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Signals with discontinuities appear in many problems
in the applied sciences ranging from mechanics,
electrical engineering to biology and medicine.
The concrete data acquired are typically discrete,
indirect and noisy measurements of some quantities
describing the signal under consideration. The
task is to restore the signal and, in particular,
the discontinuities. In this respect, classical methods
perform rather poor, whereas non-convex non-smooth
variational methods seem to be the correct choice.
Examples are methods based on Mumford–Shah
and piecewise constant Mumford–Shah functionals
and discretized versions which are known as Blake–
Zisserman and Potts functionals. Owing to their
non-convexity, minimization of such functionals is
challenging. In this paper, we propose a new iterative
minimization strategy for Blake–Zisserman as well
as Potts functionals and a related jump-sparsity
problem dealing with indirect, noisy measurements.
We provide a convergence analysis and underpin our
findings with numerical experiments.

1. Introduction
Problems involving reconstruction tasks for functions
with discontinuities appear in numerous biological

2015 The Author(s) Published by the Royal Society. All rights reserved.
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and medical applications. Examples are the steps in the rotation of the bacterial flagella [1,2],
the cross-hybridization of DNA [3–5] and single-molecule fluorescence resonance energy transfer
[6]. A more classical engineering example is crack detection in fracture mechanics. In general,
signals with discontinuities appear in many applied problems ranging from mechanics, electrical
engineering to biology and medicine. For further examples, we refer to the papers [7–9] and the
references therein. The latter references in particular deal with various aspects concerning the
reconstruction of piecewise constant signals.

For reconstruction tasks, it is quite usual to use a variational approach: an energy functional
consisting of a data fidelity term, and a regularizing term is minimized. It is well known that using
classical regularizing terms based on Hilbert–Sobolev semi-norms ‖∇u‖2

L2 performs poorly for the
recovery of functions with discontinuities. Much better results are obtained by non-smooth non-
convex minimizers such as the Mumford–Shah functional and the piecewise-constant Mumford–
Shah functional [10,11]. These functionals penalize the ‘size’ (i.e. the outer Hausdorff measure)
of the discontinuity set and, only on its complement, measure some qth variation. However,
their analysis is more demanding because they are non-smooth and non-convex. Some references
concerning Mumford–Shah functionals are [12–15] and also the references therein; see also the
book [16]. Mumford–Shah functionals are the maybe most well-known representative of the class
of free-discontinuity problems introduced by De Giorgi [17].

The concrete data acquired in applications are usually indirectly measured. Furthermore, they
consist of measurements on a discretized grid and are typically corrupted by noise. In practical
applications, the task is to restore the signal and, in particular, to recover the discontinuities from
these measurements. In order to deal with indirect linear measurements, data terms of the form
‖Au − f‖2, where A represents the measurement device and f is the given data, are considered. To
deal with the discrete data, typically, the energy functional is discretized.

Discretizations of the Mumford–Shah functional and the piecewise-constant Mumford–
Shah functional are known under the names Blake–Zisserman functionals and Potts functionals,
respectively. The weak string model as it is called by Blake & Zisserman in [18] is given in its
univariate version by

minimize γ
∑

i

min(|ui − ui−1|q, sq) + ‖Au − f‖2
2. (Bγ ,s)

Here, the data f live in a real-valued finite dimensional linear space. The parameter γ > 0 controls
the balance between data fidelity and regularizing term. The parameter s > 0 determines the
discontinuity. More precisely, the underlying signal models are piecewise smooth functions with
discontinuities. In a discrete set-up, we say there is a jump (a discontinuity) between i, i + 1 if the
distance between ui+1, ui is at least s. The penalty for a jump is then independent of its magnitude.
If the distance between consecutive members of u is smaller than s, the penalty is just chosen as
the (discrete) qth variation of u. We allow for q ∈ [1, ∞). References related to Blake–Zisserman
functionals are [13,18–20].

The Potts model [21–23] is a discrete variant of the piecewise-constant Mumford–Shah model.
It assumes that the underlying signal is constant between its discontinuities. The corresponding
minimization problem is given by

minimize γ ‖∇u‖0 + ‖Au − f‖2
2, (Pγ )

where ‖∇u‖0 = |{i : ui �= ui+1}| denotes the number of jumps of the target variable u. The name
Potts model is frequently used in statistics as well as signal and image processing [24–28]; it is
a tribute to Renfrey B. Potts and his work in statistical mechanics [21] where the above priors
were used for the first time. For recent work concerning the reconstruction of piecewise constant
signals, we refer to the papers [7,8] of Little & Jones; the first paper includes an overview, and the
second paper in particular deals with methods.
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Formally, the Potts problem (Pγ ) might be seen as the ‘Lagrange formulation’ of the following
constrained optimization problem which we call J-jump sparsity problem. It is given by

minimize ‖Au − f‖2
2

subject to ‖∇u‖0 ≤ J,

}
(SJ)

where J ∈ N0. We later see that the relation between the Potts problem (Pγ ) and the J-jump sparsity
problem is only of formal nature; they are not equivalent. To the best of our knowledge, the J-jump
sparsity problem (SJ) for general A has only recently appeared in the literature [29]; the authors
obtain asymptotic statements in the context of inverse regression. The situation A = id is well
studied. References on the J-jump sparsity problem (SJ) for A = id are [30,31]. Related sparsity
problems were considered in [32].

Finding solutions of all the above problems is challenging because they are NP hard;
for the Blake–Zisserman problem (Bγ ,s), this has been shown in [33], and for the Potts
problem, in [34]. Thus, for real applications, there is no hope to find a global minimizer
in reasonable time. However, owing to the practical importance, several approximative
strategies have been proposed. Fornasier & Ward [19] (see also Artina et al. [35]) rewrite the
Blake–Zisserman problem as a pointwise-penalized problem and derive generalized iterative
thresholding algorithms for the rewritten problem. They show that their method converges to
a local minimizer. Further theoretical results concerning the pointwise penalized problem were
derived by Nikolova [20]. Related algorithms are iterative soft thresholding for �1 penalized
problems, analysed by Daubechies et al. [36], and the iterative hard thresholding algorithms
for �0 penalizations, analysed by Blumensath & Davies in [32,37]. For the Potts problem,
the authors of this paper have proposed a strategy based on the alternating methods of
multipliers in [34]. Furthermore, Candès et al. [38] use iteratively re-weighted total variation
minimization for piecewise constant recovery problems. Results of compressed sensing type
related to the Potts problem have been derived by Needell & Ward [39,40]: under certain
conditions, minimizers of the Potts functional agree with total variation minimizers. For the
case of Blake–Zisserman functionals we are not aware of similar results. However, in the
presence of noise, total variation minimizers might significantly differ from minimizers of the
Potts problem. But, the minimizers of the Potts problem are the results frequently desired
in practice.

In this paper, we propose a new iterative minimization strategy for Blake–Zisserman
as well as Potts functionals and the J-jump sparsity problem dealing with indirect, noisy
measurements. Our methods belong to the class of majorization–minimization or forward–
backward splitting methods of Douglas–Rachford type [41]. In contrast to the approaches in
[19] and [32,37], which lead to thresholding algorithms, our approach leads to non-separable
yet computationally tractable problems in the backward step. Facing the additional challenge
owing to the non-separability of the backward step, we provide a convergence analysis. Most
notably, we obtain convergence statements towards local minimizers. We further establish a
relation between stationary points of the iterations and local and global minimizers. We also show
that the Potts problem (Pγ ) and the J-jump sparsity problem (SJ) are not equivalent. From an
experimental side, we show the applicability of each of our algorithms in several signal recovery
experiments. In particular, we consider deconvolution problems with full and partial data. We
apply our methods to real data: we estimate the steps in the rotation of the bacterial flagellar
motor [1].

The paper is organized as follows. In §2, we consider the variational recovery of signals with
jumps. We properly introduce the considered problems and derive iterative algorithms for their
solution. This is done for the Potts problem in §2a, for the J-jump sparsity problem in §2b, and for
the Blake–Zisserman problem in §2c. In §3, we gather our analytical results. They are formulated
in §3a, and the proofs are supplied in the following sections. In §4, we apply the algorithms
derived in this paper to concrete reconstruction problems.
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2. Variational recovery of signals with jumps and related algorithms
We consider the Potts problem and the J-jump sparsity problem dealing with piecewise constant
signals in §2a and b, respectively. The Blake–Zisserman problem dealing with piecewise smooth
signals is treated in §2c.

(a) The Potts problem
We start with the Potts problem (Pγ ). Here, the underlying signal models are the
piecewise constant functions. The idea is to minimize the functional in (Pγ ) for corrupted,
indirectly measured noisy data to obtain a parsimonious piecewise constant estimate for the
underlying signal.

We first of all record the existence of minimizers for this non-continuous problem.

Theorem 2.1. The Potts problem (Pγ ) has a minimizer.

Proofs are, e.g. given in [19] or in [34] where also more general �p data terms (which lead to
a non-Hilbert space setup) are considered. The minimizers of the Potts problem are not unique
in general—even if A is injective; but, at least, for A = id, the set of data and parameters γ for
which minimizers are not unique are known to be a negligible set [42]. It is worth mentioning
that the time-continuous formulation of the Potts problem need not have solutions in general.
Here, additional regularization, e.g. by L∞, constraints is needed. Then, under further suitable
assumptions, the minimizers of the Potts problem converge to piecewise constant minimizer of
a continuous Potts functional (or, synonymously, piecewise constant Mumford–Shah functional),
as sampling gets finer [25]. This also holds in the presence of noise [25,26,43]. For related results
on Potts functionals with L1 data terms, we also refer to Weinmann et al. [44].

Iterative Potts minimization algorithms. Because the Potts problem is NP hard (cf. [34]), there
is no hope to find a practically applicable algorithm that computes a global minimizer within
reasonable time. The challenge is to derive practically applicable algorithms that produce ‘good
solutions’—‘good’ from the practical point of view—and to obtain analytic guarantees, at least
locally. We here derive an algorithm that does so. Later on, we show convergence towards a local
minimizers. To this end, we consider the Potts functional

Pγ (u) = γ ‖∇u‖0 + ‖Au − f‖2
2. (2.1)

Here, the target variable u lives in R
L, data f consisting of s measurements live in R

s and A is a
real-valued s × L matrix. The corresponding surrogate functional Psurr

γ is given by

Psurr
γ (u, v) = γ ‖∇u‖0 + ‖Au − f‖2

2 − ‖Au − Av‖2
2 + ‖u − v‖2

2. (2.2)

Expanding and rearranging the terms on the right-hand side, we see that

Psurr
γ (u, v) = γ ‖∇u‖0 + ‖u − v + A∗Av − A∗f‖2

2 + C, (2.3)

with some constant C which is independent of u and thus negligible. It follows that

arg min
u

Psurr
γ (u, v) = arg min

u
{γ ‖∇u‖0 + ‖u − v + A∗Av − A∗f‖2

2}. (2.4)

We now successively compute uk+1 = arg minu Psurr(u, uk). We obtain the following iterative Potts
minimization algorithm given by the iteration

dk+1 = (I − A∗A)uk + A∗f

and uk+1 = arg min
u

γ ‖∇u‖0 + ‖u − dk+1‖2
2,

⎫⎬
⎭ (2.5)
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where I denotes the identity matrix. The first step consists of simple matrix–vector multiplications
which can be done in quadratic time. The crucial observation is that the second step consists of
minimizing a Potts functional with A = id, given by

Pid
γ (u) = γ ‖∇u‖0 + ‖u − d‖2

2, (2.6)

for data d = dk+1. For the special case A = id, a global minimizer can be computed in quadratic
complexity as explained in the next paragraph. Hence, both steps of the iteration can be computed
efficiently.

The Potts problem for A = id. The Potts problem (2.6) (with A = id) can be solved exactly by
dynamic programming [10,11,13,23,31,45–47]. Because it is a basic building block of our method,
we briefly describe the basic idea of the dynamic programming algorithm for its solution. For
a more detailed description, we refer, e.g. to [45]. We assume that we have already computed
minimizers ul of the Potts functionals Pid

γ associated with the partial data (d1, . . . , dl) for each
l = 1, . . . , r and some r smaller than the number L of full data items. Using this information, the
Potts functional associated with data (d1, . . . , dr+1) can be efficiently minimized via

min
u∈Rr+1

Pid
γ (u) = min

l=1,...,r+1
Pid

γ (ul−1) + γ + ε[l,r+1], (2.7)

where ε[l,r+1] is the quadratic deviation of the data (dl, . . . , dr+1) from its mean. Here, we use the
convention that u0 is an empty vector and Pid

γ (u0) = −γ . A corresponding minimizer reads ur+1 =
(ul∗−1, w[l∗,r+1]), where l∗ is a minimizing argument of the right-hand side of (2.7) and w[l∗,r+1] =
(μ, . . . , μ) with μ being the mean value of (dl∗ , . . . , dr). We obtain a minimizer for full data d by
successively computing ul for each l = 1, . . . , L. The described method can be implemented in
O(L2) using pre-computation of the moments and storing only jump locations [45]. Furthermore,
there are strategies to prune the search space which speed up the computations in practice [48,49].
Besides the dynamic programming approach there are greedy algorithms which perform well in
practice but which come without theoretical guarantees; for a discussion, see [7,8].

Relations to iterative hard thresholding. In [19], Fornasier and Ward transform Blake–Zisserman
problems with �2 data terms to sparsity-related problems and solve the resulting problem by
iterative thresholding algorithms. The same technique can also be applied to the Potts problem
(cf. [34]). We obtain the sparsity problem

minimize γ ‖v‖0 + ‖A′∇+v − f ′‖2
2, (2.8)

Here, ∇+ is the pseudo-inverse of the discrete difference operator ∇. The transformed matrix A′
and the transformed data f ′ are obtained from A, f by

A′
kj = Akj − Āk

∑m
i=1 ĀiAij∑m
i=1 Ā2

i

, (2.9)

with Āi given by Āi = ∑n
j=1 Aij,

f ′
k = fk − Āk

∑m
i=1 Āifi∑m

i=1 Ā2
i

. (2.10)

Then, the iterative thresholding algorithm proposed by Blumensath & Davis [32,37] can be
applied to (2.8). This thresholding algorithm consists of a gradient or Landweber step for the
data f ′ and the matrix A′∇+ followed by a hard thresholding step. In contrast, the proposed
method in this paper uses Potts minimization for A = id working on the direct problem instead
of thresholding on a transformed problem. Solving the Potts problem for A = id is of quadratic
complexity as opposed to the linear complexity of thresholding. Thus, the proposed algorithm
might seem computationally more expensive than the iterative hard thresholding. However, the
involved matrix–vector multiplications have already quadratic complexity in general. Even if A
is a band matrix or of convolution type (and thus diagonalizable by Fourier methods), the matrix
A′∇+ is typically full or not of convolution-type anymore. This is because ∇+ is a full lower
triangular matrix. So in either way, the complexity is quadratic.
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(b) The J-jump sparsity problem
We here consider the J-jump sparsity problem (SJ). As for the Potts problem, the underlying
signal model is the piecewise constant functions. We minimize the constrained functional in (Pγ )
for corrupted, indirectly measured noisy data to obtain a parsimonious J-jump sparse estimate
for the underlying signal. To the best of our knowledge, the J-jump sparsity problem (SJ) for
general A has only recently appeared in the literature [29]. However, the situation A = id has been
considered, for example, in optimum quantization [30] and computational biology [31]. Related
sparsity problems were considered in [32].

We first state the existence of minimizers.

Theorem 2.2. The J-jump sparsity problem (SJ) has a solution.

Although the functional is not continuous, the proof is trivial: fix arbitrary J indices M, consider
u’s which have their (left) jump set contained in J. These u form a vector space of dimension J on
which the quadratic functional u 
→ Q(u) = ‖Au − f‖2 has a minimizer, say uM. Variation over all
jump sets M of size J (which are finitely many) yields a candidate uM for each jump set M. Now,
one can just take a candidate u∗ with the smallest Q(uM)-value among all M.

The minimizers of the J-jump sparsity problem are not unique in general. This is a consequence
of theorem 3.1, because Potts solutions are solutions of the J-jump sparsity problems, and Potts
solutions are not unique.

We record that the problem of finding one or all minimizers of the J-jump sparsity problem
(SJ) is NP-hard.

Theorem 2.3. The J-jump sparsity problem (SJ) is NP-hard.

This can be seen easily seen by the following argument. One (theoretic) way to obtain a solution
for the Potts problem for specific parameter γ is to compute a J-jump sparse solution uJ for all J,
J smaller than the signal length. Then, we compare the values Pγ (uJ) and choose a minimal one.
This is a minimizer of the Potts problem for γ . Hence, there is a strategy to find a solution of
the NP-hard Potts problem by solving at most L J-jump sparsity problems (SJ), where L is the
problem size. Therefore, the NP-hardness of the Potts problem implies the NP-hardness of the
J-jump sparsity problem (SJ).

By these considerations, finding global minimizer within reasonable time is infeasible. Instead,
we derive a practically applicable algorithm that performs well in practice and derive at least
statements on local optimality.

Iterative J-jump sparsity algorithms. We consider the J-jump sparsity problem

minimize Q(u) = ‖Au − f‖2
2, s. t. ‖∇u‖0 ≤ J, (2.11)

and the corresponding constrained surrogate problem

Qsurr(u, v) = ‖Au − f‖2
2 − ‖Au − Av‖2

2 + ‖u − v‖2
2, s. t. ‖∇u‖0 ≤ J. (2.12)

We may rewrite Qsurr(u, v) to obtain the problem

minimize ‖u − v + A∗Av − A∗f‖2
2, s. t. ‖∇u‖0 ≤ J. (2.13)

We see that this problem is a J-jump sparsity problem with A = id which is computationally
feasible as explained below; the complexity is quadratic. Then, minimizing Qsurr(u, v) (or, more
precisely, the constrained surrogate problem) with respect to u and taking the result as new input
v yields the iteration

dk+1 = (I − A∗A)uk + A∗f

and uk+1 = arg min ‖u − dk+1‖2
2, s.t. ‖∇u‖0 ≤ J.

⎫⎬
⎭ (2.14)

We call this iteration iterative J-jump sparsity algorithm.
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The J-jump sparsity problem for A = id. In (2.13), we have to solve a J-jump sparsity problem for
A = id of the form

minimize ‖u − d‖2
2, s. t. ‖∇u‖0 ≤ J, (2.15)

for data d = dk+1 = (I − A∗A)uk + A∗f . As the Potts problem, it can be solved exactly using
dynamic programming. The algorithm was reinvented several times in different contexts; we refer
to [30,31]. Let us assume that we have solutions of (2.15) for all numbers of jumps j = 0, . . . , J and
for all partial data (d1, . . . , dl) for all l = 1, . . . , r with r being smaller than the number L of data
items. For j jumps and length l, we denote a corresponding solution by ul,j. We want to compute
a minimizer for data (d1, . . . , dr+1). We first note that the zero jump solution ur+1,0 is given by the
mean of d[1,r+1] := (d1, . . . , dr+1). For j jumps, j = 1, . . . , J, we use that

min
u∈Rr+1,‖∇u‖0≤j

‖u − d[1,r+1]‖2
2 = min

l=1,...,r+1
‖ul−1,j−1 − d[1,l−1]‖2

2 + ε[l,r+1],

where ε[l,r+1] is again the quadratic deviation of the data (dl, . . . , dr+1) from its mean value.
Corresponding minimizers are given by ur+1,j = (ul∗−1,j−1, w[l∗,r+1]), where l∗ is a minimizing
index of the right-hand side of the above equation and the components of w[l∗,r+1] are given by the
mean value on d[l∗,r+1]. A solution for the full data is obtained by successively computing ul,j for
all j = 0, . . . , J and l = 1, . . . , n. Compared with the minimization algorithm for the Potts problem,
it is more expensive, because, actually, minimizers for all j = 0, . . . , J have to be computed.
Nonetheless, the method has quadratic complexity with respect to the data size L. As in the case of
the Potts problem with A = id, there are greedy algorithms which may perform well, in practice,
but which do not guarantee a global optimum; see [7,8] for a discussion.

Relation to iterative hard thresholding. Similar to (2.8), the J-jump sparsity problem can be
transformed to the constrained sparsity problem

minimize ‖A′∇+v − f ′‖2
2 s.t. ‖v‖0 ≤ J, (2.16)

with A′ and f ′ given by (2.9) and (2.10), respectively. Then, the iterative constrained hard
thresholding algorithms of Blumensath & Davis [32,37] can be applied to (2.16). This thresholding
algorithm involves a hard thresholding variant keeping the J items with highest absolute
value. When applying this approach to the J jump sparsity problem, the resulting complexity
of one iteration step is again quadratic. This is because the same arguments as given for
hard thresholding in the section on Potts problems also apply to iterative constrained hard
thresholding. Hence, the approach via iterative constrained hard thresholding has the same
complexity as the iterative J-jump sparsity algorithm proposed in this paper.

(c) The Blake–Zisserman problem
Until now, we have only considered piecewise constant signals. We now also allow the signal to
vary smoothly in-between the jumps; this corresponds to piecewise smooth signals as underlying
signal model. In a discrete set-up, we allow for small qth variations in-between the jumps. These
small variations are reflected by the Blake–Zisserman regularizers given in (Bγ ,s).

We first of all note that the Blake–Zisserman problem has a minimizer.

Theorem 2.4. The Blake–Zisserman weak string problem (Bγ ,s) has a solution.

Theorem 2.4 has been shown in [19] for general A. Convergence results of Blake–Zisserman
functionals towards Mumford–Shah functionals are given in [13].

Iterative Blake–Zisserman algorithm. We derive an iterative Blake–Zisserman minimization
algorithm in analogy to the iterative algorithm derived for the Potts problem. The Blake–
Zisserman functional Bγ ,s was given by

Bγ ,s(u) = γ
∑

i

min(|ui − ui−1|q, sq) + ‖Au − f‖2
2. (2.17)
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In analogy to the Potts problem, we consider its surrogate functional Bsurr
γ ,s (u, v) = Bγ ,s(u) −‖Au −

Av‖2
2 +‖u − v‖2

2. After some calculation, we see that

Bsurr
γ ,s (u, v) = γ

∑
i

min(|ui − ui−1|q, sq) + ‖u − v + A∗Av − A∗f‖2
2 + C, (2.18)

where C is independent of u and can therefore be omitted. Iteratively minimizing this functional,
using the previous minimizer as new input v, leads to the iterative Blake–Zissermann minimization
algorithm

dk+1 = (I − A∗A)uk + A∗f

and uk+1 = arg min
u

γ
∑

i

min(|ui − ui−1|q, sq) + ‖u − dk+1‖2
2.

⎫⎪⎬
⎪⎭ (2.19)

We note that the second line constitutes a Blake–Zisserman problem for A = id for which there is
again a computationally feasible algorithm as explained next.

The Blake–Zisserman problem for A = id. The Blake–Zisserman functional Bid
γ ,s(u) for A = id is

given by

Bid
γ ,s(u) = γ

∑
i

min(|ui − ui−1|q, sq) + ‖u − d‖2
2. (2.20)

It is a basic building block of our iterative Blake–Zissermann minimization algorithm (2.19).
For the particular case A = id, the dynamic programming principle as explained for the Potts
problem before, can be applied to the Blake–Zissermann problem to obtain an algorithm
computing an exact solution [10,11,13,23,45]. We use the basic dynamic program explained in the
corresponding paragraph concerning the Potts problem, where we reinterpret (2.7). In the context
of Blake–Zisserman functionals, the deviation ε[l,r] of (2.7) from the data (dl, . . . , dr) is given by

ε[l,r] = min
w∈Rr−l+1

γ ‖∇w‖q
q + ‖w − (dl, . . . , dr)‖2

2. (2.21)

Then, minimizers of Bid
γ ,s have the form (ul∗−1, w[l∗,r]), where w[l∗,r] is a minimizer of (2.21). We note

that, in contrast to the Potts problem, w[l∗,r] need not be constant. The functional (2.21) is convex
for all p ≥ 1 which makes it accessible for standard convex optimization techniques such as the
primal–dual strategy of Chambolle & Pock [50]. The special case p = 2 reduces to solving a linear
system of equations.

Relation to thresholding algorithms. In [19], Fornasier and Ward transform Blake–Zisserman
problems to sparsity type problems of the form (2.8) with the sparsity term in (2.8) replaced by∑

i min(|ui|q, sq). Then, they solve the resulting transformed problem by iterative thresholding
algorithms with a corresponding suitable thresholding function. In contrast, we directly work on
the non-transformed problem here.

3. Analysis

(a) Main analytic results
The problems (Pγ ) and (SJ) both deal with an underlying piecewise constant signal model. They
are intimately connected; in particular, one can formally interpret the Potts problem (Pγ ) as the
Lagrange formulation of the J-jump sparsity problem (SJ). However, we see that this formal
connection is not given analytically.

Theorem 3.1. The problems (2.5) and (SJ) are not equivalent. More precisely, if u∗ is a solution of the
Potts problem (2.1) with γ > 0 then it is also a solution of the constrained problem (SJ) with parameter
k = ‖∇u∗‖0. On the other hand, a minimizer of (SJ) need not necessarily be a minimizer of (Pγ ) – not
even for some parameter.
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Proof. Because u∗ is a minimizer of the Potts functional, it minimizes the problem

min
u

||Au − f ||22, s.t.‖∇u‖0 = k.

We further have that ||Av − f ||22 > ||Au∗ − f ||22 for all v with ‖∇v‖0 < k. This is because ‖∇v‖0 <

‖∇u∗‖0, and u∗ is a minimizer of the Potts functional (Pγ ). Thus, u∗ is a solution of (SJ), which
shows the first assertions.

To show the second assertion, we give an example of a solution of (SJ) which is not a solution
of (Pγ ). To this end, we consider f = (0, 2, 0), A = id. For J = 0, we get the solution u0 = ( 2

3 , 2
3 , 2

3 ).
It has functional value Pγ (u0) = 8

3 . The possible solutions, for J = 1, u1 = (0, 1, 1) and u1 = (1, 1, 0),
attain the functional value Pγ (u1) = γ + 2. The 2-jump solution u2 = f has the functional value
Pγ (u2) = 2γ . It follows that Pγ (u1) > Pγ (u0) for all γ > 1 and that Pγ (u1) > Pγ (u2) for γ < 2. Hence,
there is no γ > 0 such that the solutions for J = 1 of (SJ) are solutions of (Pγ ). This shows the
second assertion. �

The above proposition shows that it can happen that even (theoretically) scanning the whole
parameter range of γ of the Potts problem (Pγ ) will not even yield at least one (not speaking
about all) J-jump sparse solution for some J.

We learned that theorem 3.1 can also be proved as follows: one rewrites (Pγ ) and (SJ) as the
equivalent sparsity problems (2.8) and (2.16) and uses the recent results by Nikolova [51] on
the relation between these sparsity problems. There, under additional assumptions, also quasi-
equivalence has been shown. For A = id, this has been already addressed in, e.g. [26]. However,
the proof next to the theorem 3.1. is short and instructive, and moreover, it generalizes to arbitrary
data terms of the form ||Au − f ||pp, p ≥ 1, whereas the equivalence to the sparsity problems is only
true for p = 2.

In the following theorems, we always assume that the measurement matrix A fulfills ‖A‖ < 1
with respect to the operator norm on �2. This is a set-up that can always be achieved by rescaling.
More precisely, multiply the functional under consideration with λ2, where λ is chosen such that
‖λA‖ < 1. This results in a corresponding problem with rescaled data λf , and rescaled parameters
for which our results apply (because ‖λA‖ < 1). We note that rescaling with λ < 1 results in a
smaller step size in the respective algorithm.

We first analyse iterative Potts minimization for which we obtain the following convergence
results.

Theorem 3.2. We let ‖A‖ < 1. Then, the iterative Potts minimization algorithm (2.5) converges to a
local minimizer of the inverse Potts functional (2.1) for any starting point. The convergence rate is linear.
Furthermore, we have the following relation between local minimizers L, global minimizers G and the fixed
points Fix(I) of the iteration (2.5),

G ⊂ Fix(I) ⊂L. (3.1)

This result is shown in §3b.
We next consider the constrained J-jump sparsity problem (SJ). We derive a convergence

result for the J-jump sparsity algorithm (2.14). Its formulation is somewhat more involved than
theorem 3.2 for the Potts problem (Pγ ) which is owing additional assumptions. These additional
assumptions are usually met in noisy data situations (which are the typical situation in practice)
as discussed below.

We recall that u is J-jump sparse if it has at most J jumps, i.e. at most J indices with ui �= ui+1.

Theorem 3.3. We let ‖A‖ < 1 and assume that the unrestricted problem of minimizing ‖Au − f‖2 with
respect to u ∈ R

L has at most one J-jump sparse solution. (This is, for example, the case if A is injective.)
If the unrestricted problem has no J-jump sparse solution, then the iterative J-jump sparsity algorithm

(2.14) converges towards a local minimizer of (2.11).
Otherwise, the iterative J-jump sparsity algorithm (2.14) produces iterates uk that either converge to a

local minimizer of (2.11) with (exactly) J jumps or they have a cluster point which is a global minimizer of
(2.11) with (strictly) less than J jumps. If, in this situation, f is in the range of A and A is injective, then the
iterates converge to a local minimizer (which is a global minimizer when it has (strictly) less than J jumps.)

 on February 25, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


10

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140638

...................................................

This result is shown in §3c. We briefly discuss the assumptions of the theorem and give some
applications.

We first consider measurements from time/translation-invariant systems with full
measurement data. These systems are described by a convolution operator represented by a
corresponding Töplitz matrix A. If the Fourier transform of the underlying convolution kernel
is non-zero, and we are given full measurement data, A is invertible and theorem 3.3 yields
convergence to a local minimizer for any starting point.

Theorem 3.3 also applies to inpainting or missing data situations with noisy data. The simplest
cases are missing data problems for direct measurements. Here, A equals the identity matrix with
some rows missing, and the data f are a noisy version of the underlying signal with some items
removed. Because f is noisy, it is typically not J-jump sparse for a smaller number of jumps J.
Therefore, there is typically no J-jump sparse solution of the unrestricted problem, because all
such solutions equal f on the non-missing part. Hence, theorem 3.3 may be applied to obtain
convergence. Obviously, this argumentation generalizes to missing and noisy data situations for
more general problems, in particular to deconvolution problems.

Theorem 3.3 can also be applied to certain missing data situations for noise-free data.
Because noise-free data appears rather infrequently in practice, they are not our primary interest.
However, for completeness, we give a simple example as example 3.11 in §3c. We note that,
in case of non-noisy few data situations, theorem 3.3 is rather restrictive. In this situation, the
corresponding statement theorem 3.2 we derived for the Potts problem is stronger because it also
deals with this situation without additional requirements.

Besides considering piecewise constant signal models, we also consider piecewise smooth
signals. In a discrete set-up, this corresponds to small variations in-between the jumps. In this
context, we introduced the iterative Blake–Zisserman minimization algorithm in §2c. Regarding
its analysis, we obtain the following convergence results.

Theorem 3.4. For ‖A‖ < 1, the iterative Blake–Zisserman minimization algorithm (2.19) converges to
a local minimizer of the Blake–Zisserman functional (2.17) for any starting point. Furthermore, the relation
(3.1) holds true in the context of the Blake–Zisserman functionals Bγ ,s of (2.17) as well.

This result is shown in §3d.

(b) Analysis of the iterative Potts minimization algorithm
We first need some well-known results for surrogate functionals of the form F(u) = γ J(u) + ‖Au −
f‖2 [19,32,36]. We first need the implementation J(u) = ‖∇u‖0 counting the number of jumps of u.
In §3d, we also consider the Blake–Zisserman regularizer J(u) = ∑

i min(|ui − ui−1|q, sq).

Lemma 3.5. Consider the functionals F(u) = γ J(u) + ‖Au − f‖2 (where, for our purposes, J is either
the Potts regularizer J(u) = ‖∇u‖0 or the Blake–Zisserman regularizer J(u) = ∑

i min(|ui − ui−1|q, sq).)
We assume that the operator norm of A on �2 fulfills ‖A‖ < 1. Then, we obtain, for the associated surrogate
functional, Fsurr given by (2.2) (with J as regularizer), that

— the inequality
Fsurr

γ (u, v) ≥ Fγ (u)

holds for all v; and equality holds if and only if u = v;
— the functional value Fγ (uk) of the sequence uk given by the surrogate iteration uk+1 =

arg minu Fsurr
γ (u, uk) are non-increasing, i.e.

Fγ (uk+1) ≤ Fγ (uk); (3.2)

— the distance between consecutive members of the previous surrogate sequence uk converges to 0,
i.e.

lim
k→∞

‖uk+1 − uk‖ = 0. (3.3)
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For proofs of this general statement on surrogate functionals, we exemplarily refer to
the above-mentioned papers [19,32,36]. The statements actually hold for general real-valued
surrogate functionals and do not rely on the specific structure of the problems considered here.

We now invoke specific properties of Potts functionals. We first show that minimizers of the
Potts functional Pid

γ (with A = id) have a minimal jump height which only depends on the scale
parameter γ but not on the particular input data.

Lemma 3.6. Consider the Potts functional Pid
γ given by (2.6) for data f . Then, there is a constant c > 0

which is independent of the minimizer u∗, and the data f such that the minimal jump height hmin(u∗) of u∗
fulfills

hmin(u∗) ≥ c. (3.4)

Proof. We let

c =
√

γ

L
, (3.5)

where L is the length of the underlying signal u. We now assume that hmin(u∗) < c, which means
that the minimizer u∗ has a jump of height smaller than c. We construct an element u′ with a
smaller Pid

γ value which contradicts u∗ being a minimizer. To this end, denote the (left) jump
points of u∗ by ji. By assumption there, is some jump point ji0 such that the corresponding
jump height hi0 < c. We let I1 be the (discrete) interval between ji0−1 + 1 and ji0 (corresponding
to the plateau of u∗ to the left of ji0 ) and I2 be the (discrete) interval between ji0 + 1 and ji0+1
(corresponding to the plateau of u∗ to the right of ji0 ). Here, we use the convention that ji0−1 = 0 if
ji0 is the first jump of u∗, and ji0+1 = L if ji0 is the last jump of u∗. We let m1, m2 and m be the mean
of f on I1, I2 and I1 ∪ I2, respectively. We define

u′(l) =
{

m for l ∈ I1 ∪ I2

u∗(l) elsewhere.
(3.6)

We have by construction that

‖∇u′‖0 = ‖∇u∗‖0 − 1. (3.7)

Furthermore, because u∗ is a minimizer of Pid
γ , it equals m1 on I1 as well as m2 on I2. We get,

because u∗ and u′ only differ on I1 ∪ I2, that

‖u′ − f‖2 = ‖u∗ − f‖2 + l1|m1 − m|2 + l2|m2 − m|2 < ‖u∗ − f‖2 + Lc2. (3.8)

where l1 is the length of I1 and l2 is the length of I2. Combining (3.7) and (3.8) we obtain

Pid
γ (u′) = γ ‖∇u′‖0 + ‖u′ − f‖2

< γ ‖∇u∗‖0 − γ + ‖u∗ − f‖2 + Lc2

≤ γ ‖∇u∗‖0 + ‖u∗ − f‖2 = Pid
γ (u∗).

The last inequality is a consequence of (3.5). Summing up, u′ has a smaller Pid
γ value than u∗ which

contradicts u∗ being a minimizer. This shows the assertion of the lemma. �
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Proposition 3.7. The iteration (2.5) converges to a local minimizer of (2.1). The convergence rate is
linear.

Proof. The proof is subdivided into three steps. We first show that the jump sets of the iterates uk

get fixed after sufficiently many iterations. Using this, we proceed by showing that the algorithm
(2.5) converges and conclude by showing that the limit point is a local minimizer.

(1) We start out by showing that the jump sets of the uk get fixed. The iterate uk of the
algorithm (2.5) is a minimizer of a Potts functional Pid

γ (with A = id) given by (2.6) for data
dk = (I − A∗A)uk−1 + A∗f . The parameter γ is the same for all k. By lemma 3.6, there is a constant
c > 0 which is independent of uk and the data dk such that the minimal jump height uk fulfills

hmin(uk) ≥ c, for all k. (3.9)

If now two consecutive members uk, uk−1 have different jump locations, then their distance in the
�2 sense fulfills ‖uk − uk−1‖ > c/2. This can happen only in the initial steps because by (3.3), we
have ‖uk − uk−1‖ → 0 as k increases. In consequence, there is an index K such that all following
members uk have the same jump set.

(2) We use this observation to show the convergence of (2.5). We consider iterates uk with
k ≥ K (all having the same jump set and all jumps with minimal jump height c) and denote the
corresponding (left) jump locations by ji and the corresponding (discrete) intervals on which the
iterates are constant by Ii. Using the notation meanI(g) for the mean value of g on the interval I,
the corresponding orthogonal projection reads

P(g) :=
∑

i

meanIi (g)1Ii .

For all k ≥ K, we can now write the iteration (2.5) as

uk+1 = P(dk+1) = P((I − A∗A)uk + A∗f ). (3.10)

Because uk = Puk and P is an orthogonal projection we further obtain

P((I − A∗A)uk + A∗f ) = (I − (AP)∗AP)uk + (AP)∗f .

Hence, the iteration (3.10) may be interpreted as Landweber iteration on the image space P(�2) for
the matrix AP and data f . The Landweber iteration converges at a linear rate; cf. e.g. [52]. Thus,
the iteration (3.10) convergences and, in turn, we obtain the convergence of (2.5) to some u∗.

(3) It remains to show that u∗ is a local minimizer. Because u∗ is the limit of the iterates uk,
the jumps of u∗ also have minimal height c, the number of jumps are equal to those of the uk

for k ≥ K, and the locations are the same as those of the uk for k ≥ K. We choose a vector h and
consider u∗ + th for small t ∈ R. If the jump set of h is contained in that of u∗ and, in turn, in
that of the uk for k ≥ K, it follows that Pγ (u∗ + th) ≥ Pγ (u∗) for all t. This is because u∗ equals the
limit of the above Landweber iteration on P(�2) and is thus a minimizer on P(�2). It remains to
consider the case where the jump set of h is not contained in that of u∗. Then, for small t, t < c/‖h‖,
the jump set of the vector u∗ + th is a proper superset of the jump set of u∗. This is because u∗
has jumps of height at least c. Hence, ‖∇(u∗ + th)‖0 ≥ ‖∇u∗‖0 + 1. Because N(u) = ‖Au − f‖2 is
a continuous function of u, there is a neighbourhood of u∗ with |N(u∗) − N(u)| < γ for all u in
this neighbourhood. Hence, for small enough t, u∗ + th is contained in this neighbourhood and
therefore,

Pγ (u∗ + th) = γ ‖∇(u∗ + th)‖0 + ‖(u∗ + th) − f‖2

> γ ‖∇u∗‖0 + γ + ‖u∗ − f‖2 − γ = Pid
γ (u∗).

Together, this shows that u∗ is a local minimizer of the Potts functional Pγ . �

Proposition 3.8. The global minimizers G and the local minimizers L of the Potts functional (2.1) and
the fixed points Fix(I) of the Potts iteration given by (2.5) (which we here denote by I) fulfill the inclusions

G ⊂ Fix(I) ⊂L.
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Proof. We first show that any global minimizer of the Potts functional (2.1) appears as a
stationary point of the algorithm (2.5). We start the algorithm with a global minimizer u∗ as
initialization. Then, we have for all v with v �= u∗,

Psurr
γ (v, u∗) = Pγ (v) − ‖Av − Au∗‖2 + ‖v − u∗‖2

> Pγ (v) ≥ Pγ (u∗) = Psurr
γ (u∗, u∗). (3.11)

This means that u∗ is the minimizer of v 
→ Psurr
γ (v, u∗) and hence the iterate u1 of the algorithm

(2.5) equals u∗ when the iteration is started with u∗. Thus, the global minimizer u∗ is a stationary
point of (2.5).

It remains to show that each stationary point of (2.5) is a local minimizer of the Potts functional
(2.1). This has essentially already been done in the proof of proposition 3.7: start the iteration (2.5)
with a stationary point u′. Its limit equals u′ which is a local minimizer by proposition 3.7. �

Proof of theorem 3.2. The statement follows by propositions 3.7 and 3.8. �

(c) Analysis of the iterative constrained jump-sparsity algorithm
Here, we analyse the iterative constrained jump-sparsity algorithm (2.14). In analogy to
lemma 3.5, lemma 3.9 gathers the relevant facts on constrained surrogate functionals of the form
(2.12). Related assertions may be found in [32] where also proofs or sketches of the proof are given.
For the sake of completeness and because this case might be less well known, we give short proofs
after stating the assertions.

Lemma 3.9. For the surrogate functional Qsurr given by (2.12) of the constrained jump-sparsity
problem (2.11) we have

— the inequality
Qsurr(u, v) ≥ Q(u)

holds for all v, and equality holds if and only if u = v;
— the functional value Q(uk) of the sequence uk given by the surrogate iteration uk+1 =

arg minu Qsurr(u, uk) are non-increasing, i.e.

Q(uk+1) ≤ Q(uk); (3.12)

— the distance between consecutive members of the surrogate sequence uk (defined above) converges
to 0, i.e.

lim
k→∞

‖uk+1 − uk‖ = 0. (3.13)

Proof. For the first statement, note that we can rewrite the term ‖u − v‖2 − ‖Au − Av‖2 = 〈(I −
A∗A)(u − v), u − v〉 appearing in the definition (2.12). Because ‖A‖ < 1 the positive matrix I − A∗A
has its spectrum in (0, 1] and is in particular invertible. Hence, 〈(I − A∗A)(u − v), u − v〉 ≥ 0 and it
equals 0 if and only if u = v.

For the second statement, we consider the kth iterate uk which is J-jump sparse. We have
Q(uk) = Qsurr(uk, uk), and so a J-jump sparse minimizer uk+1 of Qsurr(·, uk) fulfills Qsurr(uk+1, uk) ≤
Q(uk). (This is because the candidate uk is admissible.) Because Q(uk+1) ≤ Qsurr(uk+1, uk), the
second statement holds true.

For the last assertion, note that, for some C > 0,

‖uk+1 − uk‖2 ≤ C〈(I − A∗A)(uk+1 − uk), uk+1 − uk〉
= C(Qsurr(uk+1, uk) − Q(uk+1)) ≤ C(Q(uk) − Q(uk+1)).

Here, the last inequality follows from the minimizing property of uk+1. Now, we have that
Q(uk) − Q(uk+1) → 0 as k → ∞, because the bounded below sequence Q(uk) is monotone and thus
convergent. This completes the proof. �
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We need specific properties of a minimizer of the J-jumps sparsity problem (2.15) (with A = id).

Lemma 3.10. Consider a minimizer u∗ of the J-jump sparsity problem (2.15) (with A = id) for data f
and assume that the Jth jump of u∗ has height at most ε. Then, there is a constant C independent of f such
that ‖u∗ − f‖ < Cε.

Proof. Enumerate the (left) jump points of u∗ by ji with i = 1, . . . , J. Let ji0 be the smallest jump
point of u∗ and let I0 and I1 be the intervals of constance of u∗ neighbouring ji0 to the left and
right, respectively. Let furthermore m1, m2 and m be the mean of f on I1, I2 and I1 ∪ I2. We define
u′ by (3.6) and observe as in the proof of lemma 3.6 that

‖u′ − f‖2 < ‖u∗ − f‖2 + Lε2, (3.14)

where L is the length of u∗. By construction, u′ has at least one jump less than u∗.
If ‖u′ − f‖ < C′ε for some C′ > 0, then the assertion of the lemma is shown because ‖u′ − u∗‖ <√

Lε. We enumerate the jump points of u′ by j′i and let, for a given index l, the integer dl be the
distance of the index l to the left next jump location of u′. We scan u′ starting from the leftmost
index l = 1, and increase l until |u(l′) − f (l′)| > 2dl′ Lε for some l′. If there is no index l′ fulfilling this
inequality, we have found a corresponding C′ and the proof is complete. Otherwise, we construct
u′′ with

‖u′′ − f‖2 < ‖u′ − f‖2 − Lε2. (3.15)

We attach the index l′ to the jump set of u′ and denote the corresponding left and right intervals
I3 (between l′ and its leftmost neighbour in the jump set of u′) and I4, respectively. We denote the
mean of f on I3, I4 and I3 ∪ I4 by m3, m4 and m′. We define u′′ by

u′′(l) =

⎧⎪⎪⎨
⎪⎪⎩

m3, for l ∈ I3,

m4, for l ∈ I4,

u′(l), elsewhere.

The jump set of u′′ is the index l′ together with the jump set of u′. So, ‖∇u′′‖0 ≤ J and u′′ is
admissible. We show that u′′ fulfills (3.15). By the definition of u′′, we obtain

‖u′ − f‖2 − ‖u′′ − f‖2 = ‖(f − m′)|I3∪I4‖2 − ‖(f − m3)|I3‖2 − ‖(f − m4)|I4‖2

= |I3|(m3 − m′)2 + |I4|(m4 − m′)2. (3.16)

Here, the symbols |I3|, |I4| denote the length of the corresponding intervals. We consider the
interval I3. For all indices l in I3 smaller than l′, we have that |u(l) − f (l)| ≤ 2dl Lε and, for the index
l′ (which is the last in I3 by construction), that |u(l′) − f (l′)| > 2dl′ Lε. Hence, |m3 − m′| > Lε/|I3|,
and therefore,

|I3|(m3 − m′)2 > Lε2.

Plugging this into (3.16) shows (3.15). Now, we combine (3.15) and (3.14) to obtain

‖u′′ − f‖2 < ‖u′ − f‖2 − Lε2 < ‖u∗ − f‖2

with u′′ having at most J jumps. This contradicts u∗ being a minimizer and so shows the assertion.
�

We next give the proof of theorem 3.3.

Proof of theorem 3.3. We arrange the jump height of each iterate uk in decreasing order and
denote the Jth highest jump by hk. If uk has less than k jumps we let hk = 0. We distinguish two
cases according to whether lim infk hk > 0 or not.

(1) If c := lim infk hk > 0, then there is an index K′ such that for all greater indices k each member
uk has J jumps with each jump being at least c > 0 in height with c independent of k. By (3.13), we
have ‖uk − uk−1‖ → 0 as k increases. Hence, there is an index K such that all following members
uk have the same jump set. This is because otherwise we would have ‖uk − uk−1‖ > c/2 if uk+1 and
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uk have different jump points. Then, we may argue as in the proof of proposition 3.7 to conclude
that, in this case, uk converges to a local minimizer of (2.11).

(2) If lim infk hk = 0, then there is a subsequence ki such that hki converges to 0 as i increases.
This means that, given ε > 0, there is an I such that for all i ≥ I, the Jth jump of uki is smaller than
ε. Lemma 3.10 implies that, for dki defined by (2.14),

‖dki − uki‖ ≤ Cε (3.17)

with C independent of i.
Rewriting the definition of dki in (2.14), we have dki = uki−1 +A∗(f − Auki−1). Hence, we may

estimate

‖A∗(f − Auki−1)‖ ≤ ‖dki − uki−1‖
≤ ‖dki − uki‖ + ‖uki − uki−1‖ → 0, (3.18)

as i increases. Here, the first summand converges to 0 by (3.17), and the second summand
converges to 0 by (3.13).

Now, we decompose each

uki−1 = vki−1 + wki−1

with wki−1 ∈ ker A and vki−1 in its orthogonal complement. The sequence vki is bounded because
otherwise

A∗(f − Auki−1) = A∗(f − Avki−1) → ∞.

This would contradict (3.18). Therefore, vki is bounded, and thus contains a convergent
subsequence, denoted by vkj . We denote the corresponding limit by v∗. Using (3.18), we obtain

‖A∗(f − Av∗)‖ = lim
j

‖A∗(f − Avkj−1)‖

= lim
j

‖A∗(f − Aukj−1)‖ = 0. (3.19)

Hence, v∗ is a minimizer of the unrestricted functional u → ‖Au − f‖2 on R
L. Then, the solution

space for the unrestricted problem is v∗ + ker A. By (3.19),

dist(ukj , v∗ + ker A) → 0 as j → ∞. (3.20)

Passing to a further subsequence ukr of ukj , we may assume that the ukr have the same jump sets.
Hence, they are all elements of the same subspace U with dimension lower than or equal to J. By
our assumption, the unrestricted problem has at most one J-jump sparse solution, now denoted
u∗. This means that either U ∩ v∗ + ker A = ∅ or U ∩ v∗ + ker A = {u∗}. (Note that we have chosen
a particular subspace which a priori need not be a subspace where u∗ is in.)

(2a) In the first case, U ∩ v∗ + ker A = ∅, these affine subspaces do not intersect which
contradicts (3.20). Hence, in this case (where there is no J-jump sparse minimizer of the
unrestricted problem), situation (2) of this proof does not apply (and the subsequence we chose
before necessary belongs to a subspace also u∗ is in if it exists.) This shows that if there is no
J-jump sparse minimizer of the unrestricted problem, then (1) of this proof applies and we then
have the convergence to a local minimizer.

(2b) So, it remains to consider the case where U ∩ v∗ + ker A = {u∗}. Then, ukr converges to u∗
which is a J-jump sparse minimizer; actually, u∗ has strictly less than J jumps. This is because ukr

converges to u∗ which implies that the jump set of u∗ is contained in the jumps sets of all ukr with
sufficiently high r. The subsequence ukr is chosen such that jump sets are fixed, and the height hkr

of the smallest jump approaches 0 which implies that the limit does not have this jump.
(3) Finally, we show convergence for the case (2b) when the data f lie in the image space of A

and A is injective. By (2b), we have that the subsequence ukr converges to u∗ which is a minimizer
of the unrestricted problem with less than J jumps. Then, by assumption, ‖Au∗ − f‖ = 0. For a
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given index k we choose the next bigger index kr of the convergent subsequence ukr . Then,

‖Auk − f‖ ≤ ‖Aukr − f‖ → ‖Au∗ − f‖ = 0

as r → ∞. The first inequality is a consequence of (3.12). Hence, uk converges because A is lower
bounded, i.e. ‖Ax‖ ≥ m‖x‖ for some m > 0, as an injective operator on finite dimensional space.
Then, the limit equals that of the subsequence which is u∗. �

As pointed out, we conclude this part by giving a simple example of a particular situation
where theorem 3.3 applies to a deconvolution problem with missing data in a noise-free set-up.
Although the noise-free set-up is not our primary interest (because it rather infrequently appears
in practice), we give such an example for completeness.

Example 3.11. We consider cyclic convolution on (the cyclic group consisting of) L elements,
which may be described as a cyclic L × L matrix. Let K = 1

2 δ0 + 1
2 δ1 be the moving average of

size 2 and B be the corresponding cyclic L × L matrix. We let m be a positive integer which
divides L, and we remove every mth row of B to obtain A. We consider data f = Ag with g
having n < m jumps. Let s be the number of (left) jump points of g in the set {m, 2m, . . .}. We
are interested in the corresponding J-jump sparsity problem for J ≤ m − 1 − n + s. In this case, we
may apply theorem 3.3, because each element in g + ker(A) has at least m − 1 − n + s jumps which
means that the corresponding unrestricted problem has at most one J-jump sparse solution. If
J < min(m − 1 − n + s, n), theorem 3.3 yields convergence to a local minimizer because g + ker(A)
has no J-jump sparse member. If J = min(m − 1 − n + s, n), then g + ker(A) has no or precisely
one J-jump sparse member. In the first case, the previous argument applies. In the second case,
theorem 3.3 yields either convergence to a local minimizer or a cluster point which is a global
minimizer and which has less than J = min(m − 1 − n + s, n) jumps. Because the latter situation
cannot occur (as discussed above), theorem 3.3 also yields convergence in this situation.

(d) Analysis of the iterative Blake–Zisserman minimization algorithm
Here, we analyse the iterative Blake–Zisserman algorithm (2.19). Besides the facts on surrogate
functionals gathered in lemma 3.5 we need lemma 3.12 on the minimizers of Blake–Zisserman
functionals Bid

γ ,s (with A = id). In the context of Blake–Zisserman functionals, an index l with
difference |∇u(l)| ≥ s might be interpreted as a jump. In this interpretation, lemma 3.12 states that
minimizers either take a jump of height bigger than s + c or have differences |∇u(l)| ≤ s − c, i.e.
there is a 2c-gap, with c only dependent on the parameters γ , s and q (the underlying qth variation)
but not on the input data.

Lemma 3.12. Consider the Blake–Zisserman functional Bid
γ ,s given by (2.20) for data f and a

corresponding (global) minimizer u∗. Then, there is a constant c > 0 which is independent of u∗ and the
data f such that

|∇u∗(l)| /∈ (s − c, s + c). (3.21)

Proof. Lemma 3.12 can be proven directly by a quite tedious argumentation. However, it is also
possible to base the argumentation on results derived in [19]. We decided to do the latter.

We consider a global minimizer u∗ of Bid
γ ,s. Then, v∗ = ∇u∗ is a global minimizer of the

functional Jp defined by (22) in [19]. By [19, Theorem 5.1], the global minimizer v∗ is a fixed
point of the iteration (36) in [19]. For any output vector v of this iteration, there is a constant c > 0
which is independent of the iterate v and the data f , but dependent on the parameters γ , s, such
that

v(l) /∈ (s − c, s + c) for all l. (3.22)

This is a direct consequence of [19, Proposition 4.3]. Then (3.22) also holds for v∗ because it is a
fixed point. In consequence, u∗, which is related to v∗ via v∗ = ∇u∗, fulfills (3.21) which shows the
assertion of the lemma. �
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Proposition 3.13. The iteration (2.19) converges to a local minimizer of (2.17).

Proof. (1) We first show that the jump sets of the iterates uk are identical for sufficiently large k.
We recall that, in the context of Blake–Zisserman functionals, an index l is a (left) jump point of
u, if |u(l + 1) − u(l)| ≥ s. Each iterate uk of the iterative Blake–Zisserman minimization algorithm
(2.19) is a global minimizer of a Blake–Zisserman functional Bid

γ ,s of the form (2.20) for certain data
dk. The parameters γ and s are the same for all k. By lemma 3.6, there is a constant c > 0 which is
independent of uk and the data dk such that, for each uk,

|∇uk(l)| /∈ (s − c, s + c). (3.23)

Now, (3.3) states that ‖uk − uk−1‖ → 0 as k → ∞. Hence, for sufficiently large k, |uk(l) − uk−1(l)| <
c/2 for all l. Therefore, |∇uk(l) − ∇uk−1(l)| < c. Hence, if uk−1 has a jump at l, uk does so, too. This
is because

|∇uk(l)| ≥ |∇uk−1(l)| − |∇uk(l) − ∇uk−1(l)| > s − c,

which implies that |∇uk(l)| ≥ s + c by (3.23). If uk−1 has no jump at l,

|∇uk(l)| ≤ |∇uk−1(l)| + |∇uk(l) − ∇uk−1(l)| < s + c,

which implies that |∇uk(l)| ≤ s − c by (3.23). This shows that the jump sets of the uk get fixed for
sufficiently large k.

(2) We now show the convergence of (2.19). Let K be sufficiently large such that, for all indices
k ≥ K, the iterates uk have the same jump set. We denote the jump set by Z. When the jump set is
fixed, then minimizing the Blake–Zisserman functional (2.20) given by

Bid
γ ,s(u) = γ

∑
i

min(|ui+1 − ui|q, sq) + ‖u − dk‖2
2

is equivalent to minimizing the functional

Vq
γ (u) = γ

∑
{i:i/∈Z}

|ui+1 − ui|q + ‖u − dk‖2
2 (3.24)

This is because the jump sets are fixed, and thus the corresponding costs are the fixed number
of jumps times γ sq, regardless whatever the candidate u looks like whenever it is admissible.
The functional Vq

γ in (3.24) is a convex functional of qth variation type or TV type for q = 1
(appearing in similar form in inpainting problems based on TV type functionals). Replacing the
Blake–Zisserman functional Bid

γ ,s by the convex functional Vq
γ in the algorithm (2.19) we obtain a

classical forward–backward splitting algorithm (cf. [41]) for the problem

F1(u) + F2(u) := γ
∑

{i:i/∈Z}
|ui+1 − ui|q + ‖Au − f‖2

2. (3.25)

Obviously, F1 + F2 has a minimizer. Furthermore, the Lipschitz constant of the gradient of F2
equals ‖A‖ which is smaller than 1 by assumption. Thus, we may apply, e.g. [53, Theorem 3.4] to
obtain that the corresponding forward–backward splitting algorithm for F1 + F2 converges to a
minimizer of F1 + F2. Hence, the algorithm (2.19) converges to some limit u∗.

(3) We finally show that u∗ is a local minimizer of the Blake–Zisserman functional Bγ ,s. By (2)
of this proof, the sequence of iterates fulfills (3.23) which implies that the same is also true for its
limit u∗, i.e. |∇u∗(l)| /∈ (s − c, s + c).

We first consider an arbitrary vector h and the corresponding perturbation u∗ + th for small
t ∈ R. More precisely, we consider h with ‖h‖∞ < 1 and t with t < c/2. All these candidates u∗ + th
fulfill

|(u∗ + th)(l + 1) − (u∗ + th)(l)| > |u∗(l + 1) − u∗(l)| − c ≥ s + c − c = s,

for all indices l in the jump set Z of u∗. Hence, Bγ ,s(u∗ + th) = (F1 + F2)(u∗ + th) + |Z| (with F1 + F2
from (3.25)). Because u∗ is a minimizer of F1 + F2 by part (2), we have

Bγ ,s(u∗) = (F1 + F2)(u∗) + |Z| ≤ (F1 + F2)(u∗ + th) + |Z| = Bγ ,s(u∗ + th),
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for all h, t with ‖h‖∞ < 1 and t < c/2. This shows that u∗ is a local minimizer of the Blake–
Zisserman functional Bγ ,s. �

Proposition 3.14. The global minimizers G and the local minimizers L of the Blake–Zisserman
functional (2.17) are related to the fixed points Fix(I) of the iterative Blake–Zisserman iteration given
by (2.19) (which we here denote by I) by

G ⊂ Fix(I) ⊂L. (3.26)

Proof. We start with the second inclusion and show that each stationary point u′ of I is a local
minimizer of Bγ ,s. To this end, we start the iteration (2.19) with a fixed point u′. Its limit equals u′
which is a local minimizer by proposition 3.13.

It remains to show the first inclusion which means that any global minimizer of a Blake–
Zisserman functional of the form (2.17) is a fixed point of the iteration (2.19). Starting the
algorithm (2.19) with a global minimizer u∗, the estimate (3.11) with the Potts functional Pγ

replaced by the Blake–Zisserman functional Bγ ,s remains valid and we obtain Bsurr
γ ,s (u∗, u∗) <

Bsurr
γ ,s (v, u∗) for all v with v �= u∗. Hence, the first iterate produced by the autonomous system (2.19)

for input u∗ equals u∗ which means that it is a fixed point. This shows the statement. �

Proof of theorem 3.4. The assertion follows by propositions 3.13 and 3.14. �

4. Numerical results
We first present a relaxation strategy for the initial steps of the algorithms. This strategy improves
the performance of the proposed methods in practice. Then, we employ the derived algorithms
for the deconvolution of noisy signals with discontinuities. We also deal with the situation where
data is missing. Finally, we consider real data: we estimate steps in the rotation of the bacterial
flagellar motor.

(a) A relaxation strategy for the initial steps of the algorithms
Because we deal with non-smooth non-convex problems, the set of (local) minimizers usually
is neither unique nor convex. Thus, the solutions produced by our iterative methods typically
depend on the starting point. Without additional a priori information, we use the initial guess A∗f
in the experiments. However, it turns out that this guess is, in practice, often close to an undesired
local minimum. Instead of trying to choose another starting point (without additional a priori
information), we propose a relaxation strategy for the initial steps of the algorithm. This strategy
addresses the empirical observation that the unrelaxed iteration suffers from fixing partitions too
early. We note that the corresponding convergence statements remain true unchanged, because
only the initial steps of the iterations of the autonomous system are relaxed.

Let us first consider the iterative Potts minimization algorithm (2.5). We start with a small
regularization parameter γk which we successively increase during the first k0 iterations until we
reach the desired parameter γ . In our examples, we choose the sequence γk given by

γk =

⎧⎪⎨
⎪⎩

γ

(
1 − k

k0

)2
, if k < k0,

γ , else.
(4.1)

In our experiments, the value k0 = 1000 turned out to be a reasonable choice. For the J-jump
sparsity problem, we use the sequence

Jk =
{

tJ − k, if tJ − k > J,

J, else.

with t = 20. For the Blake–Zisserman problem, we keep the s-parameter fixed and use the
relaxation (4.1) for the γ -parameter. Figure 1 illustrates the practical gain of the relaxation. There,
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0 500 1000 0 500 1000 0 500 1000

0

1

(a) (b) (c)

Figure 1. Iterative Potts minimization (γ = 0.7) for the deconvolution of a noisy signal: effect of the relaxation strategy
proposed in §4a. The runtime is 1.1 s without relaxation and 43.8 s with relaxation. (a) Blurred and noisy data. (b) Without
relaxation. (c) With relaxation. (Online version in colour.)

A represents the convolution with Gaussian kernel of standard deviation 16, and the noise is
zero-mean Gaussian distributed with standard deviation σ = 0.1.

(b) Deconvolution of signals with discontinuities
As application, we consider deconvolution problems. Deconvolution problems actually cover all
measurement systems A which are translation- or time-invariant.

In our test cases, A is a L × L Töplitz matrix describing a discrete convolution by a Gaussian
kernel of standard deviation 16. As common setup, we deal with signals of length L = 1000. We
simulate data f by f = Ag + η, where g is the underlying true signal and η is a Gaussian-distributed
random vector consisting of independent zero mean random variables with standard deviation
σ = 0.1. To simulate incomplete data, we randomly select a set of 500 missing data points which
we remove from the data vector f . We further adapt the matrix A by removing the corresponding
rows. For all our algorithms, we employ the following stopping criterium. We stop the iterations
when the term ‖uk − uk+1‖/(‖uk‖ + ‖uk+1‖), measuring a kind of relative �2 ‘distance’ between
two consecutive iterates uk, uk+1, falls below a threshold which we here chose as 10−6. A Matlab
implementation of the algorithms developed in this work is available online.1 All experiments
were conducted on a desktop computer with Intel Xeon E5 (3.5 GHz).

In our first experiment (figure 2), we reconstruct a piecewise constant signal from blurry and
noisy data. (In the figures, we display the data points and the computed results as dots and the
ground truth as dashed line.) We compare our results to those of iterative thresholding. To this
end, we use (2.8) and (2.16) to obtain corresponding separable problems. Then, we apply the
iterative thresholding algorithms proposed by Blumensath & Davies [32,37] using the toolbox
‘sparsify 0.5’.2 We also compare with total variation minimization, i.e.

minimize γ
∑

i

|ui − ui−1| + ‖Au − f‖2
2,

which may be seen as the convex state of the art method for the corresponding task. In the
experiment (figure 2), we see that total variation minimization tends to produce transitional
points at the jumps and to decrease the contrast. The iterative thresholding approach to the Potts
problem gets stuck in a constant result. The result of the thresholding approach to the J-jump
sparsity problem is satisfactory. We observe an almost perfect reconstruction using the proposed
iterative Potts and J-jump sparsity algorithms.

Next, we study the influence of the model parameter. In figure 3, we show the results of the
iterative Potts algorithm for various parameters γ . We observe that the majority of the partitions
is recovered robustly over a large range of parameters.

1Available at http://pottslab.de.

2Available at http://users.fmrib.ox.ac.uk/t̃blumens/sparsify/sparsify.html.
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0 500 1000 0 500 1000 0 500 1000

Figure 2. Reconstruction of a piecewise constant signal. Total variationminimization tends to produce transitional points at the
jumps and to decrease the contrast. The iterative thresholding approach to the Potts problem gets stuck in a constant result. The
result of the thresholding approach to the J-jump sparsity problem is satisfactory. Iterative Potts minimization and the iterative
J-jump sparsity algorithm recover the piecewise constant signal almost perfectly. (a) Blurred and noisy data. (b) Iterative
thresholding algorithm for (Pγ ), γ = 0.7. (c) Iterative thresholding algorithm for (SJ), J = 8. (d) Total variation solution,
λ = 1.5. (e) Iterative Potts algorithm for (Pγ ) (proposed method), γ = 0.7. (f ) Iterative J-jump sparsity algorithm for (SJ)
(proposed method), J = 8. (Online version in colour.)
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0 500 1000 0 500 1000 0 500 1000
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(d ) (e) ( f )

Figure 3. Influence of the parameter γ on the result of the iterative Potts algorithm: for smaller values of γ , some additional
jumps appear, and for larger values of γ , some jumps vanish. Despite this variation, the result is stable for a large parameter
rangeon themajority of thepartitions. (a) Blurred andnoisy data. (b)γ = 0.25. (c)γ = 0.5. (d)γ = 1. (e)γ = 2. (f )γ = 4.
(Online version in colour.)

In the next experiment, we look at the influence of the starting value on the result. To this
end, we start the iteration with perturbed starting values u0 = A∗(f + η), where η is a Gaussian
distributed random vector with zero mean. We consider a particularly simple experiment where
we can compute the global minimizer explicitly using brute force. (We used 100 data points, two
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Figure 4. Influence of the starting point on the result of the iterative Potts algorithm (γ = 1): for small random perturbations
of the starting point, we end up the same local minimizer for all 100 realizations. The result is near to the global minimizer
which is displayed as dashed line (b). For large randomperturbations, we obtain four different nearby results (d). The histogram
shows their frequency where the abscissa displays their functional values (e). The dashed line indicates the global optimum
which could be computed for this particularly simple example by brute force. (a) Blurred and noisy signal. (b) Result with
perturbed starting point (τ = 0.01). (c) Histogram of the local minimizers (τ = 0.01). (d) Results with perturbed starting
point (τ = 0.5). (e) Histogram of the local minimizers (τ = 0.5). (Online version in colour.)
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Figure5. Reconstructionof apiecewise smooth signal. Total variationminimizationproduces so-called staircasing. The iterative
Blake–Zisserman minimization reconstructs the underlying signal almost perfectly. (a) Blurred and noisy signal. (b) Total
variation solution,λ = 1. (c) Iterative Blake–Zisserman solution, γ = 1000, s= 0.04. (Online version in colour.)

jumps, Gaussian convolution of standard deviation 3.) In figure 4, we see the results of two series
of the iterative Potts algorithm for 100 realizations of η, one with smaller perturbations and one
with larger perturbations. For the small standard deviation τ = 0.01 of η (nearby starting points),
we end up in the same local minimizer, which is rather near to the global minimizer. The case
of large standard deviation τ = 0.5 of η illustrates the dependence of the solution on the starting
point; we get different nearby solutions which also include the global minimizer.

Figure 5 shows the reconstruction of a piecewise smooth function. Total variation minimization
produces the typical ‘staircasing’ effects. The iterative Blake–Zisserman algorithm yields a very
satisfactory reconstruction.

(c) Estimating steps in the rotation of the bacterial flagellar motor
The bacterial flagellar motor is a rotary molecular machine that is embedded in the bacterial cell
envelope. It propels many species of swimming bacteria [1,2]. Sowa et al. [1] observed steps in
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Figure6. Thepoints represent the angle of thebacterial flagellarmotor over time. Thegrid lines are in adistance of (360/26)≈
13.8 degree. We obtain a reasonable estimate of the steps using the iterative Potts algorithm (solid line, γ = 900). (Original
data by courtesy of Y. Sowa et al. [1].) (Online version in colour.)

the rotation of the flagellar motor over time; on average, they found approximately 26 steps per
revolution. The present dataset is a time series of the angular position of the flagellar motor. The
data were acquired using back-focal plane interferometry (BFP) using around 4000 recordings
per second. The maximum number of steps that can be detected is around 200 per second [1].
This measurement set-up motivates to model the measurements as convolution with zero mean
Gaussian with a standard deviation such that the [−σ , σ ] interval spreads over 20 data points.
This leads to σ = 2.5 · 10−3 s. For this rather large dataset of 11 912 elements, we used k0 = 10 in
the relaxation strategy (4.1). The result of the iterative Potts algorithm is shown in figure 6. The
exact runtime for this experiment was 106.6 s. We obtain a reasonable estimate of the steps.

5. Conclusion and future research
We have considered the problem of restoring signals with discontinuities from indirect noisy
measurements. For piecewise smooth signals, we have employed Blake–Zisserman functionals.
We have derived an iterative Blake–Zisserman minimization algorithm. We have shown its
convergence to a local minimizer. For piecewise constant signals, we have considered the
Potts and the J-jump sparsity problem. We have seen that these two problems are related
but not equivalent. For both problems, we have derived iterative algorithms and obtained
convergence results. We have shown the practical potential of all proposed methods in numerical
experiments on signal deconvolution. In particular, the proposed methods are preferable to total
variation-based relaxation for jump/discontinuity/step detection.

Future research includes the extension of the proposed approaches to the multivariate set-up.

Data accessibility. Data and code are available at http://pottslab.de/.
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