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Abstract: Optical diffraction tomography is an effective tool to estimate the refractive indices of
unknown objects. It proceeds by solving an ill-posed inverse problem for which the wave equation
governs the scattering events. The solution has traditionally been derived by the minimization of
an objective function in which the data-fidelity term encourages measurement consistency while
the regularization term enforces prior constraints. In this work, we propose to train a convolutional
neural network (CNN) as the projector in a projected-gradient-descent method. We iteratively
produce high-quality estimates and ensure measurement consistency, thus keeping the best of
CNN-based and regularization-based worlds. Our experiments on two-dimensional-simulated
and real data show an improvement over other conventional or deep-learning-based methods.
Furthermore, our trained CNN projector is general enough to accommodate various forward
models for the handling of multiple-scattering events.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In the last decade, optical diffraction tomography (ODT) has grown in interest [1]. ODT was
first theoretically proposed in 1969 by Wolf [2] and later given a geometrical interpretation by
Dändliker and Weiss [3]. This modality attempts to reconstruct the spatial distribution of the
refractive index (RI) by sequentially illuminating the sample with tilted incident fields. The
interaction between each incident field and the sample produces a complex scattered field recorded
by the acquisition setup [4]. Importantly, in many practical applications, a full 360o probing of
the object is not feasible. The limited view induces the so-called missing-cone problem and
results in the underestimation of RI values and the elongation of the reconstructed shapes [5,6].

1.1. Classical reconstruction methods

In the early works [7–9], ODT took advantage of linear, direct-inversion algorithms that rely on
single-scattering models such as Born [10] or Rytov [11] approximations. Under these models,
the relationship between the measured wave and the Fourier transform of the sample enables the
restoration of the RI distribution. In the Rytov approximation, which is preferred, the unwrapped
phase of the measurement is utilized instead of the scattered field, so that the index-matching
requirement is less stringent [12]. These algorithms are valid under the weak-scattering condition,
but less accurate for samples with high RI contrast, large radii, or complex structures.

The restriction to weak scattering can be lifted by the use of nonlinear models [13] that account
for multiple scattering, thereby improving the quality of reconstruction. Previous works have
used the beam-propagation method (BPM) [14,15], the contrast source-inversion method [16],
the conjugate-gradient method [17], the recursive Born approximation [18], and the Lippmann-
Schwinger model [19,20]. Furthermore, the missing-cone problem is partially overcome by
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including prior knowledge such as total variation (TV) [21], non-negativity constraints [22],
other sparsity-enforcing penalties [15], or plug-and-play priors [23].

1.2. Learning-based reconstruction methods

In the past decade, several works that adopted deep neural networks (DNN) [24,25] have
reached state-of-the-art performance in many challenging linear inverse problems such as image
reconstruction [26], super-resolution [27], x-ray computed tomography [28,29], and compressive
sensing [30]. Instead of retrieving the image from the measurements directly, the strategy is to
train a convolutional neural network (CNN) [31] to map the initial reconstructions, which are
usually obtained by classical methods, into the final desired results [32].
Another popular variant is to modify traditional iterative algorithms in such a way that the

network plays the role of a regularizer. In [33], a model-based iterative algorithm for image
reconstruction was proposed in which a deep CNN-based regularization prior was combined
with numerical optimization modules such as conjugate-gradient algorithms to enforce data
consistency and constrain the plausibility of the solutions. In [34], the authors proposed an
iterative reconstruction method for nonlinear tomographic problems. Specifically, they devised a
gradient-descent-like scheme where the gradient is learned via a CNN and showed that it works
with any nonlinear operator. In [35], a CNN is trained as a projector on the training data and is
then plugged in the alternating-direction method of multipliers method to solve linear inverse
problems. The framework there is similar to plug-and-play priors for model-based reconstruction
[36]. In [37], where the idea is similar to that in [35], a CNN is trained with multiple stages to
approximate a projector for the consistent reconstruction of computed tomography (CT) images.
The projector is then plugged into a relaxed projected-gradient-descent (PGD) method which is
guaranteed to converge.
In diffraction tomography, learning-based RI tomography approaches are also being rapidly

developed. In [14], the authors described a framework for the imaging of three-dimensional
(3D) phase objects in a tomographic configuration implemented by training a DNN to reproduce
the complex amplitudes of the measurements. The network was designed such that the voxel
values of the RI of the 3D object are the inputs that are adapted during the training process. In
[38], the authors improved upon [14] by using an `1 loss function and anisotropic TV. In [39],
the scattering decoder framework (ScaDec) combines a back-propagation scheme with a U-Net
[40]. The authors could recover strongly scattering objects in a purely data-driven fashion. Yet
other CNN architectures were proposed in [41,42]. These works mainly concentrated on cases
characterized by the absence of the missing-cone problem. Nevertheless, they suggest that CNN
could be an appealing solution to the specific challenges of ODT.

1.3. Contribution

Inspired by [37], we develop a plug-and-play scheme with a CNN trained as a projector for ODT.
Our approach contains a feedback mechanism that ensures consistency with the measurements
while taking advantage of the complexities of CNN. By contrast to [37], we adapt the framework
to a more challenging modality with an underlying nonlinear physical model and a missing-cone
problem. We extensively validate the proposed method on simulated and real data in different
scenarios. We compare the proposed method against the conventional direct inversion method
(a.k.a. the filtered back-propagation (FBP)method), iterative inversionmethods combinedwith TV
regularization (e.g., RytovTV), ScaDec, and the direct CNN. Our method outperforms traditional
optimization-based methods in both simulated and real datasets with diverse configurations.
Furthermore, our framework allows the use of more accurate models, for instance, BPM.
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1.4. Organization

In Section 2, we present the physical model in ODT [10] and its classical approximations.
In Section 3, we formulate the problem and explore an iterative scheme based on PGD. In
Section 4, we describe the proposed deep-learning scheme; it involves a novel strategy to
train the CNN as a projector onto a set of desirable solutions. In Section 5, we validate our
method on two-dimensional (2D) simulated and experimental data against conventional and other
CNN-based approaches. Finally, we summarize our study in Section 6.

2. Optical diffraction tomography

Let n : Ω 7→ R denote the distribution of RI of the object immersed in a medium of RI nb,
where Ω ⊂ Rd includes the support of the sample and d is the dimension of the problem
(e.g., d = 2, 3). In ODT, an incident plane wave uin : Ω 7→ C of wavelength λ illuminates the
sample. The interaction between n and uin produces a scattered field usc : Ω 7→ C. The complex
total field u = uin + usc is measured at the location Γ of the detector plane (see Fig. 1). In the
scalar-diffraction theory, the total field u is governed by the Helmholtz equation

∇2u(x) + k20n2(x)u(x) = 0, (1)

with the free-space wavenumber k0 = 2π
λ . Under suitable conditions, the integral form of (1) is

the Lippmann-Schwinger equation

u(x) = uin(x) +
∫
Ω

g(x − z)f (z)u(z)dz, x ⊆ Ω, (2)

where f (x) = k2( n2(x)n2b
− 1) denotes the scattering potential and k = k0nb is the wavenumber in the

medium. The convolution kernel g : Rd 7→ C is the Green function of (∇2 + k20nbI) given by

g(x) = j
4
H(1)0 (k0nb‖x‖), d = 2, (3)

where H(1)0 denotes the Hankel function of the first kind.

Fig. 1. Optical diffraction tomography.
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Under specific hypotheses, we can linearize this problem by replacing the total field u with the
incident field uin. This yields the first-order Born approximation, written as

usc
B (x) =

∫
Ω

g(x − z)f (z)uin(z)dz. (4)

The fact that the Born model only allows one to observe optically thin samples is a serious
drawback. The Rytov model [11] yields a similar equation with the left term of (4) being replaced
by uRyt = uinlog( uuin ). In practice, it is necessary to unwrap the imaginary part of log( uuin ). In this
work, we use the Rytov model as our forward operator, unless specified otherwise.

2.1. Formulation of the forward model

We discretize Ω in N pixels, and we represent the sampled scattering potential f and the refractive
index n by the vectors f ∈ RN and n ∈ RN , respectively. The sample is illuminated by a series of
P incident plane waves {uin

p (x)}Pp=1 = {ej〈kp,x〉}Pp=1 with the wavevector kp = kbsp, where sp ∈ Rd
is the directional unit vector for the pth illumination. We acquire M complex measurements per
illumination. According to the Rytov model [11], our discrete forward model reads as

yRyt
p = SpFf, p = 1, . . . ,P, (5)

where yRyt
p ∈ CM are the measurements modified according to the Rytov model, Sp ∈ RM×N

denotes a sampling operation that depends on the incident field p, and F ∈ CN×N applies a
d-dimensional Fourier transform.
We also introduce the RI variation δn ∈ RN whose mth component is given by

δnm = nb

(√
fm
k2
+ 1 − 1

)
. (6)

In this work, we utilized RI variations to describe the setup of diverse datasets.

3. Reconstruction of the distribution of RI

3.1. Problem formulation

We reconstruct our object by optimizing the constrained least-square problem

f̂ = arg min
f∈S

1
2P

P∑
p=1
‖yRyt

p −HRyt
p (f)‖22 , (7)

where yRyt
p denotes the measurement modified accordingly, HRyt

p : RN 7→ CM is the Rytov model
defined in (5), and S is a set of acceptable solutions that honor our prior information.

3.2. Iterative reconstruction scheme

The PGD [43] is a well-studied iterative method to solve (7). It alternates between taking a step
in the direction of the negative gradient of the cost function and applying a projection operator
PS that maps the current iteration onto S. It can be written as

fk+1 = PS(fk − γHTHfk + γHTy), (8)

where γ denotes the step size subject to the condition γ<2/| |HTH| |2, and PS : RN 7→ S is a
projection operator.
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However, PGD is not ensured to converge when the operator PS is not a valid projector, the
condition of validity being PS ◦ PS(x) = PS(x), ∀x ∈ RN . We therefore consider the relaxed
PGD (RPGD) of [37], which is ensured to converge (see Theorem 3 of [37]). The iterative
reconstruction scheme is sketched in Algorithm 1. In Line 6, in particular, we need a projector
onto S. Inspired by recent works on learning approaches, our goal is to replace PS with a CNN
that is trained to act as a projector (see Fig. 2).

Fig. 2. One iteration of the RPGD for ODT. The forward model simulates the physical
process from the current estimate fk. The vector g is obtained by gradient descent from the
data-fidelity term. Then, g is fed into the (trained) CNN projector to obtain zk. The next
estimate fk+1 is the sum of zk and fk weighted by α and (1 − α), respectively. Note that the
initial guess f0, which is obtained with a direct inversion method (Rytov model), is directly
fed into the (trained) CNN projector.
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Algorithm 1 Iterative RPGD
Input: f0: initial guess of the scattering potential, H: forward model, PS : projector, γ: step size,
ck: positive sequence, y: measurements, E: relative update, N: number of iterations
Output: final estimated scattering potential f̂
Initialize: α = 1, e = 104 , g = f0
1: k = 0
2: while e ≥ E or k ≤ N do
3: if k ≥ 1 then
4: g = fk − γHTHfk + γHTy . Gradient descent
5: end if
6: zk = PS(g) . Projection
7: if k ≥ 1 then
8: if ‖zk − fk‖2>ck‖zk−1 − fk−1‖2 then
9: α = ck‖zk−1 − fk−1‖2/‖zk − fk‖2 . Update relaxed parameter
10: end if
11: end if
12: fk+1 = (1 − α)fk + αzk . Update reconstruction
13: e = ‖fk+1 − fk‖2/‖fk‖2 . Calculate relative update
14: k← k + 1
15: end while

However, PGD is not ensured to converge when the operator PS is not a valid projector, the
condition of validity being PS ◦ PS(x) = PS(x), ∀x ∈ RN . We therefore consider the relaxed
PGD (RPGD) of [37], which is ensured to converge (see Theorem 3 of [37]). The iterative
reconstruction scheme is sketched in Algorithm 1. In Line 6, in particular, we need a projector
onto S. Inspired by recent works on learning approaches, our goal is to replace PS with a CNN
that is trained to act as a projector (see Fig. 2).

Fig. 2. One iteration of the RPGD for ODT. The forward model simulates the physical
process from the current estimate fk. The vector g is obtained by gradient descent from the
data-fidelity term. Then, g is fed into the (trained) CNN projector to obtain zk. The next
estimate fk+1 is the sum of zk and fk weighted by α and (1 − α), respectively. Note that the
initial guess f0, which is obtained with a direct inversion method (Rytov model), is directly
fed into the (trained) CNN projector.

4. Deep-learning-based projector for ODT

In this study, we replace Line 6 in Algorithm 1 by

PS(g) = CNN(PC(g)), (9)
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4. Deep-learning-based projector for ODT

In this study, we replace Line 6 in Algorithm 1 by

PS(g) = CNN(PC(g)), (9)

where CNN is trained to act as a projector and PC denotes a projection onto the convex set
C ⊂ RN that enforces physical constraints on the RI (e.g., non-positivity constraint).

The training data set consists of 2D objects placed randomly. We simulated the complex
measurements by using an accurate forward model that relies on the Lippmann-Schwinger model
[20]. The details of the simulation are described in Section 5.1.1.1.

4.1. Network architecture

We design a CNN based on the U-Net architecture [28,40]. The setup includes an external
skip connection between the input and the output so that the network acts as a residual net.
Furthermore, we double the number of channels in the encoder (left path) each time the depth of
the network increases (starting at 32, Fig. 3). We also replace the (3 ∗ 3) up-conv layer with a
(2 ∗ 2) transposed convolutional layer, and add a Leakly rectified linear unit (LeaklyReLu) [44]
after the last convolutional layer (see Fig. 3).

Fig. 3. Architecture of the network used for RI reconstruction. Each dark and light cube
corresponds to a multichannel feature map. The number of channels is shown at the top of
the cube. The x-z size is provided at the lower-left edge of the cube (example shown for
16×16 in the coarsest resolution). The arrows denote the different operations, and the size of
the corresponding parameter set is provided in the explanatory frame.

4.2. Training strategy

In our experiments, we adopt a training strategy inspired by [37]. The input of the CNN during
training time falls into three classes:

f̃q,1 = B(HLip(fq)) (10)

f̃q,2 = CNNθt−1 (f̃q,1) (11)
f̃q,3 = fq, (12)

where HLip denotes the Lippmann-Schwinger model, and B is shorthand for FBP [11]. The
learned parameters in the CNN after the tth epoch training by is denoted by θt. TheQ ground-truth
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images are indicated by {fq}q∈[1· · ·Q]. This strategy enhances the dataset as it introduces a variety
of perturbations. On the contrary, there is no perturbation in (12) so that it encourages the
network to mimic a projector.
The training process aims at minimizing the loss function

L(θ) =
M∑
m=1

Q∑
q=1
‖fq − CNN(f̃q,m)‖22 . (13)

The minimization of L proceeds using the Adam algorithm [45].
In practice, we train the network in three stages. In the first stage, we train it only with the

input data set {f̃q,1} obtained by (10). Then, in the second stage, we concatenate the data set
{f̃q,2} generated by (11) to {f̃q,1} and train the CNN with a total loss that integrates the two parts.
Finally, in the third stage, the whole data set {f̃q,1, f̃q,2, f̃q,3} is fed into the optimization.

5. Numerical experiments

In this section, we present experiments that validate our proposed method on 2D simulated
and experimental data. For the implementation, the training process is performed on a desktop
workstation (Titan X GPU, Ubuntu operating system) and implemented on PyTorch [46], while
the evaluation is implemented by MATLAB R2019a on another desktop computer (Intel Xeon
E5-1650 CPU, 3.5 GHz, 32 GB of RAM) using the GlobalBioIm library [47].
Parameter setting For each of the three stages, the number of epochs was set as T1 = 20,

T2 = 30, and T3 = 30. The initial learning rate was 10−4; it was optimally reduced to one tenth
of the current value at the 40th and 70th epoch. We set the batch size as 18 for the three stages
and did draw an equal number of samples from each dataset {f̃q,m}3m=1.
The parameters for the iterative RPGD were set as follows: the relaxed parameter α was

initialized with 1, and all members of the sequence {ck}Nk=1 were set to the constant value c which
was tuned manually for different scenarios. Furthermore, either the relative update E = 10−4
or the number of iterations N = 10 stopped the algorithm. We set C = {f ∈ RN : f ≤ 0} (i.e.,
non-positivity constraint), unless specified otherwise.
Method of comparisonWe quantitatively evaluated the quality of the reconstructed RI n̂ with

respect to the ground-truth n. To that end, we adopted the relative error (ERROR) and structural
similarity (SSIM) [48] defined as

ERROR(n, n̂) = ‖n − n̂‖2
‖n‖2 (14)

SSIM(n, n̂) = (2µnµn̂ + c1)(2σnσn̂ + c2)
(µ2n + µ2n̂ + c1)(σ2

n + σ
2
n̂ + c2)

, (15)

where µn, µn̂, σn, σn̂, and σnn̂ are the local means, standard deviations, and cross-covariance for
images n, n̂. Parameters c1 = 10−4 and c2 = 9 × 10−4 are the default regularization constants.
They avoid instabilities over image regions where the local mean or standard deviation is
vanishing.

We compare the results of our method with those of FBP, a Rytov-based method with TV
regularization (RytovTV), and ScaDec [39]. We also compare them with those of the direct
CNN which shares the same architecture as the network of our method, but is only trained with
the dataset in (10) (see Table 1). To solve the optimization-based method combined with TV
regularization, we adopted the forward-backward splitting approach [49]. All the parameters are
optimized to achieve the best relative error.
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5.1. Validation on simulated data

5.1.1. Training data composed of one disk

Simulation setupWe generated 1,116 images composed of one disk arbitrarily positioned in the
middle third of the horizontal direction and anywhere in the vertical direction. Each disk has a
radius ranging from 4λ to 7.5λ. The data were split into 1,080 images for training, 18 images
for validation, and 18 images for testing. The physical size of the image was set to (38λ × 38λ),
and was discretized on a (256 × 256) grid. We assumed that the background medium was oil
(RI nb = 1.525). The value of the RI variation δn ranged arbitrarily from (−0.135) to (−0.055),
component-wise.

Table 1. RI reconstructions.

Method Reference Algorithm Regularization

FBP [8,9] direct −

-b
as
ed

RytovTV [6] iterative TV

m
od

el

ScaDec [39] direct −
DirectCNN [28] direct −

ba
se
d

RytovCNN iterative CNN projector

CN
N
-

Table 2. ERROR of RI reconstructions in the presence of noise, for one disk.

20dB SNR 15dB SNR 10dB SNR

FBP 82.3·10−4 83.5·10−4 86.4·10−4
RytovTV 46.8·10−4 47.6·10−4 55.4·10−4
ScaDec 9.39·10−4 9.52·10−4 11.5·10−4

DirectCNN 7.83·10−4 8.82·10−4 15.4·10−4
RytovCNN 7.01·10−4 7.91·10−4 14.1·10−4

The plane waves had incident angles uniformly distributed between (−45o) to 45o, thus
simulating a missing-cone problem. The wavelength of the illumination was set to λ = 450nm.
We acquired P = 40 views on a detector line of length 97λ. In addition, to make the measurements
more realistic, we added white Gaussian noise w to the measurements y. The noise was added
such that the input SNR = 20dB, where SNR(y + w, y) = 20log10(‖y‖2/‖w‖2). All simulations
were implemented using the GlobalBioIm library [47].

Reconstruction of one circular disk We evaluated the stability of the methods over some
range of noise (10, 15, and 20 dB) in the context of limited-angle measurements. We summarize
in Table 2 and Table 3 the average ERROR and SSIM values over the whole testing dataset.
Notably, RytovTV dramatically underestimates the RI distribution and fails to reconstruct the
shape of the objects. Our method obtains the highest-quality reconstructions in terms of the actual
RI value and the shape of the objects. In most cases, it faithfully recovers the images with lower
ERROR and higher SSIM values compared to the other methods. All the deep-learning-based
methods did recover the samples successfully while the TV-regularized method did fail. Only for
the 10 dB case, ScaDec performed slightly better for the relative error. This can be explained
by the failure of the phase unwrapping on which the Rytov model relies, unlike ScaDec. The
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proposed method takes 10 seconds for 10 iterations, whereas the RytovTV takes 50 seconds for
80 iterations. Three samples of the reconstructed images are shown in Fig. 4.

Table 3. SSIM of RI reconstructions in the presence of noise, for one disk.

20dB SNR 15dB SNR 10dB SNR

FBP 0.9915 0.9912 0.9890

RytovTV 0.9927 0.9926 0.9922

ScaDec 0.9991 0.9990 0.9987

DirectCNN 0.9993 0.9993 0.9984

RytovCNN 0.9995 0.9994 0.9988

Fig. 4. Reconstructions of simulated data for one disk. Our method is RytovCNN. From
top to bottom, the SNR of the measurement is 20dB, 15dB, and 10dB. The corresponding
RI variation is (−0.088), (−0.060), and (−0.060), respectively. The ground-truth images are
presented in the last column.

Reconstruction of objects whose shape differ from the training dataWe further assessed
how the trained CNN performs when the testing set does not match the training set. We
consider three examples with several shapes (see Fig. 5): a square, a cell-like sample, and two
non-overlapping disks with independent radius and RI variation. In this case, the direct CNN
and ScaDec both fail to recover the objects. However, our method leads to reconstructions with
more accurate shapes and RI values because it incorporates a feedback mechanism that ensures
consistency with the measurements. Furthermore, it performs slightly better than RytovTV.
These illustrative examples suggest that our proposed method can perform well despite being
trained on single disks. We emphasize that it may not perform well for all types of data, but it
shows that the reconstructions may still be satisfactory for some testing data that does not match
the training set.
In addition, we generated 18 other images containing two disks with arbitrary RI variation

ranging from (−0.067) to (−0.033) (see Fig. 6). The rotation angle for this data was chosen
between 0o, 22.5o, 45o, and 90o. In the 0o view, the two circles were placed vertically, while in the
90o view they were aligned horizontally. In this case, SacDec performs less well, at the possible
exception of the 10dB case (see Tables 4 and 5). Similarly, RytovTV leads to reconstructions
with inaccurate shapes and visible artifacts in the background. On the contrary, both the direct
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Fig. 5. Reconstructions of simulated data for several shapes. The SNR of the measurement is
20dB. From top to bottom, the object is a square, a cell-like sample, and two non-overlapping
disks with independent radius and RI variation. The corresponding RI variation is (−0.046),
(−0.049), and (−0.072), respectively. The ground-truth images are presented in the last
column.

CNN and our method produce remarkably well recovered images. Moreover, our iterative scheme
even offers a slight increase in the quality of the reconstruction. These results suggest that the
proposed scheme is robust to the mismatch experienced in training on a single disk and testing
on two.

Fig. 6. Reconstructions of simulated data for two disks. Our method is RytovCNN. From
top to bottom, the SNR of the measurement is 20dB, 15dB, and 10dB. The corresponding
RI variation is (−0.052), (−0.040), and (−0.061), respectively. The ground-truth images are
presented in the last column.
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Table 4. ERROR of RI reconstructions in the presence of noise, for two disks.

20dB SNR 15dB SNR 10dB SNR

FBP 6.23·10−3 6.57·10−3 6.85·10−3
RytovTV 3.58·10−3 3.93·10−3 4.36·10−3
ScaDeca 2.81·10−3 2.82·10−3 2.82·10−3

DirectCNNa 2.67·10−3 2.85·10−3 3.11·10−3
RytovCNNa 2.63·10−3 2.81·10−3 3.02·10−3

adenotes the CNN is trained on data composed of one disk.

5.1.2. Training data composed of complex objects

Simulation setup We generated 1,116 images composed of 2D cell-like samples with two
embedded smaller ellipses (see Fig. 7). The radius of the larger part ranged from 10λ to 12λ,
while that of smaller ellipses ranged from 1.5λ to 2.5λ. The ellipses are arbitrarily located. The
boundary of each large cell-like sample is randomly generated. Each object has its own RI
variation ranging from (−0.1) to 0.2. In this case, we set C = {f ∈ RN}, and the SNR of the
measurements is 20dB.

Fig. 7. Sixteen examples of the images randomly generated to train the CNN projector to
reconstruct complex objects.

Table 5. SSIM of RI reconstructions in the presence of noise, for two disks.

20dB SNR 15dB SNR 10dB SNR

FBP 0.9917 0.9911 0.9896

RytovTV 0.9928 0.9928 0.9927
ScaDeca 0.9923 0.9923 0.9923

DirectCNNa 0.9932 0.9928 0.9921

RytovCNNa 0.9933 0.9930 0.9924

adenotes the CNN is trained on data composed of one disk.

Reconstruction of complex objectsWe give in Fig. 8 three examples of reconstructions. The
average ERROR and SSIM over the whole testing data is also shown in Table 6. Notably, all the
CNN-based approaches performed better than RytovTV. Moreover, our method (RytovCNN)
still improves the quality of the reconstruction compared to ScaDec or direct CNN. Note that the
columns BPMTV and BPMCNN will be discussed in Section 5.3.

5.2. Validation on experimental data

Experimental setup The experimental data were 2D cross sections of a 3D specimen with no
variation along the y axis. The objects are two non-overlapping fibers placed in the medium



Research Article Vol. 28, No. 3 / 3 February 2020 / Optics Express 3916

Fig. 8. Reconstructions of complex simulated data. The SNR of the measurement is 20dB.
The corresponding RI variation is 0.086, 0.059, and 0.053, respectively. The ground-truth
images are presented in the last column.

vertically, diagonally, and horizontally. The image size was (1024 × 1024). The reconstructed
image size was cropped from the center to (512 × 512), which corresponds to (97λ × 97λ). The
fibers had an expected RI variation of (−0.055) and a diameter equal to 9 µm. In total, P = 160
views were collected with the illumination of a laser diode (512 measurements per view). The
other physical parameters replicated those of the simulation.

Table 6. ERROR and SSIM of RI reconstructions in the presence of 20 dB noise, for complex
objects. RytovCNN outperforms the other methods (the BPM-based methods are not considered).

FBP RytovTV ScaDec DirectCNN RytovCNN BPMTV BPMCNN

ERROR 7.1·10−3 4.1·10−3 1.9·10−3 1.8·10−3 1.6·10−3 2.7·10−3 1.3·10−3

SSIM 0.99 0.9906 0.9978 0.9969 0.9983 0.9944 0.9987

Reconstructions We trained the CNN over one disk. Since the experimental data have a
size larger than the simulated data, we cropped the image before to feed it into the CNN and
zero-padded the output correspondingly. The performance of the reconstruction with different
methods is shown in Fig. 9. ScaDec produces blocky artifacts in all configurations. In addition,
the direct CNN introduces deformation and underestimated RI. It fails spectacularly for the
90o case. RytovTV produces piecewise-constant structures, which suits well the dataset. Yet,
artifacts exist and induce elongated shapes, which points to a weakness of this method toward the
missing-cone problem. On the contrary, the proposed method generally obtains satisfying results
in terms of RI and shape. Since the end-to-end approaches (ScaDec and DirectCNN) do not
use the information from the measurement iteratively, they are more vulnerable to a potenial
mismatch between the synthetic training data and the real data. By contrast, our method and
RytovTV are more robust because of the iterative information feedback from the measurement.
Similar findings have been observed in [37]. Note that the most difficult case is 90o, because the
missing-cone problem is acute for this configuration. Moreover, the considered forward model is
least valid since multiple-scattering events occur in this setting.
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Fig. 9. Reconstructions of experimental data. From first to third row, the line that joins
the center of the fibers is angled by 0o, 45o, and 90o with respect to the vertical dimension,
respectively. The variation of the fibers is (−0.055).

5.3. Nonlinear forward model with deep-learning projector

We combine the nonlinear forward model BPM [14,15] with the CNN based on the Rytov
model and trained in the previous section. The idea is to assess the effect of our projector.
Here, we present reconstructions of three synthetic data samples and one real data sample. The
reconstructions of synthetic data were obtained with the CNN trained with complex objects in
Section 5.1.2 with the Rytov model. Similarly, the reconstruction of real data was obtained with
the CNN trained with single disks.
As shown in Fig. 10, RytovTV fails to restore the objects, while the TV-regularized BPM

(BPMTV) is able to recover the objects well. All the CNN-based methods perform better
for recovering the shapes and RI values. The CNN projector combined with the BPM model
(BPMCNN) outperforms all the other methods for the whole testing of complex objects, as shown
in Table 6.
Additionally, as shown in Fig. 11, the BPM model is able to reconstruct the samples with

impressive improvement over the RytovCNN. These comparisons show that our framework is
capable of reconstructing the samples even if the CNN projector was trained with the strategy
described in Section 4.2 (i.e., without knowledge of the BPM model).
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Fig. 10. Reconstructions with a nonlinear forward model applied to synthetic data. From
top to bottom, the value of the RI variation is 0.088, 0.171, and 0.078, respectively. The
ground-truth images are presented in the last column. The training was done with simpler
objects characterized by two embedded inclusions only.

Fig. 11. Reconstructions with a nonlinear forward model applied to experimental data. The
value of the RI variation of the fibers is (−0.055). The training was done with one disks.
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6. Conclusion

To reconstruct data governed by the Helmholtz equation, we have proposed a general iterative
framework that takes advantage of two worlds. On one hand, a deep-learning-based projector
encodes priors learnt beforehand. On the other hand, the inversion method is based on a physical
model and ensures consistency with the measurements. We have validated our approach in a
challenging setting that combines the difficulties of the missing-cone problem with a nonlinear
physical model. While our framework is trained on a simulated dataset that contains one object
only, it remains applicable to experimental data featuring multiple objects in a variety of optical
configurations, which is remarkable. In addition, we also validated the proposed approach onmore
complex object. Our numerical experiments have shown that the proposed method outperforms
the conventional reconstruction of refractive indices in an optical diffraction tomography context,
as well as recent deep-learning-based methods. Due to our combined approach (projector and
physical model), we could mitigate the missing-cone problem. Furthermore, we have assessed
the ability of our projector to work with a more advanced nonlinear forward model. The
reconstructions were significantly improved upon those of the linear model.
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