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Abstract Mumford–Shah and Potts functionals are power-
ful variational models for regularization which are widely
used in signal and image processing; typical applications
are edge-preserving denoising and segmentation. Being both
non-smooth and non-convex, they are computationally chal-
lenging even for scalar data. For manifold-valued data, the
problem becomes even more involved since typical features
of vector spaces are not available. In this paper, we propose
algorithms for Mumford–Shah and for Potts regularization
of manifold-valued signals and images. For the univariate
problems, we derive solvers based on dynamic program-
ming combined with (convex) optimization techniques for
manifold-valued data. For the class of Cartan–Hadamard
manifolds (which includes the data space in diffusion ten-
sor imaging (DTI)), we show that our algorithms compute
global minimizers for any starting point. For the multivariate
Mumford–Shah and Potts problems (for image regulariza-
tion), we propose a splitting into suitable subproblems which
we can solve exactly using the techniques developed for the
corresponding univariate problems. Our method does not
require any priori restrictions on the edge set and we do not
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have to discretize the data space. We apply our method to
DTI as well as Q-ball imaging. Using the DTI model, we
obtain a segmentation of the corpus callosum on real data.
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1 Introduction

In their seminalworks [60,61]Mumford andShah introduced
a powerful variational approach for image regularization. It
consists of the minimization of an energy functional given
by

min
u,C

γ |C |+ α

q

∫
Ω\C

|Du(x)|qdx+ 1

p

∫
Ω

d(u(x), f (x))pdx .

(1)

Here, f represents the data and u is the target variable to
optimize for. In the scalar case, u and f are real-valued
functions on a domain Ω ⊂ R

2, d is the Euclidean met-
ric, and Du denotes the gradient (in the weak sense). In
contrast to Tikhonov-type priors, the Mumford–Shah prior
penalizes the variation only on the complement of a dis-
continuity set C . Furthermore, the “length” |C | (i.e., the
outer one-dimensional Hausdorff measure) of this disconti-
nuity set is penalized. The parameters γ > 0 and α > 0
control the balance between the penalties. Basically, the
resulting regularization is a smooth approximation to the
image f which, at the same time, allows for sharp variations
(“edges”) at the discontinuity set. The piecewise constant
variant of (1)—often called Potts functional—corresponds
to the degenerate case α = ∞ which amounts to removing
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the second term in (1) and considering piecewise constant
functions with sufficiently smooth jump sets (in the sense of
Hausdorff measures). The typical application of these func-
tionals is edge-preserving smoothing.As such, they can serve
as an initial step of a segmentation pipeline for instance. In
simple cases, the induced edge set can directly yield a rea-
sonable segmentation. For further information considering
these problems from various perspectives (calculus of vari-
ation, stochastics, inverse problems), we exemplarily refer
the reader to [5,18,20,21,37,38,41,47,67,91] and the refer-
ences therein. These references also deal with central basic
questions such as, e.g., the existence of minimizers.

Mumford–Shah and Potts problems are computationally
challenging since one has to deal with non-smooth and non-
convex functionals. Even for scalar data, both problems
are NP-hard in dimensions higher than one [4,19,81]. This
makes finding a (global) minimizer infeasible. However, due
to its importance in image processing, many approximative
strategies have been proposed for scalar- and vector-valued
data.Among these are graduated non-convexity [18], approx-
imation by elliptic functionals [5], graph cuts [19], active
contours [77], convex relaxations [66], iterative thresholding
approaches [38], and alternating direction methods of multi-
pliers [46].

In recent years, regularization of manifold-valued data
has gained a lot of interest. For example, sphere-valued
data have been considered for SAR imaging [59], regu-
larization of orientation data [72] and non-flat models for
color image processing [23,53,56,82]. Further examples are
SO(3) data expressing vehicle headings, aircraft orienta-
tions or camera positions [68], and motion group-valued
data [71]. Related work dealing with the processing of
manifold-valued data are wavelet-type multiscale transforms
[44,68,86] andmanifold-valued partial differential equations
[24,43,78]; statistics on Riemannian manifolds are the topic
of [16,17,33–35,62,64]. Total variation regularization for
manifold-valued data is the topic of [58] and [87]; related
higher order functionals are considered in [14].

In medical imaging, a prominent example with manifold-
valued data is diffusion tensor imaging (DTI). DTI allows
quantify the diffusional characteristics of a specimen non-
invasively [11,48]; see also the overview in [8]. DTI is
helpful in the context of neurodegenerative pathologies such
as schizophrenia [36,55], autism [3] or Huntington’s disease
[70]. In DTI, the data can be viewed as living in the Rie-
mannian manifold of positive (definite) matrices; see, e.g.,
[65]. The underlying distance corresponds to the Fisher–Rao
metric [69] which is statistically motivated since the posi-
tive matrices (called diffusion tensors) represent covariance
matrices. These tensors model the diffusivity of water mole-
cules. Oriented diffusivity along fiber structures is reflected
by the anisotropy of the corresponding tensors; typically,
there is one large eigenvalue and the corresponding eigen-

vector yields the orientation of the fiber. In DTI, potential
problems arise in areas where two or more fiber bundles are
crossing because the tensors are not designed for the repre-
sentation of multiple directions. In order to overcome this,
the Q-ball imaging (QBI) approach [28,45,80] uses higher
angular information to allow for multiple directional peaks
at each voxel; it has been applied to diffusion tractography
[13]. The QBI data can be modeled by a probability density
on the 3D-unit sphere called orientation distribution function
(ODF). The corresponding space of ODFs can be endowed
with a Riemannian manifold structure [42].

In the context of DTI, Wang and Vemuri consider a Chan-
Vese model for manifold-valued data (which is a variant of
the Potts model for the case of two labels) and a piece-
wise smooth analogue [84,85]. Their method is based on
a level-set active-contour approach which iteratively evolves
the jump set followed by an update of the mean values (or a
smoothing step for the piecewise smooth analogue) on each
of the two labels. In order to reduce the computational load in
their algorithms (caused by Riemannian mean computations
for a very large amount of points) the authors resort to non-
Riemannian distance measures in [84,85]. Recently, a fast
recursive strategy for computing the Riemannian mean has
been proposed and applied to the piecewise constant Chan-
Vesemodel in [25]. Related methods are K -means clustering
[89], geometric flows [49] or level set methods [30,92].

1.1 Contribution

In this work, we propose algorithms for Mumford–Shah
and Potts regularization for Riemannian manifolds (which
includes DTI with the Fisher–Rao metric) for both signals
and images. For manifold-valued data, the distance d in (1)
becomes the Riemannian distance and the differential D can
be understood in the sense of metric differentials [54]. For
univariate Mumford–Shah and Potts problems, we derive
solvers based on a combination of dynamic programming
techniques developed in [21,40,61,90] and proximal point
splitting algorithms for manifold-valued data developed by
the authors in [87]. Our algorithms are applicable for mani-
foldswhoseRiemannian exponentialmapping and its inverse
can be evaluated in reasonable time. For Cartan–Hadamard
manifolds (which includes the manifold in DTI) our algo-
rithms compute globalminimizers for all input data. (Wenote
that the univariate problems are not NP-hard.) These results
actually generalize to the more general class of Hadamard
spaces. ForMumford–Shah andPotts problems formanifold-
valued images (where the problems become NP-hard), we
propose a novel splitting approach. Starting from a finite
difference discretization of (1) we use a penalty method to
split the problems into computationally tractable subprob-
lems. These subproblems are closely related to univariate
Mumford–Shah and Potts problems and can also be solved
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using the methods we developed for these problems in this
paper. We note that our methods neither require a priori
knowledge on the number of labels nor a discretization of
the manifold.

We show the capabilities of ourmethods by applying them
to two medical imaging modalities: DTI and QBI. For DTI,
we first consider several synthetic examples corrupted by
Rician noise and show our algorithms potential for edge-
preserving denoising. In simple cases, the edge set produced
by our method can directly serve as a segmentation.We illus-
trate this for the corpus callosum of real human brain data.
We conclude with experiments for QBI.

1.2 Organization of the Article

Section 2 deals with algorithms for the univariate Potts and
Mumford–Shah problems for manifold-valued data. We start
by presenting a dynamic programming approach for the uni-
variate Potts andMumford–Shah problem in Sect. 2.1. Then,
we use this approach to derive an algorithm for univariate
Potts functionals for manifold-valued data in Sect. 2.2 and to
derive an algorithm for the univariate Mumford-Shah prob-
lem inSect. 2.3.Ananalysis of the derived algorithms is given
in Sect. 2.4. In Sect. 3, we derive algorithms for the Potts and
Mumford–Shah problems for manifold-valued images. We
first deal with proper discretizations and then propose a suit-
able splitting into subproblems that we solve using similar
techniques as in the univariate case. We apply our algorithm
toDTI data in Sect. 4 and to Q-ball data in Sect. 5. The proofs
are provided in Sect. 6.

2 Univariate Mumford–Shah and Potts
Functionals for Manifold-Valued Data

In this section, we present solvers for Mumford–Shah and
Potts problems for univariate manifold-valued data. These
are not only important in their own right; variants of the
derived solvers are also used as a basic building block for the
proposed algorithm for the multivariate problems.

We first deal with some general issues; then, we derive the
announced algorithms—first for the univariate Potts problem
and then for the univariateMumford–Shah problem; we con-
clude with an analysis of both algorithms.

In the univariate case, the discretization of the Mumford-
Shah functional (1) and the Potts functional (α = ∞ in
(1)) is straightforward. The (equidistantly sampled) discrete
Mumford–Shah functional reads

Bα,γ (x) = 1

p

n∑
i=1

d(xi , fi )
p + α

q

∑
i /∈J (x)

d(xi , xi+1)
q

+ γ |J (x)|,
(2)

where d is the distancewith respect to the Riemannianmetric
in the manifold M, f ∈ Mn is the data, and J is the jump
set of x . The jump set is given by J (x) = {i : 1 ≤ i <

n and d(xi , xi+1) > s}, where the jump height s is related
to the parameter γ via γ = αsq/q. Using a truncated power
function, we may rewrite (2) in the Blake-Zisserman type
form

Bα,s(x) = 1

p

n∑
i=1

d(xi , fi )
p + α

q

n−1∑
i=1

min(sq , d(xi , xi+1)
q),

(3)

where s is the argument the power function t �→ tq is trun-
cated at.

The discrete univariate Potts functional for manifold-
valued data reads

Pγ (x) = 1

p

n∑
i=1

d(xi , fi )
p + γ |J (x)|, (4)

where d is the distance in the manifold and i belongs to the
jump set of x if xi �= xi+1.

We first of all show that the problems (2) and (4) have a
minimizer. (We recall that certain variants of the continuous
Mumford–Shah and Potts functional do not have aminimizer
without additional assumptions; see, e.g., [37]).

Theorem 1 In a complete Riemannian manifold the discrete
Mumford–Shah functional (2) and the discrete Potts func-
tional (4) have a minimizer.

The proof is given in Sect. 6.1.We note that the data spaces in
applications are typically complete Riemannian manifolds.

2.1 The Basic Dynamic Program for Univariate
Mumford–Shah and Potts Problems

In order to find a minimizer of the Mumford–Shah problem
(2) and the Potts problem (4), we use a general dynamic
programming principle which was considered for the corre-
sponding scalar and vectorial problems in various contexts;
see, e.g., [21,40,61,73,88,90]. We briefly recall the basic
idea starting with the Mumford–Shah problem. It is conve-
nient to use the notation

xl:r = (xl , . . . , xr ).

Assume that we have already computed minimizers xl of
the functional Bα,γ associated with the partial data f1:l =
( f1, . . . , fl) for each l = 1, . . . , r−1 and some r ≤ n. Then,
we compute xr associated to data f1:r as follows. With each
xl−1 of length l − 1, we associate a candidate of the form
xl,r = (xl−1, hl,r ) ∈ Mr which is the concatenation of xl−1

123



J Math Imaging Vis (2016) 55:428–445 431

with a vector hl,r of length r − l + 1. This vector hl,r is a
minimizer of the problem

εl,r = min
h∈Mr−l+1

r−1∑
i=l

α

p
dq(hi , hi+1) + 1

p

r∑
i=l

d p(hi , fi ), (5)

and εl,r is the error of a best approximation on the (discrete)
interval (l, . . . , r). Then, we calculate the quantity

min
l=1,...,r

{
Bα,γ (xl−1) + γ + εl,r

}
, (6)

which we will see to coincide with the minimal functional
value of Bα,γ for data f1:r (cf. Theorems 2 and 3). Then, we
set xr = xl

∗,r , where l∗ is a minimizing argument in (6). We
successively compute xr for each r = 1, . . . , n until we end
up with full data f . Actually, only the l∗ and the εl,r and not
the vectors xr have to be computed in this selection process;
in a postprocessing step, the solution can be reconstructed
from this information; see Algorithm 1 and [40] for further
details.With these improvements, the dynamic programming
skeleton (without the cost for computing the approximation
errors εl,r ) has quadratic cost with respect to time and linear
cost with respect to space. In practice, the computation can be
accelerated significantly by pruning the search space [52,75].

In order to adapt the dynamic program for the Potts
problem (4) the onlymodification required is that the approx-
imation errors on the intervals εl,r read

εl,r = min
h∈M

1

p

r∑
i=l

d p(h, fi ), (7)

and the candidates are of the form xl,r = (xl−1, hl,r ), where
hl,r ∈ Mr−l+1 is constant and componentwise equals a min-
imizer h∗ of (7) on the interval l, . . . , r . We next deal with
the computation of these minimizers.

2.2 An Algorithm for Univariate Potts Functionals for
Manifold-Valued Data

In order to make the dynamic program from Sect. 2.1 work
for the Potts problem for manifold-valued data, we see from
Sect. 2.1 that we have to compute the approximation errors
εl,r given in (7) in the Riemannian manifold M . This means
we are faced with the problem of computing a minimizer
for the manifold-valued data fl:r = ( fl , . . . , fr ) and then to
calculate the corresponding approximation error.

We first consider the case p = 2 which amounts to
the “mean-variance” situation. Since our data live in a Rie-
mannianmanifold, the usual vector space operations to define
the arithmetic mean are not available. However, it is well
known (cf. [35,50,51,65]) that a minimizer

z∗ ∈ arg min
z∈M

N∑
i=1

d(z, zi )
2 (8)

is the appropriate definitionof amean z∗ ∈ mean(z1, . . . , zN )

of the N elements zi on the manifold M . A mean is in gen-
eral not uniquely defined since the minimization problem
has no unique solution in general. If the zi are contained in
a sufficiently small ball, however, the solution is unique. We
then replace the “∈” symbol by an “=” symbol and call z∗
the mean. The actual size of the ball where minimizers are
unique depends on the sectional curvature of themanifoldM;
for details and for further information we refer to [50,51].

In contrast to the Euclidean case there is no closed form
expression of the intrinsicmean defined by (8) inRiemannian
manifolds. A widespread method for computing the intrinsic
mean is the gradient descent approach (already mentioned in
[50]) given by

z(k+1) = expz(k)
N∑
i=1

1
N exp−1

z(k)
zi . (9)

(Recall that the points z1, . . . , zN are the points for which
the intrinsic mean is computed.) Information on conver-
gence related and other issues can, e.g., be found in the
papers [1,35] and the references therin. Newton’s method
was also applied to this problem in the literature; see, e.g.,
[31]. It is reported in the literature and also confirmed by
the authors’ experience that the gradient descent converges
rather fast; in most cases, 5–10 iterations are enough. This
might explain why this relatively simple method is widely
used.

For general p �= 1, the gradient descent approach works
as well. The case p = 1 amounts to considering the intrin-
sic median and the intrinsic absolute deviation. In this case,
the gradient descent (9) is replaced by a subgradient descent
which in the differentiable part amounts to rescaling the tan-
gent vector given on the right-hand side of (9) to length 1 and
considering variable step sizes which are square-integrable
but not integrable; see, e.g., [6].

A speedup using the structure of the dynamic program is
obtained by initializingwith previous output.More precisely,
when starting the iteration of themean for data fl+1:r , we can
use the already computed mean for the data fl:r as an initial
guess.Wenotice that this guess typically becomes even better
the more data items we have to compute the mean for, i.e.,
the bigger r − l is. This is important since this case is the
computational more expensive part and a good initial guess
reduces the number of iterations needed.

A possible way to reduce the computation time further
is to approximate the mean by a certain iterated two-point
averaging construction (known as geodesic analogues in the
subdivision context) as explained in [83]. Alternatively, one

123



432 J Math Imaging Vis (2016) 55:428–445

could use a “log-exp” construction (also known from subdi-
vision; see [68]) which amounts to stopping the iteration (9)
after one step.

The proposed algorithm for univariate Potts functionals
for manifold-valued data is summarized in Algorithm 1.

2.3 An Algorithm for Univariate Mumford–Shah
Functionals for Manifold-Valued Data

In order to make the dynamic program from Sect. 2.1 work
for the Mumford–Shah problem with manifold-valued data,
we have to compute the approximation errors εl,r in (5). To
this end, we compute minimizers of the problem

Vα(x; f ) = 1

p

∑
i

d p(xi , fi ) + α
1

q

∑
i

dq(xi , xi+1). (10)

Here, x is the target variable and f is the data. These are L p-
Vq type problems: the data term is a manifold �p distance
and the second term is a qth variation; in particular, q = 1
corresponds to manifold-valued total variation. Solvers for
these problems have been developed in the authors’ paper
[87].We briefly recall the approach concentrating on the uni-
variate case; for details, we refer to [87]. We decompose the
functional (10) into the sum Vα = F+α

∑
i Gi , wherewe let

Gi (x) = 1
q d

q(xi , xi+1) and F(x) = 1
p

∑
i d

p(xi , fi ). For
each of these summands, we can explicitly compute their
proximal mappings defined by

proxλGi
x = arg min

y

(
λGi (y) + 1

2
d2(x, y)

)
. (11)

They are given in terms of points on certain geodesics. In
detail, we get

(proxλGi
x)i = [xi , xi+1]t ,

(proxλGi
x)i+1 = [xi+1, xi ]t ,

(12)

where [x, y]t denotes the point reached after time t on the
unit speed geodesic which is starting in x and going to y.
For the practically relevant cases q = 1, 2 the parameter t
has an explicit representation: for q = 1, we have t = λ, if
λ < 1

2d(xi , xi+1), and d(xi , xi+1)/2 else; for q = 2 we get
t = λ

1+2λd(xi , xi+1). Similarly, the proximal mapping of F
is given by

(proxλF )i (x) = [xi , fi ]s . (13)

For p = 1, we have s = λ if λ < d(xi , fi ), and d(xi , fi )
else; for p = 2, we obtain that s = λ

1+λ
d(xi , fi ). We notice

that the above proximal operators are uniquely defined if
there is precisely one shortest geodesic joining the two points

Algorithm 1: Algorithm for the Mumford–Shah prob-
lem (2) and the Potts problem (4) for univariate
manifold-valued data
begin

//Find optimal partition
B0 ← −γ ;
for r ← 1, . . . , n do

for l ← 1, . . . , r do
//Mumford–Shah case (Sec. 2.3):
ε ← minh∈Mr−l+1 Vα(h; fl:r ) //use Alg. of Sec. 2.3
//Potts case (Sec. 2.2):
ε ← minh∈M

∑r
i=l d

p(h, fi ) //use Alg. of Sec. 2.2
b ← Bl−1 + γ + ε;
if b < Br then

Br ← b;
pr ← l − 1;

end
end

end
//Reconstruct solution from partition
r ← n; l ← pr ;
while l > 0 do

//Mumford–Shah case (Sec. 2.3):
h∗ ← argminh∈Mr−l+1 Vα(h; fl+1:r ) //use Alg. of Sec.
2.3

//Potts case (Sec. 2.2):
h′ ← argminh∈M

∑r
i=l+1 d

p(h, fi ) //use Alg. of Sec.
2.2

h∗ ← (h′, . . . , h′);
x∗
l+1:r ← h∗;

r ← l; l ← pr ;
end
return x∗

end

involved. Otherwise, one has to resort to set-valued map-
pings. Uniqueness is given for the class of Cartan–Hadamard
manifolds which includes the data space in DTI considered
in Sect. 4.

Equipped with these proximal mappings, we apply a cyc-
lic proximal point algorithm for manifold-valued data [9]:
we apply the proximal mappings of F, αGr , . . . , αGl (with
parameter λ) and iterate this procedure. During the iteration,
we decrease the parameter λk in the kth iteration in a way
such that

∑
k λk = ∞ and

∑
k λ2k < ∞.

A speedup using the structure of the dynamic program is
obtained by initializing with previous output as explained for
the Potts problem in Sect. 2.2. The proposed algorithm for
univariate Mumford–Shah functionals with manifold-valued
data is summarized in Algorithm 1.

2.4 Analysis of the Univariate Potts and Mumford–Shah
Algorithms

We first obtain that our algorithms yield global minimizers
for data in the class of Cartan–Hadamard manifolds which
includes many symmetric spaces. Prominent examples are
the spaces of positive matrices (which are the data space in
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DTI) and the hyperbolic spaces. These are complete simply-
connected Riemannian manifolds of nonpositive sectional
curvature. For details, we refer to [29] or to [10]. In particular,
in these manifolds, geodesics always exist and are unique
shortest paths.

Theorem 2 In a Cartan–Hadamard manifold, Algorithm 1
produces a global minimizer for the univariate Mumford–
Shah problem (2) (and the discrete Potts problem (4),
accordingly).

The proof is given in Sect. 6.2.
We notice that this result generalizes to the more gen-

eral class of (locally compact) Hadamard spaces. These are
certain metric spaces generalizing the concept of Cartan–
Hadamard manifolds; see, e.g., [76]. Examples of Hadamard
spaces which are not Cartan–Hadamard manifolds are the
metric trees in [76]. The validity of Theorem 2 for (locally
compact) Hadamard spaces may be seen by inspecting the
proof noticing that all steps rely only on features of these
spaces.

For analysis of general complete Riemannian manifolds,
we first notice that, in this case, we have to deal with ques-
tions of well-definedness. We consider the Potts functional
and data f1, . . . , fn . For each (discrete) subinterval [l, r ],
a corresponding mean hl,r is defined as a minimizer of
(8) for data fl , . . . , fr . Although such a minimizer exists
by the coercivity and continuity of the functional, it might
not be unique. Furthermore, an algorithm such as gradi-
ent descent only computes a local minimizer for general
input data. For data not too far apart, however, the gradi-
ent descent produces a global minimizer of (8) (since then
the corresponding functional is convex). If data are so far
apart that the operations in the manifold are not even well-
defined it might be likely that they do not belong to the
same segment. Hence, let us consider a constant CK such
that, if points belong to a CK -ball with center in the com-
pact set K , then their mean is uniquely defined and obtained
by converging gradient descent. Assuming that the data lie
in K , we call a partition of [1, n] admissible if for any
interval [l, r ] in this partition the corresponding data fl:r
are centered in a common CK -ball. We get the following
result.

Theorem 3 Let M be a complete Riemannian manifold.
Then the univariate Potts problem given in Algorithm 1 with
p = 2 produces a minimizer of the discrete Potts problem (4)
when restricting the search space to candidates whose jump
sets correspond to admissible partitions.

The proof can be found in Sect. 6.2. This result can be
easily generalized to the general case p ≥ 1.

3 Mumford–Shah and Potts Problems for
Manifold-Valued Images

We now consider Mumford–Shah and Potts regularization
formanifold-valued images. In contrast to the univariate case,
finding globalminimizers is not tractable anymore in general.
In fact, the Mumford–Shah problem and the Potts problem
are known to be NP-hard in dimensions higher than one even
for scalar data [4,81]. Therefore, the goal is to derive approx-
imative strategies that perform well in practice.

In the following it is convenient to use thenotationd p(x, y)
for the p-distance of two manifold-valued images x, y ∈
Mm×n , i.e.,

d p(x, y) =
∑
i, j

d p(xi j , yi j ).

We further define the penalty function

Ψa(x) =
∑
i, j

ψ(x(i, j)+a, xi j )

with respect to some finite difference vector a ∈ Z
2 \

{0}. Here, we instantiate the potential function ψ in the
Mumford–Shah case by

ψ(w, z) = 1

q
min(sq , d(w, z)q). (14)

and in the Potts case by

ψ(w, z) =
{
1, if w �= z,

0, if w = z,
(15)

for w, z ∈ M .
In higher dimensions, the discretization of the Mumford-

Shah and Potts problem is not as straightforward as in the
univariate case. A simple finite difference discretization with
respect to the coordinate directions is known toproduceunde-
sired block artifacts in the reconstruction [22]. The results
improve significantly when including further finite differ-
ences such as the diagonal directions [22,74,75]. We here
use a discretization of the general form

min
x∈Mm×n

1

p
d p(x, f ) + α

R∑
s=1

ωsΨas (x), (16)

where the finite difference vectors as ∈ Z
2 \ {0} belong to

a neighborhood system N . The values ω1, . . . , ωR are non-
negative weights. We focus on the neighborhood system

N = {(1, 0); (0, 1); (1, 1); (1,−1)}
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with the weights ω1 = ω2 = √
2−1 and ω3 = ω4 = 1−

√
2
2

as in [75]. For further neighborhood systems and weights we
refer to [22,75]. We next show the existence of minimizers
of the discrete functional (16).

Theorem 4 Let M be a complete Riemannian manifold.
Then the discrete Mumford–Shah and Potts problems (16)
both have a minimizer.

The proof is given in Sect. 6.1.
We next propose a splitting approach for the discrete

Mumford–Shah and Potts problems. To this end, we rewrite
(16) as the constrained problem

min
x1,...,xR

R∑
s=1

1

pR
d p(xs, f ) + αωsΨas (xs)

subject to xs = xs+1 for all 1 ≤ s ≤ R.

(17)

Here, we use the convention xR+1 = x1. (Note that
x1, . . . , xR arem × n images). We use a penalty method (see
e.g., [15]) to include the constraints into the target functional
and get the problem

min
x1,...,xR

R∑
s=1

ωs pRαΨas (xs) + d p(xs, f ) + μkd
p(xs, xs+1).

We use an increasing coupling sequence (μk)k which fulfills
the summability condition

∑
k μ

−1/p
k < ∞. Optimiza-

tion with respect to all variables simultaneously is still
not tractable, but our specific splitting allows us to mini-
mize the functional blockwise, that is, with respect variables
x1, . . . , xR separately. Performing the blockwise minimiza-
tion, we get the algorithm

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 ∈ arg min

x
pRω1αΨa1(x) + d p(x, f )

+ μkd
p(x, xkR),

xk+1
2 ∈ arg min

x
pRω2αΨa2(x) + d p(x, f )

+ μkd
p(x, xk+1

1 ),

...

xk+1
R ∈ arg min

x
pRωRαΨaR (x) + d p(x, f )

+ μkd
p(x, xk+1

R−1).

(18)

We notice that each line of (18) decomposes into univariate
subproblems of Mumford–Shah and Potts type, respectively.
For example, we obtain

(x1):, j ∈ arg min
z∈Mn

pRω1αΨ (z) + d p(z, f:, j )

+μkd
p(z, (xkR):, j ) (19)

for the direction a1 = (1, 0).
The subproblems are almost identical with the univariate

problems of Sect. 2. Therefore, we can use the algorithms
developed in Sect. 2 with the following minor modification.
For the Potts problem, the approximation errors are now
instantiated by

εl,r = min
h∈M

r∑
i=l

d p(h, fi j ) + μkd
p(h, (xkR)i j ),

for the subproblems with respect to direction a1 (and analo-
gously for the other directions a2, . . . , aR). This quantity can
be computed by the gradient descent explained in Sect. 2.2.
In the Mumford–Shah case, we have

εl,r = min
h∈Mr−l+1

r−1∑
i=l

pRω1αd
q(hi , hi+1)

+
r∑
i=l

d p(hi , fi j ) +
m∑
i=l

μkd
p(hi , (x

k
R)i j ).

The only difference to (5) is the extra “data term”

F ′(h) =
r∑
i=l

d p(hi , (x
k
R)i j ).

Its proximal mapping has the same form as the proximal
mapping of F in Sect. 2.3. Thus,we only need to complement
the cyclic proximal point algorithm for the L p-Vq problem
of Sect. 2.3 by an evaluation of the proximal mapping with
respect to F ′.

We eventually show convergence.

Theorem 5 ForCartan–Hadamardmanifold-valued images
the algorithm (18) for both the Mumford–Shah and the Potts
problem converge.

The proof is given in Sect. 6.3.

4 Edge-Preserving Regularization of Diffusion
Tensor Images

Thefirst applicationof ourmethod is edge-preservingdenois-
ingof diffusion tensor images.DTI is a non-invasivemodality
for medical imaging quantifying diffusional characteristics
of a specimen. It is based on nuclear magnetic resonance
[11,48]. Prominent applications are the determinationoffiber
tract orientations [11], the detection of brain ischemia [57],
and studies on autism [3], to mention only a few. Regular-
ization of DT images is important in its own right and, in
particular, serves as a processing step in many applications.
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It has been studied in a number of papers; we exemplarily
mention [12,26,65,85].

In DTI, the diffusivity of water molecules is encoded into
a so-called diffusion tensor. Thismeans that the data sitting in
each pixel (or voxel) of a diffusion tensor image is a positive
(definite symmetric) 3 × 3 matrix D. The space of positive
matrices Pos3 is a Riemannian manifold when equipped with
the Riemannian metric

gD(W, V ) = trace
(
D− 1

2WD−1V D− 1
2
)
; (20)

for details, see, e.g., [65]. Here, the symmetricmatricesW, V
represent tangent vectors in the point D. Besides its mathe-
matical properties, the practical advantage of theRiemannian
metric (20) in comparison to the Euclidean metric is that it
reduces the swelling effect [7,78]. On the flipside, the algo-
rithms and the corresponding theory become more involved.

4.1 Implementation of our Algorithms for DTI

We now implement our algorithms for Mumford–Shah and
Potts regularization for DTI data. Due to the generality of
our algorithms, we only need an implementation of the Rie-
mannian exponential mapping and its inverse to make them
work on the concrete manifold. For the space of positive
matrices, theRiemannian exponentialmapping expD is given
by

expD(W ) = D
1
2 exp

(
D− 1

2WD− 1
2

)
D

1
2 .

Here, D is a positive matrix and the symmetric matrix W
represents a tangent vector in D. The mapping exp is the
matrix exponential. The inverse of the Riemannian exponen-
tial mapping is given by

exp−1
D (E) = D

1
2 log

(
D− 1

2 ED− 1
2

)
D

1
2 .

for positive matrices D, E . The matrix logarithm log is well-
defined since the argument is a positive matrix. The matrix
exponential and logarithm can be efficiently computed by
diagonalizing the symmetric matrix under consideration and
then applying the scalar exponential and logarithm functions
to the eigenvalues. The distance between D and E is just the
length of the tangent vector exp−1

D (E)which can be explicitly

calculated by d(D, E) = ( ∑3
l=1 log(κl)

2
) 1
2 , where κl is the

lth eigenvalue of the matrix D− 1
2 ED− 1

2 .
The space of positive matrices becomes a Cartan–

Hadamard manifold with the above Riemannian metric (20).
Hence the theory developed in this paper fully applies; in par-
ticular, the univariate algorithms for DTI data produce global
minimizers for all input data (see Theorem 2); furthermore,

the algorithm (18) converges, and all its subproblems are
solved exactly.

4.2 Synthetic Data

The data measured in DTI are so-called diffusion weighted
images (DWIs) Dv which capture the directional diffusivity
in the direction v. The relation between the diffusion tensor
image f and the DWIs Dv at some pixel p is given by the
Stejskal–Tanner equation

Dv(p) = A0e
−b vT S(p)v, (21)

where b > 0 is an empirical parameter; here, A0 denotes the
unweighted measurement at the pixel p. Note that in prac-
tice the measurement of A0 might be affect by noise which
in turn has significant influence on Dv . For our synthetic
experiments, we simply used b = 800 and A0 = 1000.
The tensor S(p) is commonly derived from the DWIs via a
least square fit using (21). In our experiments, we visualize
the diffusion tensors by the isosurfaces of the corresponding
quadratic forms. More precisely, the ellipse representing the
diffusion tensor S(p) at pixel p are the points x fulfilling
(x − p)T S(p)(x − p) = c, for some c > 0.

We simulate noisy data using a Rician noise model [12,
32]. This means that we generate a noisy DWI D′

v(p) by

D′
v(p) =

√
(X + Dv(p))2 + Y 2,

with clean data Dv(p) and Gaussian variables X, Y ∼
N (0, σ 2). In our examples, we impose Rician noise to 15
diffusion weighted images and then compute the diffusion
tensors according to the Stejskal-Tanner equation (21) using
a least squares fit. We notice that a least squares fit might
yield quantities that are not in Pos3. To circumvent result-
ing problems, we could use one of the various methods that
ensure positive definiteness; see, e.g., [12,32]. However, an
appealing feature of our method is that such missing ten-
sors can be incorporated into the method by just removing
the invalid items from the data term, i.e., considering the
data term d p(x, f ) = ∑

(i, j)∈J d
p(xi j , fi j ) with summing

only over those indices (i, j) where fi j is a valid tensor, i.e,
J = {(i, j) : fi j is positive definite}.

We compare our results with L p −V q regularization, i.e.,
with minimizers of the two-dimensional analogue of (10)
using the (globally convergent) cyclic proximal point algo-
rithm of [87]. We further show the results of local means and
local medians over a 3×3 neighborhood. In order to quantify
the performance of our methods, we use the manifold-valued
version of the signal-to-noise ratio improvement given by
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SNR = 10 log10

(∑
i j d(gi j , fi j )2∑
i j d(gi j , xi j )2

)
,

see [87]. Here, f is the noisy data, g the ground truth, and x
the regularized restoration. In the synthetic experiments, we
have tuned the model parameters with respect to the 
SNR.
For the real data, due to the lack of a ground truth,we adjusted
the parameter such that we obtained a visually reasonable
tradeoff between smoothing and preservation of the edges.

The univariate situation is illustrated in Fig. 1 for Potts
and in Fig. 2 for Mumford–Shah regularization. Figure 3
shows the effect of Potts regularization on a simple diffu-
sion tensor image. The noise is removed and the segment
boundaries are correctly recovered. The original DT images
in Figs. 4 and 5 exhibit sharp transitions/edges between areas
where the tensors are smoothly varying. For such images, it
is thus appropriate to use our (piecewise smooth) Mumford–
Shah regularization method. As result, we obtain a piecewise
smooth denoised image with preserved sharp edges.

Fig. 1 a Synthetic piecewise constant signal; b noisy data (Rician
noise with κ = 85); c Potts regularization (p, q = 1) using Algo-
rithm 1 with parameter γ = 84.5. The signal is reconstructed almost
perfectly; the exact jump locations are obtained

Fig. 2 a Synthetic piecewise smooth signal; b noisy data (Rician noise
with κ = 70); c Mumford–Shah regularization (p, q = 1) using Algo-
rithm 1 with parameters α = 1.45 and γ = 1.5. The noise is removed
while preserving the jump

Fig. 3 a Synthetic DT image; b noisy data (Rician noise of level 75);
c local means (
SNR : 6.8); d local medians (
SNR : 7.8); e L1-T V
reconstruction (using TV parameter α = 0.3, 
SNR : 8.0); f Potts
reconstruction (p = 1) with parameter γ = 10 (
SNR : 9.1). Local
means and medians smooth out the edges. The L1-T V reconstruction
decreases the contrast. The Potts method yields an almost perfect recon-
struction

4.3 Real Data

Next, we apply the proposed method to real DTI data. The
present dataset was taken from the Camino project [27]. Fig-
ure 6a shows a slice of a human brain. Comparing with local
means, local medians and TV regularization, we illustrate
the edge-preserving denoising capabilities of our method in
Fig. 6. One application of DTI is to study the corpus cal-
losum which connects the right and the left hemisphere of
the human brain. A first step in the analysis is often the
determination of its boundaries [3,85]. As mentioned in
the introduction, edge-preserving smoothing is a frequently
used basic step in image segmentation methods. In simple
cases, the edge set obtained by the Mumford–Shah model
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Fig. 4 a Synthetic DT image; b noisy data (Rician noise of level 65);
c local means (
SNR : 2.2); d local medians (
SNR : 3.6); e L1-T V
reconstruction (TV parameter α = 0.4, 
SNR : 4.1), f Mumford–
Shah regularization (p, q = 1) using parameters γ = 9.4 and α = 17.8
(
SNR : 5.4). Local means and medians tend to smooth out the edges.
TV preserves the edges but it decreases the contrast. The proposed
method preserves the edges and the contrast

can yield a segmentation directly. In Fig. 7, we observe that
our Mumford–Shah approach removes noise and preserves
sharp boundaries between the oriented structures. In partic-
ular, the edge set gives an outline of the boundaries of the
corpus callosum.

5 Edge-Preserving Regularization of Q-Ball
Images

In DTI the diffusion at each pixel/voxel is modeled via
a single tensor. Typically, this tensor has one dominant
eigenvalue with corresponding eigenvector pointing to the

Fig. 5 aSyntheticDT imagewith a crossing;bnoisy data (Riciannoise
of level 45), c local means (
SNR : 1.1); d Local medians (
SNR :
2.2); e L1-T V reconstruction (TV parameter α = 0.5, 
SNR : 2.8);
f Proposed Mumford–Shah reconstruction (p = 2, q = 1) using para-
meters γ = 0.8 and α = 5 (
SNR : 3.2). Similar to Fig. 4, the
Mumford–Shah method shows the best denoising performance w.r.t.

SNR and it preserves the edges

direction with maximal diffusivity. This direction is directly
related with pathways of, e.g., neural fibers. DTI encounters
difficulties for modeling voxels with intravoxel directional
heterogeneity which, for example, occur at crossings of fiber
bundles [2,79]. In order to overcome these limitations, sev-
eral approaches have been proposed [2,28,39,63]. One of the
most popular among these approaches isQ-ball imaging [79].
Here, the tensor (seen as an ellipsoid parametrized over a ball)
is replaced by a more general orientation distribution func-
tion (ODF) ϕ : S2 → R where ϕ(s) essentially corresponds
to the diffusivity in direction s. Since the method allows for
more flexibility, high angular resolution diffusion imaging
(HARDI) data (see [79,80]) are needed. Further information
can be found in the latter references.
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Fig. 6 Mumford–Shah method for edge-preserving regularization of
real data from the Camino dataset [27] (from axial slice no. 28; cf.
also the brain atlas available at http://www.dartmouth.edu/~rswenson/
Atlas/). For comparison, the results of local means filtering, local
median filtering and TV regularization are shown. a Real DTI data;
b local means; c local medians (both 3×3 mask); d L2-TV (α = 0.14);
e Mumford–Shah regularization (p = 2, q = 2) using parameters

α = 0.6 and γ = 0.2. Local means filtering smoothes the whole
image including the edges; local median filtering yields better edge
preservation; L2-TV regularization preserves the edges even better but
introduces additional small jumps within areas of smooth transition
(“staircasing”). The proposed Mumford–Shah regularization smoothes
the image while preserving the edges

Fig. 7 a Corpus callosum of a human brain from the Camino project
[27]. b Mumford–Shah regularization (p, q = 1) using parameters
α = 4.3 and γ = 2.9. The noise is reduced significantly while the

edges are preserved. In this particular case, the edge set (red lines) of
the reconstruction even yields a segmentation of the corpus callosum
and its adjacent structures (Color figure online)
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5.1 The Q-Ball Manifold and the Implementation of our
Algorithm for Q-Ball Imaging

In order to derive a Riemannian structure on the Q-ball man-
ifold we follow the approach of [42]. The points in the
(discrete) Q-ball manifold are “square-root parametrized”
(discrete) ODFs which are a kind of samples of continu-
ous ODFs ϕ : S

2 → R on a finite subset S of the sphere
S
2 with a preferably almost equidistant sampling. To be pre-

cise, a discrete ODF is a positive function ϕ : S → R such
that

∑
s∈S ϕ2(s) = 1 (as proposed in [42]). Hence, a dis-

crete ODF can be identified with a point on the sphere Sn−1.
Then the set Φ of all discrete ODFs is the intersection of the
positive quadrant with the unit sphere in R

n , and thus can
be endowed with the Riemannian structure inherited from
S
n−1. Then the corresponding metric for the Q-ball mani-

fold is given by

d(ϕ1, ϕ2) = arccos

(∑
s∈S

ϕ1(s)ϕ2(s)

)
, for ϕ1, ϕ2 ∈ Φ.

The basic Riemannian operations have simple closed expres-
sions. For a point ϕ on the unit sphere S

n−1 in R
n and a

non-zero tangent vector v to the sphere at ϕ, the exponential
mapping is given by

expϕ(v) = ϕ · cos ‖v‖ + v · sin ‖v‖
‖v‖ ,

where ‖ · ‖ denotes the Euclidean norm in R
n . The inverse

of the exponential mapping is defined for any pair of points
ϕ1, ϕ2 ∈ Φ by

exp−1
ϕ1

(ϕ2) = d(ϕ1, ϕ2) · ϕ2 − 〈ϕ1, ϕ2〉 ϕ1

‖ϕ2 − 〈ϕ1, ϕ2〉 ϕ1‖ .

These explicit formulas for the Riemannian expmapping and
its inverse enable us to directly apply our algorithms for the
regularization of Q-ball data.

5.2 Numerical Experiments

We apply our algorithm to synthetic Q-ball data. Our exam-
ples simulate situations where two fiber bundles intersect. In
the examples the size of the sampling set on the 2-sphere is
n = 181 directions. In order to simulate noisy data, we use
the method based on the so-called “soft equator approxima-
tion” [80]. We visualize a discrete ODF as a spherical polar
plot. We compare our results with local means, with local
medians (both using a 3 × 3 neighborhood), and with clas-
sical L2-Sobolev regularization (L2 − V 2) using the cyclic
proximal point algorithm of [87].

Fig. 8 a Synthetic piecewise smooth Q-ball signal, b noisy data, c the
manifold analogue of classical Sobolev regularization (L2-V 2 with α =
50), d Mumford–Shah regularization (p, q = 2) with parameters α =
25, γ = 0.5. Classical Sobolev regularization removes the noise, but it
smoothes out the jump; in contrast, the Mumford–Shah regularization
removes the noise and preserves the jumps

Our first example is a univariate signal (Fig. 8). It contains
two kinds of Q-balls: one “tensor-like” with a single peak
and another one with two peaks. This illustrative example
shows that, also in the Q-ball case, our regularization method
removes the noise while preserving the jump and its location.

Our second experiment is a Q-ball valued image which
simulates the crossing of two fiber bundles (Fig. 9). Here, we
observe that our method removes the noise while preserving
the fiber crossing and the directional structures encoded in
the Q-balls as well as the edge structure in the image.

6 Proofs

In this section, we provide the proofs of the assertions made
in this paper.

6.1 Existence of Minimizers

We supply the proofs of Theorems 4 and 1 which are state-
ments on the existence of minimizers.

Proof (Proof ofTheorem4)Wefirst show that theMumford–
Shah version of the discretization (16) has a minimizer. In
the Mumford–Shah case, ψ is the truncated power function
given by (14). Since ψ is continuous, so is Ψas for all s and
therefore the whole functional given by (16) is continuous.
On the other hand, the data term d p(x, f ) is obviously coer-
cive with respect to the Riemannian distance. This makes the
overall functional coercive and confines points with small
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Fig. 9 a Synthetic Q-Ball image; b noisy data; c local means (
SNR :
4.0);d localmedians (
SNR : 5.6); e themanifold analogue of classical
Sobolev regularization (L2 − V 2 with parameter α = 1, 
SNR : 2.5);
f Mumford–Shah regularization (p, q = 2) with parameters α =

3, γ = 0.4 (
SNR : 6.9). Local means, local medians, and Sobolev
regularization smooth out the edges and the crossing structures. The
Mumford–Shah method recovers the edges as well as the crossings of
the original image reliably
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functional value to a bounded set. Since the manifold under
consideration is complete, points with small functional value
are confined to a compact set. Hence, the continuous func-
tional takes its minimal value on this compact set and the
corresponding point is a minimizer.

We come to the discrete Potts functional. Here, we con-
sider the discretization (16) whereψ is implemented by (15).
With the same argument as for the Mumford–Shah func-
tional above, the Potts functional is coercive with respect to
the Riemannian distance. We show its lower semicontinu-
ity. We have a look at Ψas which can be written as a sum of
univariate jump functionals for manifold-valued data of the
form S : u �→ |J (u)| from the Riemannian manifold M j

to the nonnegative integers (where j is the varying length of
the data under consideration.) If these functionals S were not
lower semicontinuous, there would be a convergent sequence
un → u with each un ∈ M j such that |J (u)| > |J (un)| for
sufficiently high indices n. Since un → u componentwise
(with respect to the distance induced by the Riemannianmet-
ric), we get, using the triangle inequality, that

d
(
unk ; unk−1

) → d(uk; uk−1).

This contradicts u having more jumps than un . Hence, the
functionals S and, as a consequence, the functionals Ψas are
lower semicontinuous. Using the continuity of the data term
the discretization (16) of the Potts functional is lower semi-
continuous. By its coercivity and the completeness of the
manifold M , arguments with a small Potts value are located
in a compact set. Hence, in the Potts case, (16) has a mini-
mizer. This completes the proof. ��
Proof (Proof of Theorem 1) The assertion is a consequence
ofTheorem4when specifying to data definedon {1, . . . , n}×
{1} choosing as single direction a1 = (1, 0). ��

6.2 Univariate Mumford–Shah and Potts Algorithms

We supply the proof of Theorem 2 which states that the algo-
rithms proposed for the univariate problems produce global
minimizers when the data live in a Cartan–Hadamard mani-
fold.

Proof (Proof of Theorem 2) We start with the Mumford–
Shah problem formanifold-valued data. For l = 1, . . . , r , we
consider the first l−1 data items f1:l−1 = ( f1, . . . , fl−1).We
let xl−1 be a minimizer of the corresponding functional Bl−1

α,γ

for the truncated data f1:l−1.Moreover, we let hl,r ∈ Mr−l+1

be the result computed by our algorithm for theminimization
of Vα according to Sect. 2.3 for data fl:r . Since we are in a
Cartan–Hadamard manifold, hl,r is a global minimizer of Vα

by Theorem 2 in [87]. With each l we associate the candidate
xl,r = (xl−1, hl,r ). On the other hand, we consider an index

l∗ minimizing (6). We claim that the candidate xl
∗,r is a

minimizer of Br
α,γ . To see this, consider an arbitrary x ∈ Mr

and let k be its rightmost jump point k. If there is no such k,
then x has no jumps and

Br
α,γ (x) = Vα(x) ≥ Vα(x1,r ) ≥ Br

α,γ (xl
∗,r ).

The penultimate inequality is due to the fact that x1,r is a
global minimizer of Vα in a Cartan–Hadamardmanifold. The
last inequality follows from (6). If k is the rightmost jump
point of x , we have

Br
α,γ (x) = Bk−1

α,γ (x) + γ + Vα(xl,r ) ≥ Br
α,γ (xl

∗,r )

by (6). This shows the assertion of the theorem in the
Mumford–Shah case using induction on r .

In the Potts functional case, we let xl−1 be a minimizer
of the Potts functionals Pl−1

γ for the truncated data f1:l−1.

Then, we let hl,r ∈ Mr−l+1 be the result of the gradient
(resp. subgradient) descent (9). Since we are in a Cartan–
Hadamard manifold, hl,r agrees with the constant function
on [l, r ] which is pointwise equal to the mean (p = 2),
median (p = 1) or, in general, the minimizer of the right-
hand side of (7). Now, we may proceed analogous to the
Mumford–Shah case to conclude the assertion and complete
the proof. ��

We proceed showing Theorem 3 which states that our
algorithm yields a minimizer for the Potts problem when
considering general complete Riemannian manifolds and
candidates with admissible partitions.

Proof (Proof of Theorem 3)We use the notation of the proof
of Theorem 2. Then, the xl−1 are minimizer of the corre-
sponding Potts functionals Pl−1

γ for the truncated data f1:l−1.
(We notice that such aminimizer exists, since an interval con-
sisting of one member is always admissible.) Furthermore,
for admissible intervals [l, r ], hl,r ∈ Mr−l+1 is pointwise
equal to the computed Riemannian mean as explained in
Sect. 2.2. The Riemannian mean minimizes the right-hand
side of (7). The candidates xl,r = (xl−1, hl,r ) and the mini-
mizing index l∗ are given as in the proof of Theorem 2 above.
In order to show that xl

∗,r is aminimizer, we consider an arbi-
trary x ∈ Mr with an admissible partition. If x has no jump,
then Pγ (x) = 1

2

∑
i d(x, fi )2 ≥ Pγ (x1,r ) ≥ Pγ (xl

∗,r ).
Otherwise, let k be the rightmost jump point of x (which, by
assumption, comes with an admissible partition). Then, we
get

Pr
γ (x) = Pk−1

γ (x) + γ + Vα(xl,r ) ≥ Pr
γ (xl

∗,r ).

which shows that xl
∗,r is a minimizer. Now induction com-

pletes the proof. ��
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6.3 Mumford–Shah and Potts Algorithms for Images

We supply the proof of Theorem 5 stating that the algorithm
in (18) converges in a Cartan–Hadamard manifold.

Proof (Proof of Theorem 5) We show that all iterates xks
converge to the same limit for all s ∈ {1, . . . , R}. Since
we are in a Cartan–Hadamard manifold, xk+1

1 is a global
minimizer of the functional

H1(x) = pRω1αΨa1(x) + d p(x, f ) + μkd
p(x, xkR)

which is the first problem in (18). This follows by an argu-
ment similar to the proof of Theorem 2.

We have H1(x
k+1
1 ) ≤ H1(xkR) which means that

d p(xk+1
1 , f ) + μkd

p
(
xk+1
1 , xkR

)
≤ pRω1αΨa1

(
xkR

)

+ d p(xkR, f ). (22)

In analogy, we get for the xk+1
s , s = 2, . . . , R, using the

other functionals in (18) that

d p(xk+1
s , f ) + μkd

p(xk+1
s , xks−1) ≤ pRω1αΨas

(
xk+1
s−1

)

+ d p
(
xk+1
s−1 , f

)
.

(23)

For both theMumford–Shah and the Potts problem, the terms
αΨa1(x

k
R) andαΨas (x

k+1
s−1 ), with s = 2, . . . , R, are uniformly

bounded by a constant C which does not depend on k and
s. This is because, for any input, αΨas is bounded by αmn
with the regularizing parameter α for the jump term of the
functional under consideration, and m and n are the height
and width of the image. Hence, we can use (22) and (23) to
get

d p
(
xk+1
1 , xkR

)
≤ C

μk
+ 1

μk

(
d p

(
xkR, f

)
− d p

(
xk+1
1 , f

))
,

d p
(
xk+1
s , xks−1

)
≤ C

μk
+ 1

μk

(
d p

(
xk+1
s−1 , f

)

− d p
(
xk+1
s , f

))
. (24)

Now, we may apply the inverse triangle inequality to the
second summand on the right-hand side and get d p(xkR, f )−
d p(xk+1

1 , f ) ≤ d p(xkR, xk+1
1 ). Then, a simple manipulation

shows that

d p
(
xk+1
1 , xkR

)
≤ C

μk−1 , d p
(
xk+1
s , xks−1

)
≤ C

μk−1 . (25)

As a consequence, there is a constant D and an index k0 such
that, for all k ≥ k0,

d
(
xk+1
R , xkR

)
≤ Dμ

− 1
p

k .

Hence,

d
(
xk+1
R , xk0R

)
≤ D

k+1∑
l=k0+1

μ
− 1

p
l < ∞,

and so the sequence xk+1
R converges. By (24), the iterates xks

converge to the same limit for all s = 1, . . . , R − 1. This
completes the proof. ��

7 Conclusion and Future Research

In this paper,weproposednewalgorithms for the non-smooth
and non-convex Mumford–Shah and Potts functionals for
manifold-valued signals and images. Our approach imposes
no restrictions on the number of labels and it needs no a priori
discretization of the manifold. We have shown the poten-
tial of our method for edge preserving regularization in DTI
and in Q-ball imaging. In simple cases, the derived edge set
can directly yield a segmentation which we have illustrated
on a real data example. For signals with values in Cartan–
Hadamard manifolds (which includes the data space in DTI),
we have seen that our algorithms for univariate data produce
global minimizers for any starting point. For the Mumford–
Shah and Potts problems for image regularization (which is
a NP-hard problem), we have obtained convergence of the
proposed splitting approach.

Topics of future research are the application of our algo-
rithms to further nonlinear data spaces relevant for imaging.
Another issue is to build a segmentation pipeline based on
ourmethod. Finally, from a theoretical side, it is interesting to
further investigate convergence related questions for general
Riemannian manifolds.
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