �1-TV regularization using α = 0.5. The noise is almost completely removed,
whereas the jumps are preserved (ΔSNR = 6.85). The runtime is 12.9 sec for 7000 iterations.

In Figure 7, we consider a synthetic 1D signal consisting of 130 rotation matrices (visual-
ized as tripods). The signal varies smoothly except for a single jump at the 50th matrix. We
simulate noisy data using the matrix Fisher distribution [56] which is given by the density

f(X) = cF exp
{
trace(F tX)

}
, X ∈ SO(3).

The matrix F is a fixed 3 × 3 parameter matrix which describes the mode and the concen-
tration of the distribution. In the isotropic case, the concentration of the distribution can be
described by a single parameter κ > 0 which can be regarded as noise level. A small value of
κ corresponds to a high level of noise. Our simulation uses a method recently introduced in
[41] and relies on the sampling of quaternions following a related Bingham distribution. To
simulate the latter we used the code from [18], which implements the method in [51]. For
details we refer the reader to [41, Chap. 5].

The results in Figure 7 show that the proposed algorithm removes the noise. The resulting
signal is smoothed while the jump is preserved. In that experiment, we also compare total
variation with Huber regularization terms. We see that the Huber regularization exhibits
fewer staircasing artifacts than TV regularization.

5. Conclusion and future research. In this paper we have developed proximal point
algorithms for TVminimization for manifold-valued data. Our experiments show the denoising
capability of the developed algorithms in various manifolds appearing in applications. For
Hadamard spaces, we obtain convergence towards a global minimizer of the TV functional.

In future work, we address Blake–Zisserman and Potts functionals for manifold-valued
data.

Appendix A. Proof of Proposition 1. Modifying arguments from section 3, we supply
the proof of Proposition 1.

Proof of Proposition 1. We show the statement for the functions Gij . As in the proof
of Theorem 2 we see that y∗k,l = xk,l for k �= i, i + 1 and l �= j. Then we consider the
components y∗ij and y∗i,j+1 of a minimizer. We fix a shortest geodesic connecting xij and
xi,j+1. We define the points z, z′ on this geodesic as in the proof of Theorem 2. Then we may
apply the same arguments as in that proof to reduce to the situation where xij , z

′, z, xi,j+1D
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(a) Original.
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(b) Fisher noise of level κ = 75.
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(c) �2-TV (α = 2.0, ΔSNR = 6.32).
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(d) �2-Huber (α = 0.9, ΔSNR = 9.15).

Figure 7. Denoising of a SO(3)-valued time-series; TV regularization removes the noise and preserves the
jump. The Huber regularization term gives even better results with fewer staircasing effects. The runtimes for
TV and Huber regularization are 1.3 sec and 4.7 sec, respectively, for 1000 iterations.

lie on the geodesic in this ordering. Then the estimate (3.2) is true since we chose a shortest
geodesic. This implies d(z, z′) ≤ d(y∗ij , y

∗
i,j+1). On the other hand, y∗ is a minimizer of Gij .

This implies d(y∗ij , y
∗
i,j+1) ≤ d(z, z′). Hence, equality holds and y∗ij and y∗i,j+1 lie on a shortest

geodesic connecting xij and xi,j+1. The statements for the functionals Hij and F follow
analogously.
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[25] C. Chefd’Hotel, D. Tschumperlé, R. Deriche, and O. Faugeras, Regularizing flows for constrained
matrix-valued images, J. Math. Imaging Vision, 20 (2004), pp. 147–162.

[26] B. Chen and E. Hsu, Noise removal in magnetic resonance diffusion tensor imaging, Magn. Res. Med.,
54 (2005), pp. 393–401.

[27] T. Chen, W. Yin, X. Zhou, D. Comaniciu, and T. Huang, Total variation models for variable lighting
face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006), pp. 1519–1524.

[28] C. Clason, B. Jin, and K. Kunisch, A semismooth Newton method for L1 data fitting with automatic
choice of regularization parameters and noise calibration, SIAM J. Imaging Sci., 3 (2010), pp. 199–231.

[29] P. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in Fixed-Point
Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp. 185–212.

[30] P. Cook, Y. Bai, S. Nedjati-Gilani, K. Seunarine, M. Hall, G. Parker, and D. Alexander,
Camino: Open-source diffusion-MRI reconstruction and processing, in 14th Scientific Meeting of the
International Society for Magnetic Resonance in Medicine, 2006, p. 2759.

[31] N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia,
Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolu-

D
ow

nl
oa

de
d 

11
/1

9/
14

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TV REGULARIZATION FOR MANIFOLD-VALUED DATA 2255

tion, Micros. Res. Tech., 69 (2006), pp. 260–266.
[32] M. do Carmo, Riemannian Geometry, Birkhäuser, Boston, 1992.
[33] Y. Dong, M. Hintermüller, and M. Neri, An efficient primal-dual method for l1TV image restoration,

SIAM J. Imaging Sci., 2 (2009), pp. 1168–1189.
[34] T. Drummond and R. Cipolla, Real-time visual tracking of complex structures, IEEE Trans. Pattern

Anal. Mach. Intell., 24 (2002), pp. 932–946.
[35] O. Ferreira and P. Oliveira, Proximal point algorithm on Riemannian manifolds, Optimization, 51

(2002), pp. 257–270.
[36] R. Ferreira, J. Xavier, J. Costeira, and V. Barroso, Newton algorithms for Riemannian distance

related problems on connected locally symmetric manifolds, IEEE J. Sel. Top. Sign. Process., 7 (2013),
pp. 634–645.

[37] P. Fillard, X. Pennec, V. Arsigny, and N. Ayache, Clinical DT-MRI estimation, smoothing, and
fiber tracking with log-Euclidean metrics, IEEE Trans. Med. Imag., 26 (2007), pp. 1472–1482.

[38] P. Fletcher, Geodesic regression and the theory of least squares on Riemannian manifolds, Int. J.
Comput. Vis., 105 (2013), pp. 171–185.

[39] P. Fletcher and S. Joshi, Riemannian geometry for the statistical analysis of diffusion tensor data,
Signal Process., 87 (2007), pp. 250–262.

[40] P. Fletcher, C. Lu, S. Pizer, and S. Joshi, Principal geodesic analysis for the study of nonlinear
statistics of shape, IEEE Trans. Med. Imag., 23 (2004), pp. 995–1005.

[41] A. Ganeiber, Estimation and Simulation in Directional and Statistical Shape Models, Ph.D. thesis,
University of Leeds, Leeds, UK, 2012.

[42] P. Getreuer, Rudin-Osher-Fatemi total variation denoising using split Bregman, Image Processing On
Line, 2012, http://dx.doi.org/10.5201/ipol.2012.g-tvd.
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[81] D. Tschumperlé and R. Deriche, Diffusion tensor regularization with constraints preservation, in

D
ow

nl
oa

de
d 

11
/1

9/
14

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://earth.esa.int/workshops/ers97/program-details/speeches/rocca-et-al


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TV REGULARIZATION FOR MANIFOLD-VALUED DATA 2257

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2001, pp. I-948–
I-953.

[82] M. Unser and P. Tafti, An Introduction to Sparse Stochastic Processes, Cambridge University Press,
Cambridge, UK, 2014.

[83] I. Ur Rahman, I. Drori, V. C. Stodden, D. L. Donoho, and P. Schröder, Multiscale representa-
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