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Compressive Sampling Using Annihilating
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Abstract— While the recent theory of compressed sensing pro-
vides an opportunity to overcome the Nyquist limit in recovering
sparse signals, a solution approach usually takes the form of
an inverse problem of an unknown signal, which is crucially
dependent on specific signal representation. In this paper, we
propose a drastically different two-step Fourier compressive
sampling framework in a continuous domain that can be imple-
mented via measurement domain interpolation, after which signal
reconstruction can be done using classical analytic reconstruction
methods. The main idea originates from the fundamental duality
between the sparsity in the primary space and the low-rankness
of a structured matrix in the spectral domain, showing that a
low-rank interpolator in the spectral domain can enjoy all of
the benefits of sparse recovery with performance guarantees.
Most notably, the proposed low-rank interpolation approach can
be regarded as a generalization of recent spectral compressed
sensing to recover large classes of finite rate of innovations (FRI)
signals at a near-optimal sampling rate. Moreover, for the case of
cardinal representation, we can show that the proposed low-rank
interpolation scheme will benefit from inherent regularization
and an optimal incoherence parameter. Using a powerful dual
certificate and the golfing scheme, we show that the new frame-
work still achieves a near-optimal sampling rate for a general
class of FRI signal recovery, while the sampling rate can be
further reduced for a class of cardinal splines. Numerical results
using various types of FRI signals confirm that the proposed
low-rank interpolation approach offers significantly better phase
transitions than conventional compressive sampling approaches.

Index Terms— Compressed sensing, signals of finite rate
of innovations, spectral compressed sensing, low rank matrix
completion, dual certificates, golfing scheme.

I. INTRODUCTION

HE compressed sensing or compressive sampling (CS)
theory [1]-[3] refers to the accurate recovery of unknown
sparse signals from underdetermined linear measurements.
In particular, the Fourier CS problem, which recovers
unknown signals from sub-sampled Fourier measurements,
has many important applications in imaging applications,
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such as magnetic resonance imaging (MRI), X-ray computed
tomography (CT), optics, and others. Moreover, this
problem is closely related to the classical harmonic retrieval
problem that computes the amplitudes and frequencies at
the off-the-grid locations of a superposition of complex
sinusoids from consecutive or  bunched corresponding
Fourier samples. Harmonic retrieval can be solved by various
methods, including Prony’s method [4] and a matrix pencil
algorithm [5]. These methods were proven to succeed at a
minimal sample rate in a noiseless case, as they satisfy an
algebraic condition called the full spark (or full Kruskal rank)
condition [6], which guarantees the unique identification of
an unknown signal. Typically, when operating at the critical
sample rate, these methods are not robust to perturbations in
the measurements due to the large condition numbers involved.

Accordingly, to facilitate the robust reconstruction of
off-the-grid spectral components, CS algorithms from non-
consecutively sub-sampled Fourier measurements are required.
This scheme is known as spectral compressed sensing,
which is also known as compressed sensing off the
grid when the underlying signal is composed of Diracs.
Indeed, this has been developed with a close link to
recent super-resolution researches [7]-[10]. For example,
Candes and Fernandez-Granda [8], [11] showed that if the
minimum distance of the Diracs exceeds 2/f,, where f,
denotes the cut-off frequency of the measured spectrum, then
a simple convex optimization can solve the locations of the
Diracs. Under the same minimum distance condition, Tang
in two studies [9], [12] proposed an atomic norm minimiza-
tion approach for the recovery of Diracs correspondingly
from random spatial and Fourier samples. Unlike these direct
signal recovery methods, Chen and Chi [10] proposed a
two-step approach consisting of interpolation followed by a
matrix pencil algorithm. In addition, they provided perfor-
mance guarantees at near-optimal levels of sample complexity
(up to a logarithmic factor). One of the main limitations
of these spectral compressed sensing approaches is, how-
ever, that the unknown signal is restricted to a stream of
Diracs. The approach by Chen and Chi [10] is indeed a
special case of the proposed approach, but they did not
realize its potential when used to recover a much wider class
of signals.

Note that the stream of Diracs is a special instance

of a signal model of signals with a finite rate of
innovation (FRI) [13]-[15]. Originally proposed by
Vetterli et al. [13], the class of FRI signals includes

a stream of Diracs, a stream of differentiated Diracs,
non-uniform splines, and piecewise smooth polynomials.
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Vetterli et al. [13]-[15] proposed time-domain sampling
schemes with these FRI signals that operate at the rate
of innovation with a provable algebraic guarantee in a
noise-free scenario. Their reconstruction scheme estimates an
annihilating filter that cancels the Fourier series coefficients
of an FRI signal at consecutive low frequencies. However,
because the scheme relies on data acquisition in the time
domain, the equivalent Fourier domain measurements are
restricted to a bunched sampling pattern, similar to classical
harmonic retrieval problems.

Therefore, one of the main aims of this paper is to generalize
the scheme by Vetterli et al. [13]-[15] to address Fourier CS
problems that recover a general class of FRI signals from
irregularly subsampled Fourier measurements. Notably, we
prove that the only required change is an additional Fourier
domain interpolation step that estimates missing Fourier mea-
surements. More specifically, for the general class FRI signals
introduced in earlier works [13]-[15], we show that there
always exists a low-rank Hankel structured matrix associated
with the corresponding annihilating filter. Accordingly, their
missing spectral elements can be interpolated using a low-rank
Hankel matrix completion algorithm. Once a set of Fourier
measurements at consecutive frequencies is interpolated,
an FRI signal can be reconstructed using conventional meth-
ods, including Prony’s method and matrix pencil algorithms,
as in earlier studies [13]-[15]. Most notably, we show that the
proposed Fourier CS of FRI signals operates at a near-optimal
rate (up to a logarithmic factor) with provable performance
guarantees. Additionally, owing to the inherent redundancies
introduced by the CS sampling scheme, the subsequent step
of retrieving an FRI signal becomes much more stable.

While a similar low-rank Hankel matrix completion
approach was used by Chen and Chi [10], there are sev-
eral important differences. First, low-rankness of a Hankel
matrix in earlier work [10] was found based on standard
Vandermonde decomposition, which is true only when the
underlying FRI signal is a stream of Diracs. Accordingly,
for differentiated Diracs, the theoretical tools in that study
cannot be used. Second, when the underlying signal can be
converted to a stream of Diracs or differentiated Diracs by
applying a linear transform which acts as a diagonal operator
(i.e., element-wise multiplication) in the Fourier domain, we
can still construct a low-rank Hankel matrix from the weighted
Fourier measurements, whose weights are determined by the
spectrum of the linear operator. For example, a total vari-
ation (TV) sparse signal is a stream of Diracs after the
differentiation, and piecewise smooth polynomials become
a stream of differentiated Diracs with the application of a
differential operator. Finally, the advantage of the proposed
approach becomes more evident when we model the unknown
signal using cardinal L-splines [16]. In cardinal L-splines,
discontinuities occur only on an integer grid, which is a reason-
able model to acquire signals with a high but finite resolution.
In such a case, we can show that discretization using cardinal
splines makes the reconstruction significantly more stable in
spite of the existence of noise in the measurements, and the
logarithmic factor as well as the incoherence parameter for the
performance guarantees can be improved further.
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Fig. 1. Comparison with various sampling schemes: (a) generalized
sampling [17], [18]; here, a continuous input signal is filtered through an
acquisition device, after which uniform sampling is performed. The goal of
sampling is to impose a consistency condition such that if the reconstructed
signal is used as an input to the acquisition device, it can generate the same
discrete sequence {c1}. This can be accomplished using a digital correction
filter g. (b) Proposed sampling scheme: here, the CS step is replaced by a
discrete low-rank interpolator, and the final reconstruction is done using the
reconstruction filter from fully sampled data.

It is important to note that the proposed low-rank interpo-
lation approach is different from classical compressed sensing
approaches which regard the sampling problem as an inverse
problem and whose focus is directly to recover the unknown
signal. Rather, the proposed approach is more closely related to
the classical sampling theory, where the signal sampling step
is decoupled from a signal recovery algorithm. For example,
in the sampling theory for signals in shift-invariant spaces
[17], [18], the nature of the signal sampling can be fully
accounted for using a digital correction filter, after which
signal recovery is performed by convolution with a reconstruc-
tion filter (see Fig. 1(a)). Similarly, by introducing a low-rank
interpolator, the proposed scheme in Fig. 1(b) fully decouples
signal recovery from the sampling step as a separate layer
that can be optimized independently. This occurs because the
same low-rank interpolator will successfully complete missing
measurements regardless of whether the unknown signal is
either a stream of Diracs or a stream of differentiated Diracs.
In the subsequent step, analytic reconstruction methods such
as Prony’s method and matrix pencil algorithms can identify
the signal model, as in earlier studies [13]-[15].

The proposed two-layer approach composed of Fourier
domain interpolation and analytic reconstruction is very
useful in real-world applications, as the low-rank interpolator
can be added as a form of digital correction filter for
existing systems, where the second step is already
implemented. Moreover, in many biomedical imaging
problems such as magnetic resonance imaging (MRI) or
X-ray computed tomography (CT), accurate interpolation to
fully sampled Fourier data provides the important advantage
of utilizing a fully established mathematical theory of analytic
reconstruction. In addition, classical preprocessing techniques
for artifact removal were developed with the assumption
of fully sampled measurements; hence, these steps can be
readily combined with the proposed low-rank interpolation
approaches. The superior advantages of the proposed scheme
have been demonstrated in various biomedical imaging and
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image processing applications, such as compressed sensing
MRI [19], [20], MR artifact correction [21], [22], image
inpainting [23], super-resolution microscopy [24], image
denoising [25], and others, clearly confirming the practicality
of the new theory.

Nonetheless, it is remarkable that the proposed two-layer
approach using low-rank interpolation achieves a near-optimal
sample rate while universally applying to different signal
models of the same order (e.g., streams of Diracs and streams
of differentiated Diracs). Moreover, it may appear mysterious
that an explicit form of the minimum separation distance
as required in Candes and Fernandez-Granda [8], [11] and
Tang et al. [9], [12] is not needed for the performance
guarantee. However, the proposed method is not free of limi-
tations. Specifically, we show that the incoherence parameter
in our performance guarantees is dependent upon the type
of unknown signals and on the minimum separation between
successive spikes. The similarity and differences of our results
from the existing theory [8], [9], [11], [12] and the origin of
the differences will also be discussed.

This paper is structured as follows. Section II initially dis-
cusses the main results that relate to an annihilating filter and a
low-rank Hankel structured matrix, providing the performance
guarantee of low-rank structured matrix completion, which
will be used throughout the paper. Section III then discusses
the proposed low-rank interpolation theory for the recovery
of FRI signals, which is followed by low-rank interpolation
for cardinal L-splines in Section IV. Section V explains
the algorithmic implementation. Numerical results are then
provided in Section VI, which is followed by the conclusion
in Section VII.

II. MAIN RESULTS
A. Notations

A Hankel structured matrix generated from an n-
dimensional vector x = [x[0],---,x[n — 1]]7 € C" has the
following structure:

x[0] x[1] x[d —1]
x[1] x[2] x[d]
H(x) = . : )

x[n.—d] [n—c.z’—}—l] x[n.—l]

c (C(n—d-l—l)xd

where d is called a matrix pencil parameter. We denote the
space of this type of Hankel structure matrices as H(n, d).
An n x d wrap-around Hankel matrix generated from an n-

dimensional vector u = [u[0], - - - , u[n —1]]7 € C" is defined
as:
B u[0] ul[l1] uld — 117
ul1] ul2] uld]
. (n) = u[n.—d] u[n—.d—i—l] u[n.— 1]
uln —d+1] uln—d+2] u[0]
u[n‘—l] u[b] u[d.—2]_

e ¢ (1)

Note that n x d wrap-around Hankel matrix can be considered
as a Hankel matrix of (d —1)-element augumented vector from
u € C" with the periodic boundary expansion:

T

i=|ul u[0]ul] --- uld—-2]| ecCrtd-1

(d-1)

We denote the space of this type of wrap-around Hankel
structure matrices as H.(n, d).

B. Annihilating Filter-Based Low-Rank Hankel Matrix

The Fourier CS problem of our interest is to recover the
unknown signal x(¢) from the Fourier measurement:

2(f) = Flx(0)} = / x()e 2 gz,

Without loss of generality, we assume that the support of x (¢)
is [0, 1]. Then, the sampled Fourier data at the Nyquist rate is
defined by

We also define a length (r 4 1)-annihilating filter ﬁ[k] for x[k]
that satisfies

-
(h %)kl = > hlll&lk—1]=0, Vk. )
=0
The existence of the finite length annihilating filter has been
extensively studied for FRI signals [13]-[15]. This will be
discussed in more detail lgter.

Suppose that the filter A[k] is the minimum length annihi-
lating filter. Then, for any k; > 1 tap filter a[k], it is easy to
see that the following filter with d = r + k; taps is also an
annihilating filter for x[k]:

-

helk]l = (a x h)[k] = Zha[l]i[k —11=0, Vk, 3

=0
because /g % £ = a % h % £ = 0. The matrix representation
of (3) is given by

E®)h, = 0
where ﬁa denotes a vector that reverses the order of the
elements in

A~ A~ ~ T
o = [Aal0L, -+ hald = 1], )
and
1] £[0] #d — 2]
x[0] x[1] x[d — 1]
R[] z[2] x[d]
TR = : : :
fn—dl  En-d+1] i —1]
x[n—d+1] x[n—d+2] x[n]
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Accordingly, by choosing n such that n —d + 1 > r
and defining an n-dimensional vector composed of sampled
Fourier data at the Nyquist rate as:

& =[%(0] - 2n —11]" e, )
we can construct the following matrix equation:

A (%)h, =0,

where the Hankel structure matrix 7 (X) € H(n,d) is con-
structed as

x[0] x[1] x[d — 1]
£[1] x[2] x[d]
H(X) = . : . (6)
x[n—d] x[n—d+1] x[n—1]

Then, we can show the following key result:

Theorem 1: Let r 4+ 1 denote the minimum size of annihilat-
ing filters that annihilates sampled Fourier data X[k]. Assume
that min{n—d+1, d} > r. Then, for a given Hankel structured
matrix 7 (X) € H(n, d) constructed in (6), we have

RANKIZ (X) = r, @)
where RANK(+) denotes a matrix rank.
Proof: See Appendix B. (]

C. Performance Guarantees for Structured
Matrix Completion

Let Q be a multi-set consisting of random indices from
{0, ...,n—1} such that |Q| = m < n. While the standard CS
approaches directly estimate x(7) from X[k], k € Q, here we
propose a two-step approach by exploiting Theorem 1. More
specifically, we first interpolate x[k] for all k € {0, ...,n — 1}
from the sparse Fourier samples, and the second step
then applies the existing spectral estimation methods to
estimate x(t) as done in [13]-[15]. Thanks to the low-
rankness of the associated Hankel matrix, the first step can be
implemented using the following low-rank matrix completion:

minimize RANKJZ (g)
geCn

subject to Po(g) = Po(X), (®)

where Pq is the projection operator on the sampling
location Q. Therefore, the remaining question is to verify
whether the low-rank matrix completion approach (8) does
not compromise any optimality compared to the standard
Fourier CS, which is the main topic in this section.

The low-rank matrix completion problem in (8) is non-
convex, which is difficult to analyze. Therefore, to provide
a performance guarantee, we resort to its convex relaxation
using the nuclear norm. Chen and Chi [10] provided the
first performance guarantee for robust spectral compressed
sensing via structured matrix completion by nuclear norm
minimization and extended the result to general low-rank
Hankel/Toeplitz matrix completion [10, Th. 4]. However,
parts of their proof (e.g., [10, Appendix H]) critically depend
on the special structure given in the standard Vandermonde
decomposition. Furthermore, they also used the standard
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incoherence condition, which is neither assumed nor applied
by their incoherence condition [10, eq. (27)]. Therefore, unlike
their claim, the main results in [10], in its current forms,
apply only to the spectral compressed sensing. Here, we
elaborate on their results so that the performance guarantees
apply to the general structured low-rank matrix completion
problems which will be described in subsequent sections.
Recall that the notion of the incoherence plays a crucial
role in matrix completion and structured matrix completion.
We recall the definitions using our notations. Suppose that
M e C"*" jis a rank-r matrix whose SVD is UXV*
with U € C"" ¥ € C"™ and V e C"*7, respectively.
M is said to satisfy the standard incoherence condition with

parameter u if
ur
jmax [|Uve ], <\ Jo-

ur
max [V¥e;], < Vo

where e; denotes the appropriate size standard coordinate
vector with 1 on the i-th elements and zeros elsewhere.

To deal with two types of Hankel matrices simultaneously,
we define a linear lifting operator £ : C" — C">"2 that
lifts a vector x € C" to a structured matrix L£(x) € C"*™
in a higher dimensional space. For example, the dimension of
L(x) € CM*"2 js given as n] = n —d + 1 and np = d for
a lifting to a Hankel matrix in H(n, d), whereas n; = n and
ny = d for a lifting to a wrap-around Hankel matrix H,(n, d).
A linear lifting operator is regarded as a synthesis operator
with respect to basis {Ag};_,, Ay € C"'*"2:

©)

L) =D Axler,x),
k=1

where the specific form of the basis for the case of {Ay} for
H(n,d) and H.(n,d) will be explained in Appendix C.

Then, the completion of a low rank structured matrix £(x)
from the observation of its partial entries can be done by
minimizing the nuclear norm under the measurement fidelity
constraint as follows:

minimize [|£(g)ll,
geCn

subject to Po(g) = Po(x). (10)

where || - ||« denotes the matrix nuclear norm. Then, we have
the following main result.

Theorem 2: Let Q = {j1, ..., jm} be a multi-set consisting
of random indices where ji’s are i.i.d. following the uniform
distribution on {0, ...,n — 1}. Suppose L correspond to one
of the structured matrices in H(n,d) and H.(n, d). Suppose,
furthermore, that L(X) is of rank-r and satisfies the standard
incoherence condition in (9) with parameter u. Then there
exists an absolute constant c1 such that X is the unique
minimizer to (10) with probability 1 — 1/n?, provided

(1)

where oo = 2 if each images of L has the wrap-around
property; o = 4, otherwise; and cg := max{n/ni,n/n>}.
Proof: See Appendix E. d

m > ciucsrlog®n,
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Note that Theorem 2 provides a generalized version of
performance guarantee compared to the previous work [10].
Specifically, Theorem 2 holds for other structured matrices,
if the associated basis matrix {Ay} satisfies the specific con-
dition described in detail in Eq. (A.15). In addition, for the
case of signals with wrap-around Hankel matrix (which will
be explained later), the log exponentional factor o in (11)
becomes 2, which reduces the sampling rate. This sampling
rate reduction is novel and was not observed in the previous
work [10].

Next, we consider the recovery of x from its partial entries
with noise. Let y denote a corrupted version of x. The
unknown structured matrix £(X) can be estimated via

minimize || £(g)]l,
gE(C”

subject to || Pa(g —y)ll, <. (12)

Then, we have the following stability guarantee:

Theorem 3: Suppose the noisy data 'y € C" satisfies
|Po(y —X)|l, < 0 and x € C" is the noiseless data. Under
the hypotheses of Theorem 2, there exists an absolute constant
c1, ¢2 such that with probability 1—1/n?, the solution g to (12)
satisfies

I£(x) — L(g)llp < con?s,

provided that (11) is satisfied with cy.

Proof of Theorem 3: Theorem 2 extends to the noisy case
similarly to the previous work [10]. We only need to replace
[10, Lemma 1] by our Lemma 20. U

Note that Theorem 3 provides an improved performance
guarantee with significantly smaller noise amplification factor,
compared to n® dependent noisy amplification factor in the
previous work [10].

III. GUARANTEED RECONSTRUCTION OF FRI SIGNALS

The explicit derivation of the minimum length finite length
annihilating filter was one of the most important contributions
of the sampling theory of FRI signals [13]-[15]. Therefore, by
combing the results in the previous section, we can provide
performance guarantees for the recovery of FRI signals from
partial Fourier measurements.

A. Spectral Compressed Sensing: Recovery
of Stream of Diracs

Consider the periodic stream of Diracs described by the
superposition of r impulses

r—1
x(t)= a;o(t—1;) t; €[0,1]. (13)
j=0
Then, the discrete Fourier data are given by
r—1 )
ik] = Zaje_’z”k’f. (14)
j=0

As mentioned before, the spectral compressed sensing by Chen
and Chi [10] or Tang et al. [9] correspond to this case,

in which they are interested in recovering (13) from a
subsampled spectral measurements.

One of the important contributions of this section is to
show that the spectral compressed sensing can be equivalently
explained using annihilating filter-based low-rank Hankel
matrix. Specifically, for the stream of Diracs, the minimum
length annihilating filter ﬁ[k] has the following z-transform
representation [13]:

r r—1
hz)y=D hlllz™' =] —e iz h, (15)
1=0 j=0
because

k
(h+3)k] = D hlllE[k — 1]
=0
ror—1

= ZZajfl[l]ul;fl

=0 j=0
r—1 r

= a (Zh[p]u;l)u’; =0 (16)
j=0 =0

ﬁ(uj)

where u; = e~27'i [13]-[15]. Accordingly, the filter length
is r + 1, which is low ranked if min{n —d 4+ 1,d} > r.

Therefore, by utilizing Theorem 1 and Theorem 2, we can
provide the performance guarantee of the following nuclear
norm minimization to estimate the Fourier samples:

min [.727(g) |
ge(C”
subject to Po(g) = Po(X)

where J7(g) € H(n, d).

Theorem 4: For a given stream of Diracs in Eg. (13), X
denotes the noiseless discrete Fourier data in (5). Suppose,
furthermore, d is given by minfn — d + 1,d} > r. Let
Q = {j1,..., jm} is a multi-set consisting of random indices
where ji’'s are i.i.d. following the uniform distribution on
{0, ...,n—1}. Then, there exists an absolute constant ¢ such
that X is the unique minimizer to (17) with probability 1—1/n?,
provided

a7

m > cl,ucsrlog“n, (18)

where ¢y ;= max{n/(n —d + 1), n/d}.

Proof: This is a simple consequence of Theorem 1
and Theorem 2, because the minimum annihilating filter size
from (15) is r + 1. O

This result appears identical to that of Chen and Chi [10].
However, they explicitly utilized the standard Vandermonde
decomposition. On the contrary, the annihilating filter-based
construction of low-rank Hankel matrix is more general that
can cover all FRI signal models as will be shown later.

For the noisy measurement, we interpolate the missing
Fourier data using the following low-rank matrix completion:

min - {|.72°(g) [«
gE(C)l

subject to | Pa(g) — Pa(¥)I <o 19)
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where ¥ is the noisy Fourier data. Then, Theorem 3 informs
us that we can improve upon the results by Chen and Chi [10]
(from n3 to n?):

Theorem 5: Suppose that the noisy Fourier data § satisfies
|| Po(y — X) H2 < 0, where X denotes the noiseless discrete
Fourier data in (5). Under the hypotheses of Theorem 4, there
exists an absolute constant c1,cy such that with probability
1 — 1/n?, the solution g to (19) satisfies

|7 &) — A (®)||p < can?s,
provided that (18) is satisfied with cy.

B. Stream of Differentiated Diracs

Another important class of FRI signal is a stream of
differentiated Diracs:

r—11j—1

x()=> > aj V-1,

j=0 I=0

(20)

where §() denotes the I-th derivative of Diracs in the distrib-
utions sense. Thus, its Fourier transform is given by

r—1 lj—l
() =D ajui2nf) e 2/l 1)
j=0 1=0
whose discrete samples are given by
r—11;—1 '
Rk =2k = D> aj (2xk) e 27 (22)

j=0 1=0

Then, there exists an associated minimum length annihilating
filter whose z-transform is given by:

r—1
h@) =[]0 —ujz7Hb (23)
j=0

where u; = e~i27tj [13]. Therefore, we can provide the
following performance guarantees:

Theorem 6: For a given stream of differentiated Diracs in
Eq. (20), X denotes the noiseless discrete Fourier data in (5).
Suppose, furthermore, d is given by min{n —d + 1,d} >
Z;;}) lj. Let Q = {j1,..., jm} be a multi-set consisting of
random indices where ji’s are i.i.d. following the uniform
distribution on {0, ..., n — 1}. Then, there exists an absolute
constant ¢1 such that X is the unique minimizer to (17) with
probability 1 — 1/n?, provided

r—1
m > cpucs ZI]- 10g4n, 24)
j=0

where ¢y ;= max{n/(n —d + 1), n/d}.

Proof: This is a simple consequence of Theorem 1
and Theorem 2, because the minimum annihilating filter size
from (23) is (21) + 1. O

Theorem 7: Suppose the noisy Fourier data § satisfies
H Po(y — X) H2 < 0, where X denotes the noiseless discrete
Fourier data in (5). Under the hypotheses of Theorem 6,
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there exists an absolute constant ci,c> such that with
probability 1 — 1/n?, the solution g to (19) satisfies

provided that (24) is satisfied with cy.

C. Non-Uniform Splines

Note that signals may not be sparse in the image domain,
but can be sparsified in a transform domain. Our goal is to find
a generalized framework, whose sampling rate can be reduced
down to the transform domain sparsity level. Specifically, the
signal x of our interest is a non-uniform spline that can be
represented by:

Lx=w (25)

where L denotes a constant coefficient linear differential
equation that is often called the continuous domain whitening
operator in [26], [27]:

L:=bgoX +bx_105 1+ ...+ b16+bo (26)
and w is a continuous sparse innovation:
r—1
w(r) = Zajé(t —1). (27)
j=0

For example, if the underlying signal is piecewise constant, we
can set L as the first differentiation. In this case, x corresponds
to the total variation signal model. Then, by taking the Fourier
transform of (25), we have

r—1
2= 1NHR) =D aje (28)
Jj=0

where
I(f)y=bg @2z )X + bg_1G2x ) +.. .+ b1G27f) + by

Accordingly, the same filter h{n] whose z-transform is
given by (15) can annihilate the discrete samples of the
weighted spectrum Z(f) = [(f)Z(f), and the Hankel matrix
H(z2) € H(n,d) from the weighted spectrum Z(f) satisfies
the following rank condition:

RANKS(Z) = r.

Thanks to the low-rankness, the missing Fourier data can be
interpolated using the following matrix completion problem:

(Py) min [|727(g)|«
ge(C”

subject to P (g) = Po do X), (29)
or, for noisy Fourier measurements ¥,
(P,) min [l72(g)ll
ge(C”
subject to || Pa(g) — Pa @9 <6,  (30)

where ® denotes the Hadamard product, and 1 and % denotes
the vectors composed of full samples of i [k] and X[k], respec-
tively. After solving (P,), the missing spectral data X[k] can
be obtained by dividing by the weight, i.e. x[k] = g[k] /i [k]
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assuming that J] [k] # 0, where g[k] is the estimated Fourier
data using (P,). As for the sample x[k] at the spectral null of
the filter [[k], the corresponding elements should be included
as measurements.

Now, we can provide the following performance guarantee:

Theorem 8: For a given non-uniform splines in Eq. (25), X
denotes the noiseless discrete Fourier data in (5). Suppose,
furthermore, d is given by minfn — d + 1,d} > r and
Q=1{j1,..., jm} be a multi-set consisting of random indices
where ji's are ii.d. following the uniform distribution on
{0, ...,n—1}. Then, there exists an absolute constant ¢ such
that X is the unique minimizer to (29) with probability 1—1/n?,
provided

m > cl,ucsrlog“n, 31

where ¢y ;= max{n/(n —d + 1), n/d}.

Theorem 9: Suppose that the noisy Fourier data § satis-
fies HPQ(i@}A'—iG)i)H
less discrete Fourier data in (5). Under the hypotheses of

Theorem 8, there exists an absolute constant ci,cy such that
with probability 1 — 1/n?, the solution g to (30) satisfies

H%(i O%) — #(2) HF < cn?s,

< 0, where X denotes the noise-

provided that (31) is satisfied with cy.

D. Piecewise Polynomials
A signal is a periodic piecewise polynomial with r pieces
each of maximum degree ¢ if and only if its (¢ + 1) derivative
is a stream of differentiated Diracs given by
r—1 ¢

XD =3">"a;100 1 1)),

j=01=0

(32)

In this case, the corresponding Fourier transform relationship
is given by
r—=1 ¢q
2(f) = @2a )R =D D aji2nf) e . (33)
j=01=0
Since the righthand side of (33) is a special case of (21), the
associated minimum length annihilating filter has the following
z-transform representation:

r—1
hz)y =[] —ujz""e. (34)
=0
whose filter length is given by (¢ + 1)r + 1. Therefore, we
can provide the following performance guarantee:

Theorem 10: For a given piecewise smooth polynomial in
Eq. (32), let Z denotes the discrete spectral samples of Z(f) =
i(f))?(f) with i(f) = (i2z )4tV Suppose, furthermore, d is
given by min{n—d+1,d} > (g+1)r and Q = {j1, ..., jm} be
a multi-set consisting of random indices where ji’s are i.i.d.
following the uniform distribution on {0, ...,n — 1}. Then,
there exists an absolute constant ¢ such that X is the unique

minimizer to (29) with probability 1 — 1/n?, provided
m > ciucs(qg + Dr log4 n, (35)

where ¢y ;= max{n/(n —d + 1), n/d}.
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Proof: This is a simple consequence of Theorem 1 and
Theorem 2, because the minimum annihilating filter size from
B4)is (g + Dr+1. O

Theorem 11: Suppose that noisy Fourier data § satisfies

H Pg(i@ff—i@i) H2 < O, where X denotes the noiseless

discrete Fourier data in (5). Under the hypotheses of The-
orem 10, there exists an absolute constant ci,cy such that
with probability 1 — 1/n?, the solution g to (30) satisfies

| 7o) - 7@

< cn?s,
F

provided that (35) is satisfied with cy.

E. Incoherence and the Minimum Separation

Note that the proposed low-rank interpolation achieves near
optimal sample rate while universally applying to different
FRI signal models of the same order (e.g., stream of Diracs
and stream of differentiated Diracs). Moreover, even though
the concept of the minimum separation between the succes-
sive spikes was essential for the performance guarantee of
super-resolution in Candes and Fernandez-Granda [8], [11],
Tang et al. [9], [12], etc, similar expression is not observable
in Theorem 4-Theorem 11. This looks mysterious. Therefore,
the main goal of this section is to show that these information
are still required but hidden in the incoherence parameter .

Note that the proof in Theorem 1 implies that the explicit
form x[k] given by

p—11—1 p—1
R[k:= D" D ajik'2*, wherer=>"1;,  (36)
j=0 1=0 Jj=0

is a necessary and sufficient condition to have the low-rank
Hankel matrix. Here, 1; = e~ 271} for FRI signals. Further-
more, for a Hankel matrix constructed using the signal model
in (36), there exist an exponentional decomposition of Hankel
matrix using confluent Vandermonde matrix [28]. Specifically,
define a confluent Vandermonde matrix V,_441 € Cr—d+D)xr
(resp. V; € C4*7y;

l,_
Vacart =€ 441 Go) €1y i) - € Gy )]

where the (m,[) element of the sub-matrix Ci’;d 1) €
Cln=d+Dxli ig given by

m <1

0
[ n—d+1(%) .l [(2—}))!!,11!, otherwise.

Then, the associated Hankel matrix JZ(X) € H(n,d) with
min{n —d + 1,d} > r has the following generalized Vander-
monde decomposition [28]-[31]:

HR) =Va—an1 BV], (38)
where V,,_q41 € C=d+Dxr and V; € C4*" are the confluent

Vandermonde matrices and B is a  x r block diagonal matrix
given by

(37)

Hy O 0
B— 0 Hi ’
0
0 - 0 Hy,
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where H; is the [; xI; upper anti-triangular Hankel matrix [29].
Because B in (38) is a full rank block diagonal matrix, for a
given SVD of J#(X) = USVH with U € Cr—d+)xr 'y ¢
C4%" and T € C"™", we have

RAN U = RAN V,_4+1, RAN V = RAN V.

Accordingly, we can derive the following upper bound of the
standard coherence:

Lemma 12: For a Hankel matrix 7¢(X) € H(n,d) with
the decomposition in (38), the standard coherence p in (9)
satisfies:

{n—d+1 {d (39)
Omin (V:,d+1vn—d+l) ' Omin (V;Vd)

where omin (+) denotes the least singular value and the constant
N, N € N is defined by

,ufmax[

_ | WD ’ (40)
NENI N o |
and lnax = 051;?;—1lj'

Proof: Since U (resp. Vy—4+1) and V (resp. Vy) determine
the same column (resp. row) space, we can write

UU* = Vaart VieasVaear1) ™ Vias
VVE =V, (Viv) T v

Thus, we have

max e} Vy (V;Vd)_l Ve

max [|V*e; |3 =
1<i<d 1<i<d

IA

max

2
— Vel
Omin (ViV4) 1=i=d a

Moreover, we have

2
max | Vie/||” = | Vie
1§i§d” €l Vieall

R [(d - 1)!}2

j=0 I=1 (d—D)!

<r[ d—1)! T
o (d _lmax)!

where we use (37) and r = ‘;:(; [j. Similarly,

max  ||U*e;||3

1<isn—d+1

- r [ (n — d)! T
" Omin (V:,d+1vn—d+l) (n—d+1—Ina)!]

Therefore, using the definition of x in (9), we can obtain (39).
This concludes the proof. ([
Note that this is an extension of the approach in
[10, Appendix C, Sec. III.A] which tried to bound the mutual
coherence for the standard Vandermonde decomposition,
(i.e.lp =---=1p-1 =1) by a small number. Specifically, for
the cases of random frequency locations or small perturbation
off-the-grid, they showed that the incoherence parameters
become small [10]. However, the dependency of x on the
minimum separation was not explicit in their discussion.

Recently, Moitra [32] discovered a very intuitive
relationship between the least/largest singular values of
Vandermonde matrix and the minimum separation distance
A = min;%;|t; — t;|. Specifically, by making novel
connections between extremal functions and the spectral
properties of Vandermonde matrices Vy, Moitra showed
that if N > 1/A + 1, then the least singular value is
bounded as

omin(VyVn) = N —1/A — 1.

If applied in our problem involving V,_44+1 and V,, the
resulting upper bound of the coherence parameter for standard
Vandermonde matrix is given by

n/2

n/2—1/A—1’ 1)

=

which approaches to one with sufficiently large n. Eq. (41)
is obtained because the matrix pencil size d = n/2 gives
the optimal trade-off between oy (V:f d +1Vn_d+1) and
omin (ViVa), and (2 = n/2 owing to lmax = 1. Because
(41) requires n > 2/A, this coincides with the minimum
separation in Candeés and Fernandez-Granda [8], [11] and
Tang et al. [9], [12]. However, compared to these approaches
[8], [9], [11], [12] that require the minimum separation
as a hard constraint, our approach requires it as a soft
oversampling factor in terms of the incoherence parameter .

Then, where is the difference originated? We argue that
this comes from different uses of interpolation functions.
Specifically, in Candes and Fernandez-Granda [8], [11] and
Tang et al. [9], [12], dual polynomial function that interpolates
the sign at the singularity locations should be found to
construct a dual certificate.

On other hand, in the proposed annihilating filter based
approach, the interpolating function is a smooth function that
has zero-crossings at the singularity locations. To see this, let
fz[k] is an annihilating filter that annihilates X[k]. Then there
exists an annihilating function h(t) such that

Rk * h[k] =0, Vk < x(1)h(t) =0, V1,

so h(t) = 0 whenever x(¢) # 0. The construction of the
annihilating function A (¢) is extremely easy and can be readily
obtained by the multiplications of sinusoids (for example,
to null out r-periodic stream of Diracs within [0, 1], we
set f(t) = H;;z)(eiz”’ — ¢/271)). Moreover, this approach
can be easily extended to have multiple roots, which is
required for differentiated Diracs. We believe that the ‘“soft
constraint” originated from annihilating function is one of
the key ingredients that enables recovery of general FRI
signals which was not possible by the existing super-resolution
methods [8], [9], [11], [12].

The derivation of the least singular value for the conflu-
ence Vandermonde matrix have been also an important topic
of researches [30], [31], [33]-[37]. In general, it will also
depend on the minimum separation distance [33]. However, the
explicit tight bound of the least singular value is not available
in general, so we leave this for future work.
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F. Recovery of Continuous Domain FRI Signals
After Interpolation

Regardless of the unknown signal type (the stream of Diracs
or a stream of differentiated Diracs), note that an identical
low-rank interpolator can be used. Once the spectrum x[k] is
fully interpolated, in the subsequent step, Prony’s method and
matrix pencil algorithm can identify the signal model from the
roots of the estimated annihilator filter as done in [13]-[15].
Accordingly, our robustness guarantees on the low-rank matrix
entries can be translated in terms of the actual signal that
is recovered (for example, on the support or amplitudes of
the spike in the case of recovery of spike superpositions).
In fact, this has been also an active area of researches
[29]-[33], [38], and we again exploit these findings for our
second step of signal recovery. For example, see Moitra [32]
for more details on the error bound for the case of modified
matrix pencil approach for recovery of Diracs. In addition,
Batenkov has recently generalized this for the recovery of
general signals in (36) [33]. The common findings are that
the estimation error for the location parameter {¢ j}‘;7 ;(; and the
magnitude a;; are bounded by the condition number of the
confluent Vandermonde matrix as well as the minimum sep-
aration distance A. Moreover, matrix pencil approaches such
as Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) method [39] is shown to stably recover
the locations [33], [38].

Here, we briefly review the matrix pencil approach for the
signal recovery [29], [40]. Specifically, for a given conflu-
ent Vandermonde matrix V,_g4+1, let Vi— di1 be the matrix
extracted from V, 441 by deleting the last row. Similarly, let

V,T_ 441 be the matrix extracted from V441 by deleting the

first row. Then, V,f_ a4+ and V1 span the same signal subspace
and

1 J
Va1 = Va—awd

n

where J is the r x r block diagonal matrix

Ji, (Z0) 0 0
j=1 0 I (A1) ’
: - 0
0 0 Ji, (4p-1)

where J;, (4;) denotes the /; x [; Jordan block [28], [29]:

A1 0 - 0
0 i 1 :
Ji=10 0 4 . 0
T |
0 - 0 0 A

In practice, the confluence Vandermonde matrix V,_441 is
unknown, but a (n — d + 1) x r matrix W that spans
the signal subspace can be estimated using singular value
decomposition (SVD). Then, we can easily see that

wt=wlo

where r x r spectral matrix @ is given by
®=GJG!

for some matrix G. Finally, the matrix pencil algorithm com-
putes the eigenvalues of ® matrix from which the estimated
poles and their multiplicities are estimated.

IV. GUARANTEED RECONSTRUCTION
OF CARDINAL L-SPLINES

A. Cardinal L-Spline Model

A cardinal spline is a special case of a non-uniform spline
where the knots are located on the integer grid [16], [26], [27].
More specifically, a function x(¢) is called a cardinal L-spline

if and only if
Lx(t) = w(?), (42)

where the operator L is continuous domain whitening operator
and the continuous domain innovation signal w(t) is given by

w(t) = Y alplo(t — p),

pEeZL

(43)

whose singularities are located on integer grid.

Even though the recovery of cardinal L-splines can be
considered as special instance of that of non-uniform splines,
the cardinal setting allows high but finite resolution, so it
is closely related to standard compressed sensing framework
in discrete framework. Therefore, this section provides more
detailed discussion of recovery of cardinal L-splines from
partial Fourier measurements. The analysis in this section
is significantly influenced by the theory of sparse stochastic
processes [16], so we follow the original authors’ notation.

B. Construction of Low-Rank Wrap-Around Hankel Matrix

The main advantage of using cardinal setup is that we
can recover signals by exploiting the sparseness of discrete
innovation rather than exploiting off-the-grid singularity. So,
we are now interested in deriving the discrete counterpart of
the whitening operator L, which is denoted by L;:

Lad(t) = D lalpld(t — p).

pEZ

(44)

Now, by applying the discrete version of whitening operator
Ly to x(¢), we have

ue(t): = Lax(t) = LygL ™ w(t) = (BL * w) (1)
= > alplpLlt — p).

pEZL

(45)

where S (¢) denotes a generalized B-spline associated with
the operator L [16], which is defined by

Lili —iwp
M} (1), (46)
[(w)

where we now use w = 2z f for Fourier transform to follow
the notation in [16]. As shown in Fig. 2, u.(t) is indeed
a smoothed version of continuous domain innovation w(z)
in (43), because all the sparsity information of the innovation

pr(®) =LaL™'o(t) = 77! [
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Whitening filter f )

L —u()

Shaping filter

-1 x(t)

L Ly . u.(?)
Discrete whitening
filter

Fig. 2. The discrete innovation and continuous domain innovations generated
by Ly and L, respectively.

w(t) is encoded in its coefficients {a[p]}, and aside from
the interpolant S (¢), uc(t) in (45) still retains the same
coefficients. Moreover, the sparseness of sampled discrete
innovation on the integer grid can be identified from the
discrete samples of u.(t):

u(t): = uc(t) Y6t — p)

PEL
= D ualplé(t — p) (47)
pEZ
= D (axbp)[plo(t — p) (48)
pEZ
where
bripli= BL(O)l=p- (49)

To make the discrete sample uy[p] sparse, the discrete fil-
ter br[p] should be designed to have the minimum non-zero
support. Due to the relationship (49), this can be achieved if
pr(t) is maximally localized. The associated DFT spectrum
of the discrete innovation is given by

r—1 Sk
R R . 7rkzj
uglk] = u(w)|w:m = E uje ' n
n
j=0

(50)

where {u;} denotes the non-zero coefficient of u[p] and i;
refers the corresponding index.

To exploit the sparseness of discrete innovation using
the low-rank Hankel matrix, we should relate the discrete
innovation to the discrete samples of the unknown cardinal
L-spline x(¢). This can be done using an equivalent B-spline
representation of x(¢) [16]:

x(t) =D clplpLt — p).

pEeZL

(51

where c[p] satisfies

alpl = (cxla)[p]

for a[p] and l4[p] in (42) and (44), respectively. Here, the
equivalent B-spline representation in (51) can be shown by:

Lx() = D c[plLBrlt — p) = D (¢ x1)[p6(t — p),

pEZ leZ

alpl

because LLyL~18(r) = Lgd(¢). So, we have
u(t) = D (a*br)[plo(t — p)

PEL

= Z(ld xcxbr)[plo(t — p)

PEL
= > (la*xa)[plot — p)

PEL

where
xalpli= x(O)l;=p = D_clllp(p —1) = (cxbr)lpl. (52)
leZ

Therefore, ugs[p] = (Ig * x4)[p] and the corresponding DFT
spectrum is given by

falk] = [4[k)%4[k], k=0,---,n—1.

Because the DFT data X4[k] can be computed and
id[k] is known, we can construct a Hankel matrix
H(0g) = # (14 ©%q) € H(n, d). Thanks to (50), the associ-
ated minimum size annihilating filter ﬁ[k] that cancels x4[k]
can be obtained from the following z-transform expression

(33)

. r—1 2Tk
h@)=]]a -z
j=0
whose length is » + 1. Therefore, we have
RANK.JZ (liy) = RANKZ (I; © X4) = r.

Moreover, due to the periodicity of DFT spectrum, we can use
the following wrap-around Hankel matrix:

He(g)
i iq[0] iql1] igld — 1]7]
iql1] nql2] igld]
| daln—dl  agn—d+ 1] faln — 1]
gln —d+1] ugln —d+2] i4[0]
dgln — 1] iq[0] igld — 2] |
c (Cnxd

where the bottom block is an augmented block. Since the
bottom block can be also annihilated using the same anni-
hilating filter, we can see the rank of the wrap-around Hankel
expansion is the same as the original Hankel structured matrix:

RANKJZ (liy) = RANKIZ () = r.

Then, the missing DFT coefficients can be interpolated using
the following low-rank matrix completion:

min || (g) |«
geCr

subject to  Pa(g) = Pa(ly © %), (54)
or
min. |7 (@)l
subject to [|Pa(g) — Pals © §a)ll <3, (59)
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for noisy DFT data y;. Then, we have the following perfor-
mance guarantee:

Theorem 13: For a given cardinal L-spline x(t) in Eq. (42),
let [y[k] denotes the DFT of discrete whitening operator and
X4lk] is the DFT of the discrete sample x4 p] in (52). Suppose,
furthermore, d is given by minfn — d + 1,d} > r and
Q= {j1,..., jm} be a multi-set consisting of random indices
where ji’'s are i.i.d. following the uniform distribution on
{0, ...,n—1}. Then, there exists an absolute constant ¢ such
that X is the unique minimizer to (54) with probability 1—1/n?,
provided

m > clcs,urlogzn. (56)

where ¢ = n/d and u is the incoherence parameter.

Proof: The associated Hankel matrix has wrap-around
property, so the log power factor is reduced to 2, and
cs = max{n/n,n/d} =n/d. QE.D. O

Theorem 14: Suppose that noisy DFT data ¥, satisfies
H Pg(id O ¥4 -, o f(d)Hz < O, where X4 is noiseless DFT

data x4lk] of xqlpl in (52). Under the hypotheses of
Theorem 13, there exists an absolute constant cy, ¢y such that
with probability 1 — 1/n?, the solution g to (55) satisfies

|70 0%) - 7@

< cn?s,
F

provided that (56) is satisfied with cy.

C. Incoherence Condition

Another advantage of using a cardinal set-up is that the
coherence condition can be optimal even in the finite sampling
regime. Specifically, due to the the wrap-around property,
when d = n, the singular vectors U (resp. V) of H.(x) are
composed of r columns of a normalized DFT matrix. Thus,
the standard incoherence condition is

2 n 2
[Ueill3, — max [[V¥e;ll51 =1, (57)
r 1<i<n

4 = max iz max

r 1<i<n
which is optimal. Note that compared to the off-the-grid cases
in Section III-E, the optimal mutual coherence can be obtained
even with finite n.

It is also interesting to see that the corresponding separation
is equal to the Nyquist sampling distance A = 1/n, which
appears smaller than the minimum separation condition 2/n in
Section III-E. Recall that in off-the-grid signal reconstruction,
there always exists a limitation in choosing the matrix pencil
size d due to trade-off between the condition number of
Vu—d+1 and V. However, for the cardinal set-up, thanks to
the periodic boundary condition, the limitation does not exist
anymore, and the net effect is doubling the effective aperture
size from n to 2n. This results in the reduction of the minimum
separation in the cardinal setup.

D. Regularization Effect in Cardinal Setup

Note that in the proposed low-rank interpolation approach
for the recovery of general FRI signals, the weighting fac-
tor [(w) used in (P,) or (P))) is basically a high pass filter
that can boost up the noise contribution. This may limit

10

magnitude

w (radian)

Fig. 3.  Comparison of first- and second-order weights from whitening
operator L and discrete counter-part L.

the performance of the overall low-rank matrix completion
algorithm. In fact, another important advantage of the cardinal
setup is to provide a natural regularization. More specifically,
in constructing the weighting matrix for the low-rank matrix
completion problem, instead of using the spectrum of the
continuous domain whitening operator L, we should use Iy (w)
of the discrete counterpart L;. As will be shown in the
following examples, this helps to limit the noise amplification
in the associated low-rank matrix completion problem.

1) Signals With Total Variation: A signal with total varia-
tion can be considered as a special case of (42) with L = %.
Then, the discrete whitening operator L, is the finite difference
operator D; given by

Dgx(t) = x(t) — x( — 1).

In this case, the associated L-spline is given by
1—e i@ 1,
- 1) =

i ] @ [O,

Note that this is maximally localized spline because by [p] =
BL(®)l;=, = Jlp] is a single-tap filter. Therefore, the sparsity
level of the discrete innovation is equal to the number of
underlying Diracs. Moreover, the weighting function for the
low-rank matrix completion problem is given by

for0<rt <1

otherwise

mm=ﬁw=fﬂ
(58)

ljw)=1—e",

Figure 3 compared the weighting functions that corresponds
to the original whitening operator I (w) = iw and the discrete
counterpart fd(w) = 1 — e We can clearly see that
high frequency boosting is reduced by the discrete whitening
operator, which makes the low-rank matrix completion much
more robust.

2) Signals With Higher Order Total Variation: Consider
a signal x(¢) that is represented by (42) with L = dn

dm+1:
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Then, the corresponding discrete counterpart Ly should be
constructed by

Lyo(t) =DyDy---Dgd(t) .
m

In this case, the associated L-spline is given by [16]

10 = (B xBYxx B) @

m+1

. l_e_iw m+1
=7 ( i ) ®

m+1
_ ok m+ 1\ @ — k)%
_kgo( 1)( k ) m!

with (f);+ = max(0,7). We can see that the length of the
corresponding filter by [n] is now given by m + 1. Hence,
when the underlying signal is r-Diracs, then the sparsity level
of the discrete innovation is upper bounded by

(m 4+ Dr 59)
and the corresponding weighting function is given by
la(w) = (1 — 7@yt (60)

Again, Figure 3 clearly showed that this weighting function
is much more robust against noises compared to the original
weighting (iw)"*1.

Note that the relationship between the sparsity in (59) and
the noise reduction by (60) clearly demonstrate the trade-off
between regularization and the resolution in signal recovery.
Specifically, to recover high order splines, rather than imposing
the higher order weighting that is prone to noise boosting,
we can use regularised weighting (60) that comes from dis-
crete whitening operator. The catch, though, is the necessity
for additional spectral samples originated from the sparsity
increase.

E. Recovery of Continuous Domain
Signals After Interpolation

In contrast to the recovery of general FRI signals from its
spectral measurements, the reconstruction of cardinal L-spline
can be done using standard B-spline signal processing
tools [41], [42]. Specifically, after recovering the DFT
spectrum x[k] using the Hankel structured matrix completion,
a trivial application of an inverse DFT can obtain xg4[n].
Then, to recover x(¢), we use the equivalent representation
Eq. (51). More specifically, the coefficient c[n] in (51) can
be computed by (52):

xq[n] = (c xbp)[n].

Because x4[n] are already computed and br[n] is known,
the unknown coefficient c[n] can be obtained using the
standard method in [41] and [42] using recursive filtering
without computationally expensive matrix inversion. In case
the operator L is the first differentiation, by[n] = J[n],
so c[n] can be readily obtained as x4[n].

V. ALGORITHM IMPLEMENTATION
A. Noiseless Structured Matrix Completion Algorithm

In order to solve structured matrix completion problem from
noise free measurements, we employ an SVD-free structured
rank minimization algorithm [43] with an initialization using
the low-rank factorization model (LMaFit) algorithm [44].
This algorithm does not use the singular value decomposi-
tion (SVD), so the computational complexity can be signif-
icantly reduced. Specifically, the algorithm is based on the
following observation [43]:

IAll,= min U3+ V3. (61)
U vH

Hence, it can be reformulated as the nuclear norm minimiza-
tion problem under the matrix factorization constraint:
min
U,V:7#(g)=UV
subject to Po(g) = Po(X).

, WUIE+1VIE
(62)

By combining the two constraints, we have the following
cost function for an alternating direction method of multi-
plier (ADMM) step [45]:

1
LW, V. A=)+ 5 (IV1F +IVIE)
+S1A@ — UV AlE (63)
where 1(g) denotes an indicator function:
0, if Pa(g) = Pa(X)
(g) = :
00, otherwise.

One of the advantages of the ADMM formulation is that each
subproblem is simply obtained from (63). More specifically,
gt g+ and v+ can be obtained, respectively, by
applying the following optimization problems sequentially:

g(nJrl)

= argmin1(g) + 5 1¢/(@) — UMV + A0
U(l’l+1)
1 u
= argmin U]l + 217" D) — UV + A3
y (1)
1 u
= argmin ||V |7 + 2124/ @""Y) — 0OV + AW
(64)
and the Lagrangian update is given by
AG+D y(n+1) _ yethymthH + A(”), (65)

where YD = 7 (g™ +D). It is easy to show that the first
step in (64) can be reduced to

g = Poe st UMY OH — AW L PaR),  (66)

where Pgc is a projection mapping on the set Q¢ (the
complement set of Q) and .#" corresponds to the Penrose-
Moore pseudo-inverse mapping from our structured matrix to
a vector. Hence, the role of the pseudo-inverse is taking the
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average value and putting it back to the original coordinate.
Next, the subproblem for U and V can be easily calculated
by taking the derivative with respect to each matrix, and we
have

U(n+1)

—u (y(n+1> n A(">) v (, n ﬂv(nm‘,(n))’l
V(n+1)

—u (y(nJrl) +A(n))H y o+ (1 +#U(n+1)HU(n+1)>*‘
(67)

Now, for faster convergence, the remaining issue is how
to initialize U and V. For this, we employ an algorithm
called the low-rank factorization model (LMaFit) [44]. More
specifically, for a low-rank matrix Z, LMaFit solves the
following optimization problem:

1
min, §||UVH — Z||% subject to P;(Z) = Pi(A(X)) (68)

and Z is initialized with 7 (X) and the index set I denotes
the positions where the elements of .7 (X) are known. LMaFit
solves a linear equation with respect to U and V to find their
updates and relaxes the updates by taking the average between
the previous iteration and the current iteration. Moreover,
the rank estimation can be done automatically. LMaFit uses
QR factorization instead of SVD, so it is also computationally
efficient.

B. Noisy Structured Matrix Completion Algorithm

Similarly, the noisy matrix completion problem can be
solved by mininimizing the following Lagrangian function:

A N 1
LW. V.8 N): = SIPa®) — Pa@IB + 5 (IU1F +1V1})
u
+ 51 (@) — UV + Allg

where / denotes an appropriate regularization parameter.
Compared to the noiseless cases, the only difference is the
update step of g. More specifically, we have

gl = argmgingllPQ(f’) — Pa(®)ll3
+ 1@ — U VO L A
which can be reduced to
gD — poo {U(n)v(n)H _ A(’l)} + Pa(z)

where z = [z[0], - - - , z[n — 1]]7 such that

Aylil+ uPi (55 (UMY OH — AM))
A+ uPi(A*H (e))) ’

z[i] =

where e; denotes the unit coordinate vector where the i-th
element is 1, and P; is the projection operator to the i-th
coordinate.

C. Implemetation of ADMM

The alternating direction method of multipliers (ADMM)
described above is widely used to solve large-scale linearly
constrained optimization problems, convex or nonconvex,
in many engineering fields. The convergence of ADMM
algorithm for minimizing the sum of two or more non-
smooth convex separable functions have been well-studied,
and Hong and Luo [46] proved the linear convergence of
a general ADMM algorithm with any number of blocks
under linear constraints. Even for the nonconvex problems,
Hong et al [47] further showed that the classical ADMM
converges to the set of stationary solutions, provided that the
penalty parameter in ADMM (u in our case) is chosen to
be sufficiently large. Accordingly, to ensure the convergence
of ADMM, it is usually recommended to use a sufficiently
large u; so, we chose 1 = 107 in our implementation.

Note that the computational complexity of our ADMM algo-
rithm is crucially determined by the matrix inversion in (67).
More specifically, the computational complexity in (67) in
terms of multiplication is O((n — d + 1)rd + r?), whereas
the number of multiplication required for (66) and (65) is
O((n — d + Dyrd). Thus, if the underlying signal is sparse,
then we can choose sufficiently small rank estimate r and
the matrix pencil size d to reduce the overall computational
complexity. Another important issue in practice is the memory
usage. Note that the U,V,) as well as the Lagrangian
parameter A should be stored throughout the iterations in our
ADMM implementation. The associated memory requirement
is at least (n —d 4+ 1)r +rd + 2(n — d + 1)d. This is not
an issue in our 1-D problems, but for large size problems
(especially originated for three dimensional recovery problems
in medical imaging applications), the memory requirement
quickly grows, which can become a dominating computational
bottleneck in parallel implementation using memory limited
graphic processor unit (GPU).

VI. NUMERICAL RESULTS

In this section, we undertake a comparative numerical study
for the recovery of FRI signals on an integer grid. We then
provide numerical experiments involving the reconstruction of
piecewise polynomials in which the discontinuities are located
in arbitrary positions.

A. Recovery of On-Grid Signals

First, we perform numerical simulations using noiseless
measurements. Specifically, we consider three scenarios:
1) streams of Diracs, 2) piecewise constant signals, and 3) a
super-position of Diracs and piecewise constant signals. As a
reference for the comparsion, the SPGL1 implementation of
the basis pursuit (BP) algorithm [48] was used to recover a
stream of Diracs, whereas the split Bregman method of /; total
variation reconstruction [49] was used for recovering signals
in the second and third scenarios. We assume that all of the
singularities are located on an integer grid. To quantifythe
recovery performances, phase-transition plots were calculated
using 300 Monte Carlo runs.
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Fig. 4. Phase-transition diagrams for recovering a stream of Diracs from m random sampled Fourier samples. The size of the target signal (n) is 100 and
the annihilating filter size d was set to 51. s denotes the number of Diracs. The left and right graphs correspond to the phase-transition diagrams of the basis
pursuit [48] compressed-sensing approach and the proposed low-rank interpolation approach, respectively. The success ratio is obtained from the success ratio
of 300 Monte Carlo runs. Two transition lines from compressed sensing (blue) and the low-rank interpolator (red) are overlaid.

Compressed sensing
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Phase-transition diagrams for recovering a piecewise constant signals from m random sampled Fourier samples. The size of the target signal (n)

is 100 and the annihilating filter size d was set to 51. The left and right graphs correspond to the phase-transition diagram of the /1-TV compressed-sensing
approach and the proposed low-rank interpolation approach, respectively. The success ratio is obtained from the success ratio of 300 Monte Carlo runs.
Two transition lines from compressed sensing (blue) and the low-rank interpolator (red) are overlaid.

1) Diracs Streams: To simulate Diracs stream signals, we
generated one-dimensional vectors with a length of 100, where
the location of the Diracs are constrained on an integer grid.
The spectral measurements were randomly sampled with a
uniform random distribution, where the zero-frequency com-
ponent was always included. This made the Fourier sensing
matrix become a DFT matrix, allowing the use of basis pursuit
using a partial DFT sensing matrix. We used the SPGLI1
basis pursuit algorithm, as obtained from the original author’s
homepage [48]. Only thing we need to set for SPGL1 was
the number of iteration to 500. For the proposed method, d
was set to be |n/2] + 1 = 51. The other hyper-parameters
for the proposed method were as following: 1 = 10%, 500
iterations, tol = 10~* for LMaFit. For a fair comparison,
we used the same iteration numbers and sampling patterns
for both basis pursuit and the proposed algorithm. The phase
transitions in Fig. 4 show the success ratio calculated from
300 Monte Carlo trials. Each trial from the Monte Carlo
simulations was considered as a success when the normalized
mean square error (NMSE) was below 1073 In Fig. 4, the
proposed approach provided a sharper transition curve between
success and failure than that of the basis pursuit. Furthermore,
the transition curve of the proposed method (red dotted line)
is higher than that by the basis pursuit (blue dotted line).

2) Piecewise-Constant Signals: To generate the piecewise
constant signals, we initially generated Diracs signal at random

| [——Ground-truth
——CS
— Proposed

20 40 60 80 100
Position

Fig. 6. Sample reconstruction results at the position marked with the yellow
star in Fig. 5. Ground-truth signal (original), /{-TV (compressed sensing) and
the proposed method (low-rank interpolator) are illustrated. The parameters
for the experiments are as follows: n = 100,d = 51, and m = 40 with
19 steps.

locations on an integer grid and added steps between the
Diracs. The length of the unknown one-dimensional vector
was again set to 100. To avoid a boundary effect, the values at
the end of both boundaries were set to zeros. As a conventional
compressed sensing approach, we employed the 1-D version
of [j-total variation reconstruction (/1-TV) using the split
Bregman method [49], which was modified from the original
2-D version of [1-TV from the homepage. We found that the
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Phase-transition diagrams for recovering the super-position of the piecewise constant signal and Diracs from m randomly sampled Fourier samples.

The size of the target signal (n) is 100 and the annihilating filter size d was set to 51. The left and right graphs correspond to the phase-transition diagram of
the /1-TV compressed-sensing approach and the proposed low-rank interpolation approach, respectively. The success ratio is obtained from the success ratio
of 300 Monte Carlo runs. Two transition lines from compressed sensing (blue) and the low-rank interpolator (red) are overlaid.
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Fig. 8. Sample reconstruction results at the position denoted by the yellow
star in Fig. 7. Ground-truth signal (original), /{-TV (compressed sensing) and
the proposed method (low-rank interpolator) are illustrated. The parameters
for the experiments are: n = 100, d = 51, and m = 50, with the number of
steps and Diracs all being 10.

optimal parameters for [{-TV were u = 10%,1 = 1, and
the outer and inner loop iterations of 5 and 40, respectively.
The hyper-parameters for the proposed method are as follows;
u = 103, 200 iterations, tol = 10~3 for LMaFit. Note that
we need 1 — e~® weighting for low-rank Hankel matrix
completion as a discrete whitening operator for TV signals.
The phase transition plots were calculated using averaged
success ratio from 300 Monte Carlo trials. Each trial from
the Monte Carlo simulations was considered as a success
when the NMSE was below 1072, Because the actual non-
zero support of the piecewise constant signals was basically
the entire domain, the threshold was set higher than in previous
Dirac experiments.

As shown in Fig. 5, the transition curve from the proposed
method (red dotted line) provided a sharper and improved
transition than the [ total variation approach (blue dotted line).
Furthermore, even in successful cases, there were a number
of unsuccessful recoveries with the conventional method,
whereas the proposed method succeeded nearly every time.
In Fig. 6, we also illustrate sample recovery results from
the same locations in the phase-transition diagram, which

m
2,
& 10
4
10°
10% H L L L
10 20 30 40 50 60
SNR (dB)
(a)
0.5
—— Ground-truth
——CS
—— Proposed

20 40 60 80 100
position

(b)

Fig. 9. (a) The reconstructed NMSE plots by the proposed low-rank
interpolation scheme at various SNR values. For this simulation, we set the
annihilating filter size d = 51, and n = 100. The number of singularity due to
steps was 10 and the number of measurements was 50. (b) A reconstruction
example from a noisy measurement at 30dB.

are at the position marked with the yellow star in Fig. 5.
We observed near-perfect reconstruction from the proposed
method, whereas severe blurring was observed when using
[1-TV reconstruction.

3) Piecewise-Constant Signal + Diracs: We performed
additional experiments on the reconstruction of the super-
position of the piecewise constant signal and Dirac spikes.
Note that this corresponds to the first derivative of the piece-
wise polynomial with a maximum order of 1 (i.e. piecewise
constant and linear signals). The goal of this experiment was
to verify the capability of recovering piecewise polynomials,
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Fully sampled Fourier measurement and the interpolated data from m = 36 irregularly sampled data. (a) Low-rank interpolation results without

spectrum weighting. (b) The proposed low-rank interpolation using optimal weighting Z((u) = iw. For this simulation, the following parameters were

used: d = 51, n = 100 and m = 36.

but there was no widely used compressed-sensing solution
for this type of signals. Therefore, for a fair comparison,
we were interested in recovering their derivatives, as the
conventional /;-TV approach can be still used for recovering
Diracs and piecewise constant signals. The optimal parameters
for [1-TV were u = 103, A = 1, and outer and inner loop
iterations of 5 and 40, respectively. The hyper-parameters for
the proposed method are as follows: u = 103, 200 iterations,
and rol = 1073 for LMaFit. In this case, the sparsity level
doubles at the Dirac locations when we use the /1-TV method
for this type of signal. Similar sparsity doubling was observed
in our approach. More specifically, our method required the
derivative operator as a whitening operator, which resulted
in the first derivative of the Diracs. According to Eq.(59),
this doubles the effective sparsity level. Accordingly, the
comparison of /1-TV and our low-rank interpolation approach
was fair, and the overall phase transitions were expected to
be inferior compared to those of piecewise constant signals.
The simulation environment was set such that it is identical
to those in the previous piecewise constant setups, except for
the signal generation process. For signals, we generated an
equal number of steps and Diracs. When the sparisty is an
odd number, the numbers of Diracs was set to the number of
steps minus 1.

As shown in Fig. 7, there were much more significant
differences between the two approaches. Our algorithm still
provided very clear and improved phase transitions, whereas
the conventional /1-TV approach resulted in very fuzzy and
inferior phase transitions. In Fig. 8, we also illustrated the
sample recovery results from identical locations in the phase-
transition diagram, which are at the position marked by the
yellow star in Fig. 7. The proposed approach provided a
nearly perfect reconstruction, whereas /1-TV reconstruction
exhibits blurring. This again confirms the effectiveness of our
approach.

4) Recovery From Noisy Measurements: To verify the
robustness to noise of the proposed method, we performed
experiments using piecewise constant signals by adding addi-
tive complex Gaussian noise to partial Fourier measurements.
Fig. 9(a) shows the recovery performance of the proposed
low-rank interpolation method at several signal-to-noise
ratios (SNR). All setting parameters for the proposed method
are identical to the parameters in previous experiments except
for the addition of 2 = 103. As expected from the theoretical
results, the recovery performance was proportional to the
noise level. Fig. 9(b) presents an example of reconstructions
from measurements with 30dB of noise. Here, the optimal
parameters for [;-TV (CS) were u = 103, 2 = 1, with outer-
inner loop iterations of 5 and 40, respectively. The proposed
approaches still provide accurate reconstruction results.

B. Recovery of Off-the-Grid Signals

To verify the performance of off-the-grid signal recovery,
we also performed additional experiments using piecewise
constant signals whose edges are located on a continuous
domain in the following range [0, 1]. Specifically, we consider
a signal composed of several rectangles whose edges are
located in off-grid positions. Due to the existence of closed-
form expressions of the Fourier transform of shifted rectangle
functions, the measurement data could be generated accurately
without using the discrete Fourier transform. Because the
signal is composed of rectangles, the singularities are located
at the edge positions after differentiation. Accordingly, the
weighting factor for low-rank interpolation was the spectrum
of the continuous domain derivative, i.e. I (w) = iw. Owing
to the Nyquist criterion, the sampling grid in the Fourier
domain corresponds to an integer grid, and the ambient signal
dimension n (which corresponds to the aperture size) was
set to 100. Then, m 36 Fourier samples were randomly
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Fig. 11. Proposed reconstruction result of a piecewise constant signal from
noiseless and 40dB noisy sparse Fourier samples. For this simulation, the
following parameters were used: d = 51, n = 100 and m = 36. The
matrix pencil approach was used for signal recovery after the missing Fourier
data was interpolated using the proposed low-rank interpolation scheme with
optimal weighting /(w) = iw.

obtained from the range of [0, - - - , 99]. The parameters for the
proposed low-rank interpolation were as follows: the tolerance
for LMaFit = 10~!, number of iterations 300, u= 103. Once
the Fourier data were interpolated, we used the matrix pencil
method [5], [40], as described in Section III-F for the second
step of signal recovery.

Fig. 10(b) illustrates the interpolated measurement from
36 instances of irregularly sampled Fourier data using the pro-
posed low-rank interpolation. Because the underlying signal is
a piecewise constant signal, the optimal weighting I (w)=iw
was applied for the Fourier data before the low-rank matrix
completion was applied. As shown in Fig. 10(b), near-perfect
interpolation was achieved. On the other hand, if the original
Fourier data was used for the low-rank interpolation without
weighting, the resulting interpolation was very different from
the true measurement (see Fig. 10(a)). These results confirmed
our theory.

Fig. 11 illustrates the corresponding reconstruction results
from noiseless measurements using the proposed method. We
also performed an additional simulation with 40dB of mea-
surement noise. The results clearly showed that the proposed
approach accurately reconstructs the underlying piecewise
constant signals. Recall that there are no existing off-the-
grid reconstruction algorithms for piecewise constant signals.
Therefore, the nearly perfect reconstructions by the proposed
method clearly show that our theory is quite general and can
therefore be used for the recovery of general FRI signals.

VII. CONCLUSION

While the recent theory of compressed sensing (CS) can
overcome the Nyquist limit for recovering sparse signals,
standard recovery algorithms are usually implemented in the
discrete domain as inverse problem approaches that are fully
dependent on signal representations. Moreover, existing spec-
tral compressed-sensing algorithms of continuous signals such
as off-the-grid spikes are very distinct from their discrete
domain counter-parts. To address these issues and unite the
theories, this paper developed a near-optimal Fourier CS

framework using a structured low-rank interpolator in the
measurement domain to use before an analytic reconstruction
procedure is applied. This was based on the fundamental
duality between the sparsity in the primary space and the
low-rankness of the structured matrix in reciprocal spaces.
Compared to existing spectral compressed-sensing methods,
our theory was generalized to encompass more general signals
with a finite rate of innovation such as piecewise polynomials
and splines with provable performance guarantees. Numerical
results confirmed that the proposed methods exhibited signif-
icantly improved phase transition as compared to that by the
existing CS approaches.

APPENDIX

A. Properties of Linear Difference Equations
With Constant Coefficients

Before proving Theorem 1, we review some important
properties about linear difference equations [50]. In general,
the r-th order homogeneous difference equation has the form

xlk+r]l+ar—1lklx[k+r — 11+ --- + aolk]lx[k] = 0. (A.1)

where {a; [k]}g;é are constant coefficients. The functions
filk], falk], - - -, fr[k] are said to be linearly independent for
k > ko if there are constants cy, ¢3, - - - , ¢y, not all zero, such
that

cifilkl+ o folkl +---+c frlk]l =0, k> ko.

And, a set of r linearly independent solutions of (A.1) is called
a fundamental set of solutions. As in the case of Wronskian in
the theory of linear differential equations, we can easily check
the linear independence of solution by using Casoratian W[k]
which is defined as :

x1[k] x2[k] xr[k]
x1lk +1] x2lk + 1] xrlk +1]
Wlk] = . )
xilk+r—1] xolk+r —1] xrlk+r—1]
Lemma 15 [50, Lemma 2.13, Corollary 2.14]: Let
x1[k], - -+, x[k] be solutions of (A.1) and WIk] be their
Casoratian. Then,
1) For k > ky,
k—1
Wik] = (=1)"¢ %) [ TT aolil | Wikol;
i=kg

2) Suppose that aplk] # O for all k > ko. Then, W[k] # 0
for all k > ko iff W[ko] # 0.
Now, we state the criterion by which we can easily check
the linear independence of solutions of (A.1).
Lemma 16: [50, Ths. 2.15 and 2.18],
1) The set of solutions xi[k], x2[k], --- , x,[k] of (A.1) is
a fundamental set iff Wlko] # O for some ko € N.
2) Ifaolk] # O for all k > ko, then (A.1) has a fundamental
solutions for k > ko.
Now, for the linear difference equation with constant coef-
ficients, similarly to the case of differential equation with
constant coefficients, we have the following result:
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Lemma 17 [50, Lemma 2.22, Th. 2.23]: Assume that we
have a linear difference equation

Zhtr A 1Zkyr—1 + - a1z aoze =0, (A2)

where the coefficients a;’s are constants and ay # 0, and we
are given

p—1
P()=1+a "+ +ad+a =[]0 - 1),
i=0
as its characteristic equation, where Lo, --- , A, are all the
distinct nonzero complex roots of P(A). Then the set

p—1
G=\JGi
i=0

is a fundamental set of solutions (A.2), where

- [l L[4
(1))

Here, we use the notation [a[k]]x to denote the sequence
with k-th term a[k]. Now, we have the following results which
will be used later.

Lemma 18: The sequence set

(0 [6) ] LG
(5 )] )

) ] ]

span the same sequence space.
Proof: Note that (A.4) has the same span as

[ LG)) - 1622

since ag # 0 and 4; # 0 for all 0 <i < p — 1. Moreover, for
any given0<i<p—land0<j <[ —1,
K\ ktk—1)---(k—j+1)
(,-) B J!
is a polynomial of k£ with order j so that each sequence

(A.3)

(A4)

and

(AS)

{ (k)/lf} is a linear combination of
J keN

[N RN

On the other hand, every polynomial P (k) on Z of degree at
most j uniquely expressible as a linear combination of

(6)}()-()

and the explicit representation is given by

d !
k= Zaz(l;) where a; = Z(_l)z_m (’;)mf

=0 m=0

For the above formula, you may refer [51]. Thus, the sequence
{kJ /1{ }reN 1s given as a linear combination of

(GG )]

Thus, (A.4) and the sequence

() ot 1))

spans the same sequence space. Q.E.D. O

B. Proof of Theorem 1

Proof: First, we will show that 7’ (X) has rank at most .
Let h € C"t! be the minimum size annihilating filter. Then,
(4) can be represented as

h, = ¢(h)a

where a = [&[O] ceealky — 1]] and Cg(ﬁ) e Cdxki g a
Toeplitz structured convolution matrix from h:

h[0] 0 0
h[1]  h[O] 0
N : : : dxky
T =i -1 ir—k+1] €€
0 0 hlr]

where d = r + kj. Since %(ﬁ) is a convolution matrix, it is
full ranked and we can show that

dim RAN% (h) = k1,

where dim RAN(-) denotes the dimension of the range space.
Moreover, the range space of % '(h) now belongs to the null
space of the Hankel matrix 77 (X), so it is easy to show

ki = dim RAN%'(h) < dim NUL#(R),

where dim NUL(-) represent the dimension of the null space.
Thus,

RANK . (X)
=min{d,n —d + 1} —dimNULAZ(X) <d —k; =r.

Now, we will show by contradiction that the rank of 7 (X)
cannot be smaller than r. Since the rank of the Hankel matrix
is at most r, any set of » + 1 consecutive rows (or columns)
of (n —d + 1) x d Hankel matrix with the entries X[k] must
be linearly dependent. Therefore, x[k] should be the solution
of the following difference equation:

Zhtr + Qr 1 Zk4r—1 + -+ a12k+1 +aozp = 0,

for0<k<n—-r—1 (A6

where {a; };;é are coefficients of the linear difference equation,
and
p—1
P()i=A"+ar A 4 taiditao= ]G —2pY,
j=0
(A7)
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is the characteristic polynomial of the linear difference
equation, where Ao, -, 4,1 are distinct nonzero complex
numbers so that agp # 0 and

p—1
r = ZZJ‘.
j=0

From Lemma 17 and 18, we know that the sequences
{ku’;}kez 0O<j<p—-1land0 <1 <1[;—1) are the
fundamental solutions of the linear difference equation, and
X[k] can be represented as their linear combination [50]:

p—11j—1

x[k]:= z Zaj,lkl/ljk forO0<k<n-—1,
=0 1=0

(A.8)

where all the leading coefficients a;;;—1 (0 < j < p—1) are
nonzero. If we assume that the rank of the Hankel matrix with
the sequence as in (A.8) is less than r, then the sequence x[k]
must satisfy the recurrence relation of order ¢ < r, since any
collection of ¢ + 1 consecutive rows (or columns) are linearly
dependent. Thus, there exist a recurrence relation for x[k] of
order g < r such that

Zk+q T bq71zk+q71 + -+ b1zg+1 + bozk =0,

for0O<k<n—qg—1, (A9
whose solution is the sequence given by
p-1h-1
Rkl =D > d k) for 0 <k <n—1, (A10)
j=0 1=0
where Z‘;/:_Ol l;. <r—1, and
p'—1 )
Pi(A) =M +bg 29+ b+ b= [ -2
j=0

is the characteristic polynomial of (A.9). Subtracting (A.10)
from (A.8), we have the equation
P—1Lj—1

0= > cik(Apt, for0<k<n—1, (A1)
j=0 I1=0
where
{Aj:1=j=P}={1;:0=j=p—1}
U{d;:0<j<p -1}

and L; (1 < j < P) is the multiplicity of the root of A; for
the least common multiple of P(1) and P;(1). Moreover, we
have N := > Ly <r+(—1)=2r—1

Now, from Lemma 17, we know that the sequences
frjlk] = (AF 10 <j<P-1,0<1<1L;—1)
are linearly independent sequences, and from the hypothesis
min{n —d +1,d} > r, we have n > 2r — 1 > N. Thus, if we
write (A.11) as a matrix equation,

0= dc
where

¢ = [co,0, "
T
Cp—1,Lp_1—1]

9c0,L0719c1,0,"' s " ’CP71,09"' 5

is an N x 1 matrix, and ® is an n x N matrix which has
[AK ... ,kLo—l(AO)k,Ak,... Lo »A];ul"“ ,
KEr =i (A po1)]

as an k + 1-th row. By combining Lemma 15 and 16, we can
conclude that the N x N principal minor for the matrix @
must have a nonzero determinant. Thus, the matrix @ is of
full column rank so that all the coefficients vector ¢ must be
zero.

Thus, all the zeros and their multiplicities of zeros for
the polynomials P(A), P;(4) must be identical. That is a
contradiction to the hypothesis that the degree of Pj(1) is
less than that of P (). O

C. A Basis Representation of Structured Matrices

1) Hankel Matrix and Variations: The linear space H(n, d)
of (n — d + 1)-by-d Hankel matrices is spanned by a basis
{Ak}zz1 given by
1<k<d,
d+1<k<n-—d+1,

|~k
ﬁzz':l €€ _it1>
1 ~d o
A = ﬁZizl €€ _it1>
1 d X
—> ee;_. n—d+2<k<n.
/n_k+121=kfn+d L k—i+1° =% =
(A.12)

Note that {Ag};_, satisfies the following properties. First,
Ay is of unit Frobenius norm and all nonzero entries of Ay
are of the same value, i.e.,

(A.13)

1
T A .. O,
(Al = § VTATo [ k]z,j.#
0, otherwise,

for all k = 1,...,n. It follows from (A.13) that the spectral
norm of Ay is bounded by

—1/2

A&l < 1Akl (A.14)

Second, each row and column of all A;’s has at most one
nonzero element, which implies
2

n» ni 2 ni n»
Z( |[Ak],-,,-|) =1, and > | D Al l] =1.
j=1 \i=1 i=1 \j=1

Last, any two distinct elements of {Ax};_, have disjoint sup-
ports, which implies that {Ax}}_, constitutes an orthonormal
basis for the subspace spanned by {Af};_,. In fact, these
properties are satisfied by bases for structured matrices of a
similar nature including Toeplitz, Hankel-block-Hankel, and
multi-level Toeplitz matrices.

2) Warp-Around Hankel Matrix and Variations: The linear
space H.(n,d) of n-by-d wrap-around Hankel matrices for
n > d is spanned by a basis {A;};_, given by

Ay

(A.15)

1 koo
7a (Zi:l Cilrd—i—1),+1

=1 +2 on—dskt eje>(kk+dfj71)n+l) » Isk=d—1,
d<k<n,

(A.16)

1k ok
Wz D imk—d-+1 Ci€ktrad—i—1),+1°
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where (-),, denotes the modulo operation that finds the remain-
der after division by n. The above basis {Ax};_, for H(n, d)
also satisfies the aforementioned properties of that for H(n, d).
Similarly, all elements of a structured matrix with the
wrap-around property (e.g., wrap-around Hankel matrix) are
repeated by the same number of times. Thus, the correspond-
ing basis {Ax};_; C C"*" has an extra property that
Vk=1,...,n

[Axllo = min{ny, na}, (A.17)

D. Incoherence Conditions

The notion of the incoherence plays a crucial role in matrix
completion and structured matrix completion. We recall the
definitions using our notations. Suppose that M € C"'1>*"2
is a rank-r matrix whose SVD is UZV*. It was shown
that the standard incoherence condition (9) alone suffices to
provide a near optimal sample complexity for matrix comple-
tion [52]. For structured matrix completion, Chen and Chi [10]
extended the notion of the standard incoherence as follows:
M is said to satisfy the basis incoherence condition with
parameter u if

ur
max [|U" Ak o

[ ur
= nz'

When A, = e,-e}’f, the basis incoherence reduces to the
standard incoherence with the same parameter. In general, two
incoherence conditions are related as shown in the following
lemma.

Lemma 19: Let U € CY"*" and V € C"*", Let Ay €
C">*" fork =1,...,n. Then,

max [VZAg]p <

(A.18)

max U A, < ( max [ U*e; Hz)

1<k<n 1<i’<n;
- 1/2
: max. Zl(ZuAkm) ,
| J
max Vil = ((max Ve,
- )T 1/2
| (Zea
i :
Proof of Lemma 19 Let k be an arbitrary in {1, ..., n}. Then,
2
) ny np
HU*AkHF = Zzele [Ak]lj
i=1 j=1
2
ny np
= Z(Z[Ak]i’jU*ei)e}<
j=1 \i=1 F

Z

j=1

Ue,

na

> (S ezuz)

j=1

(1 o) (2 ul)

j=1

IA

IA

Therefore, the first claim follows by taking maximum over k.
The second claim is proved similarly by symmetry. U

By Lemma 19, if (A.15) is satisfied, then the standard
incoherence condition implies the basis incoherence condition
with the same parameter 1. However, the converse is not true
in general.

E. Proof of Theorem 2

The previous work by Chen and Chi [10] could have proved
the claim (in the case without the wrap-around property) as in
their Theorem 4. However, a few steps in their proof depend on
a Vandermonde decomposition of £(x), where the generators
of the involved Vandermonde matrices are of unit modulus.
Therefore, the original version [10, Th. 4] only applies to the
spectral compressed sensing.

Essentially, their results apply to the setup in this paper with
slight modifications. In the below, a summary of the proof in
the previous work [10] will be presented with emphasis on
necessary changes that enable the extension of the result by
Chen and Chi [10] to the setup of this theorem.

We first adopt notations from the previous work [10]. Define
Ay Crixnz _, Crixm by

A (M) = Ar (A, M)

for k = 1,...,n, where (A,B) = Tr(A*B) and
Tr(-) is the trace of a matrix. Then each A; is an
orthogonal projection onto the one-dimensional subspace
spanned by Ai. The orthogonal projection onto the sub-
space spanned by {Ax}i_, is given as A = D, Ak
The summation of the rank-1 projection operators in {Ax}rcQ
is denoted by Aq, ie., Ag = > q Ak. With repetitions
in Q, Ag is not a projection operator. The summation of
distinct elements in {Ag}req is denoted by Aj,, which is
a valid orthogonal projection. Let £(x) = UAV* denote
the singular value decomposition of £(x). Then the tangent
space T with respect to £(x) is defined as

T:={UM*+MV*: MeC»*" MeC"*}.
Then the projection onto T and its orthogonal complement will
be denoted by Pr and Pr., respectively. Let sgn(X ) denote
the sign matrix of X defined by UV*, where X = UAV*
denotes the SVD of X. For example, sgn[£(x)] = UV*. The
identity operator for C"1*"2 will be denoted by id.
The proof starts with Lemma 20, which improves on the
corresponding result by Chen and Chi [10, Lemma 1].
Lemma 20 (Refinement of [10, Lemma 1]): Suppose

Agq satisfies

that

H —PrAoPr — PrAPr H % (A.19)
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If there exists a matrix W € C">"2 satisfying

(A— Ag)(W) =0, (A.20)
IPr (W — sgn[ LX) Dl < % (A.21)

and
[Pro(W)| < % (A.22)

then X is the unique minimizer to (10).

Proof of Lemma 20 See Appendix F. O

Lemma 20, similarly to [10, Lemma 1], claims that if
there exists a dual certificate matrix W, which satisfies
(A.20) to (A.22), then x is the unique minimizer to (10).
Compared to the previous result [10, Lemma 1], Lemma 20
allows a larger deviation of the dual certificate W from the
sign matrix of £(x). (Previously, the upper bound was in the
order of n=2))

Remark 21: The relaxed condition on W in (A.21) provides
a performance guarantee at sample complexity of the same
order compared to the previous work [10]. However, in the
noisy case, this relaxed condition provides an improved perfor-
mance guarantee with significantly smaller noise amplification
factor given in Theorem 3.

The next step is to construct a dual certificate W that
satisfies (A.20) to (A.22). The version of the golfing scheme
by Chen and Chi [10] still works in the setup of this theorem.
They construct a dual certificate W as follows: recall that the
elements of Q are i.i.d. following the uniform distribution on
[#] :={0,---,n — 1}. The multi-set Q is partitioned into jo
multi-sets, Qi,...,Qj, so that each Q; contains m/jo i.i.d.
samples. A sequence of matrices (Fo, ..., Fj,) are generated
recursively by

Fj=Pr (A— @Ag.) Fisi, j=1,...,j,
m J
starting from Fp = sgn[L(x)] = UV*. Then, W is obtained

by

Jo .
_z IO 4x L id — ,
W—' l(mAQj"r‘ld A)Fj_l.
j:

Chen and Chi showed that if jo = 3log;, n for a small
constant € < e~!, then W satisfies (A.20) and (A.21) with
high probability [10, Section VI.C]. In fact, they showed that
a sufficient condition for (A.21) given by

IPrW — senl LD = 5 5
n
is satisfied. Thus, without any modification, their arguments
so far apply to completion of structured matrices in the
setup of this theorem. Chen and Chi verified that W satisfies
(A.20) and (A.21) [10, Sec. VI.C]. Without any modification,
their arguments so far apply to completion of structured
matrices in the setup of this theorem.

They verified that W also satisfies the last property in (A.22)
with some technical conditions [10, Sec. VL.D]. Specifically,
Chen and Chi verified that W satisfies (A.22) through a

sequence of lemmas [10, Lemmas 4-7] using intermediate
quantities given in terms of the following two norms:

Ml g,00:= max [(Ax, M)| [ Akll, (A.23)
1<k<n

and

n 1/2
||M||A,2:=(Z|<Ak,M>|2||Ak||2) . (A29)
k=1

Since most of their arguments in [10, Secs. VI.D and VLE]
generalize to the setup of our theorem, we do not repeat
technical details here. However, there was one place where
the generalization fails. The results in [10, Lemma 7] provide
upper bounds on the initialization of the dual certificate
algorithm in the above two norms. We found that Chen
and Chi used both the standard incoherence (9) and the
basis incoherence (A.18) in this step. In fact, the proof of
[10, Lemma 7] depends crucially on a Vandermonde decompo-
sition with generators of unit modulus. In spectral compressed
sensing, by controlling the condition number of Vandermonde
matrices, both incoherence properties are satisfied with the
same parameter. In fact, this is the place where their proof
fails to generalize to other structured matrix completion.

In our setup, we assume that (A.15) is satisfied. By
Lemma 19, the standard incoherence property implies the
basis incoherence, and then the dependence on the structure
due to a Vandermonde decomposition disappears. Thus, only
the standard incoherence of L(x) is included among the
hypotheses.

Lemma 22: [10, Lemma 7] Let |-l 4,00 and |-l 4,2 be
defined respectively in (A.23) and (A.24). The standard inco-
herence property with parameter p implies that there exists
an absolute constant cg such that

luv*| - '“7’”, (A.25)
A0 = min(ny, no)
2
cour log n
Uv* 2 ot 0e 7 A.26
i 20
and
2 cﬁlurlogzn
P (A ‘/QA)H = iy k=L..n
H T (I1Aklly"™ Ak A2 ~ min(ny, ny) !
(A27)

Proof of Lemma 22: Although [10, Lemma 7] did not
assume that U € C"*" (resp. V € C™*") consists of the left
(resp. right) singular vectors of a rank-r Hankel matrix with a
Vandermode decomposition with generators of unit modulus,
this condition was used in the proof by Chen and Chi [10,
Appendix H]. More precisely, they used the Vandermonde
decomposition to get the following inequalities:

ur

2 2
jmax [UTe; < O and max [Ve;|; <

ur
ny

These inequalities are exactly the standard incoherence prop-
erty with parameter x. Except these inequalities, their proof
generalizes without requiring the Vandermonde decomposi-
tion. Thus, we slightly modify [10, Lemma 7] by including
the standard incoherence as an assumption to the lemma. O
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The proof by Chen and Chi [10] focused on the
Hankel-block-Hankel matrix where the elements in the basis
{Ar};_, have varying sparsity levels. In the case of structured
matrices with the wrap-around property, the sparsity levels of
{Ar};_, are the same. Thus, this additional property can be
used to tighten the sample complexity by reducing the order
of logn term. More specifically, we improve [10, Lemma 7]
with the wrap-around property in the next lemma. (The upper
bounds on the terms in ||-|| 4, were larger by factor of log®n
in [10, Lemma 7].)

Lemma 23 Analog of [10, Lemma 7] With the Wrap-Around
Property: Let ||| 4,00 and |-l 42 be defined respectively
in (A.23) and (A.24). The standard incoherence property with
parameter p implies

JUve] 4 < ——, (A.28)
%7 min(ny, n2)
ur
uvH?, < ——0, A29
10vlaz = s (A2
and
2
1/2 9 _

[Pr (1aels” ax) |, = e YE=1om.
(A.30)
Proof of Lemma 23: See Appendix G. (]

In the wrap-around case, it only remains to verify that we
can drop the order of logn from 4 to 2. In the previous
work [10, Sec. VLE], the log*n term appears only through
the parameter us, which is in the order of log?n. Due to
Lemma 23, parameter x5 reduces by factor of log? n. Thus, the
sample complexity reduces by the same factor. This completes
the proof.

F. Proof of Lemma 20

Our proof essentially adapts the arguments of Chen and Chi
[10, Appendix B]. The upper bound on the deviation of W
from sgn[£(x)] in (A.21) is sharpened in order by optimizing
parameters.

Let X = x + h be the minimizer to (10). We show that
L(h) = 0 in two complementary cases. Then by the injectivity
of £, h =0, or equivalently, X = x.

Case 1: We first consider the case when L(h) satisfies

IPrLM) | < 3n||ProLh)|. (A31)

Since T is the tangent space of L(x), PriL(x) = 0.
Thus Pr(sgn[L(x)] + sgn[Pr.L(h)]) = Pr(sgn[L(x)]).
Furthermore, |sgn[£(x)] + sgn[Pr.L(h)]| < 1. Therefore,
sgn[L(x)] + sgn[PrLL(h)] is a valid sub-gradient of the
nuclear norm at £(x). Then it follows that

I£(x) + L(h) ],
> L&), + (sgn[L(x)] + sgn[Pr1 L(h)], L(h))
= [IL&) I, + (W, L(h)) + (sgn[Pr1 L(h)], L(h))
— (W —sgn[L(X)], L(h)). (A.32)

In fact, (W, L(h)) = 0 as shown below. The inner product

of L(h) and W is decomposed as
(W, L(h)) = (W, (id — A)L(h) + (W, (A — Ag)L(h))
+ (W, AGL(h)). (A.33)

Indeed, all three terms in the right-hand-side of (A.33)
are 0. This can be shown as follows. Since A is the
orthogonal projection onto the range space of L, the first
term is 0. The second term is 0 by the assumption on W
in (A.20). Since X is feasible for (10), Po(X) = Pqo(x). Thus
Po(h) = Po(X — x) = 0. Since {A;};_, is an orthonormal
basis, we have

AwL(h) = Z (ex, ) (A, Ar) =0, Vo e Q. (A.34)
ke[n\Q
It follows that Ag, £(h) = 0. Thus, the third term of the right-
hand-side of (A.33) is 0.

Since the sgn(-) operator commutes with Py, and Pr1 is
idempotent, we get

(sgn[PrLL(0)], L(h)) = (Prisgn[PriL(h)], L(h))
sgn[PriL(h)], PriL(h))

= |Pro L], .

=
=

Then (A.32) implies

I£(x) + LM, = 1Ll + [|Pre L],
— (W —sgn[L(x)], L(h)). (A.35)

We derive an upper bound on the magnitude of the third
term in the right-hand-side of (A.35) given by

KW — sgn[L(x)], L(h))]
= [(Pr(W —sgn[L(x)]), L(h))
+ (Pro(W —sgn[L(X)]), L(h))]
< (Pr(W —sgn[LX)]), L(h))| + [(PrL(W), L(h))]

(A.362)
< Pr(W —sgn[ LX) DI IPrL(h)[|g
+ [ PreW) | |Pro) |, (A.36b)
1 1
= - IPrLMls + 3 |Proeay],, (A.360)
n 2

where (A.36a) holds by the triangle inequality and the fact
that Py L(x) = 0; (A.36b) by Holder’s inequality; (A.36c)
by the assumptions on W in (A.21) and (A.22).

We continue by applying (A.36a) to (A.35) and get

I1£(x) + L),
1 1
> L) = o IPrLMIE + 5 |PreLm,

3 1

= 1Ll = 3 |PreL@|p+ 3 [Pro LW
1

= 1Ll + 7 [Pro LB

where the second step follows from (A.31).
Then, [L®)|, = 1Ll > [£®)

o which implies
PriL(h) = 0. By (A31), we also have PrL(h) = 0.
Therefore, it follows that L(h) = 0.

Case 2: Next, we consider the complementary case when
L(h) satisfies

IPrLM) g =3n [P L) (A37)
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Note that (A.34) implies AqL(h) = 0. Then together with
(id — AL =0, we get

(%AQ +id — A) L(h) =0,
which implies
0= (Prem), (%AQ +id - A) L)
= (Prem), (%AQ +id = A) PrL®)
n <7?T£(h), (%AQ +id — A) PTLﬁ(h)>. (A.38)

The magnitude of the first term in the right-hand-side
of (A.38) is lower-bounded by

‘<7DT£(h), (%AQ +id — A) Prﬁ(h)ﬂ
= |(PrL(h), PrL(h))|
- ’<PT£(h), (A - %Ag) PTﬁ(h)H

IPrLM®)IE — |PrAPr = ~PrAaPr | IPr L0 I

v

v

1
3 IPrLh)IE, (A.39)

where the last step follows from the assumption in (A.19).

Next, we derive an upper bound on the second term in
the right-hand-side of (A.38). Since Ay; is an orthogonal
projection for j € [m], the operator norm of - Aqg +id — A
is upper-bounded by

|2 Aq +id - 4]
m
n . S
= | Aw +id = A+ | Ao, | 1
j=2
< % max (|| Ao, |, Ilid — All) + z | Ao, I
j=2
. (A.40)

where the second step follows since A, (id — .A) = 0.
The second term in the right-hand-side of (A.38) is then
upper-bounded by

(Prea), (3-Aa +id = A) ProLb)
= | =40 +id = A| IPr L@ [P L]
< nPrL@®g [Pro L) (A41)

where the last step follows from (A.40).
Applying (A.39) and (A.41) to (A.38) provides

0= |(Prem), (A +id - A) Proow)|
m
~ [(Pre@), (% Aa +id - A4) Pro L))

v

1
5 IPrLMYIE — n I PrLM) g | Pro L),

v

1 1
5 IPrL(h)|IE — 3 IPr L(h) |1

1
=z IPrL(h)|E > 0,

where the second inequality holds by (A.37).

Then, it follows that Pr L(h) = 0. By (A.37), we also have
PriL(h) = 0. Therefore, L(h) = 0, which completes the
proof.

G. Proof of Lemma 23

The proof is
of [10, Lemma 7].
The first upper bound in (A.28) is derived as follows:

obtained by slightly modifying that

* *
[0V 4 = max (4 UVI] 1A
| Zircsuopian UV 1 |
= max
1<k<n lAxllo
< max  |[UV*];;]
1<k<n (i, j)esupp(A)
= max max |[[UV* 1ijl
1<i<n) 1<j<ny
= max max |ejUV7"ej|
1<i<n; 1<j<ny
= max [Utei, max [|[V7e;|,
S . il .
— J/niny T min(ny, ny)

This proves (A.28).

Next, to prove (A.29) and (A.30), we use the following
lemma.

Lemma 24: Let M € C"*"2, Then,

max | Me; Hz) (A42)

1<<

2
M7 , < max (122(” e

Proof of Lemma 24: See Appendix H. d
Then, (A.29) is proved as follows: Since U and V are
unitary matrices, we have

lefuv=]p = [Ueill, and [UVZe;fp =] Ve,

for all 1 <i <mn; and for all 1 < j < njy. Thus,

leruve: luvee ;) < ———
max(lg}ax e F’ Lnag; e] ) = min(nla nz) .
(A.43)

Then (A.29) follows by applying (A.43) to Lemma 24 with
M=UV*.
Lastly, we prove (A.30). By definition of Pr,

¢ [PT (e a) ][

2
eUUt Al A

2
1/2
e Al > Ay VV* )

1/2

2
+3 |efUU™ || Akl AkVV*F, (A.44)

for all i € {1,...,n1}. The first term in the right-hand-side
of (A.44) is upper-bounded by

2
2 2 ur
e UU* Al AkH <HC*UH2H||AI<||1/ Ak” <=,
(A.45)
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where the last step follows from [[Agll < [[Aclly"/*. Since
IVV*|| < 1, the first term dominates the third term in the
right-hand-side of (A.44). Note that || Ak ||0 Ak is a submatrix

of a permutation matrix. Therefore, e ||Ak||0 Ak = e}

J
for some j € {l,...,n1}. Then, the second term in the

right-hand-side of (A.44) is upper-bounded by

2
‘e;* AN AV v = ‘e vve|? = AT (A46)
F ny
Plugging (A.45) and (A.46) to (A.44) provides
2 9
max ‘e}k [PT (||Ak||(1)/2 Ak)]H <M (A4
1<i<n; F ~ min(ny, ny)
By symmetry, we also get
2 Qur
max [PT (||Ak||(1)/2 Ak)]ej H <M (A48)
1<j<n» F ~ min(ny, ny)

Applying (A.47) and (A.48) to Lemma 24 with
M =Pr (||Ak||(l)/2 Ak) completes the proof.

H. Proof of Lemma 24
The inequality in (A.42) is proved as follows:

IMI%, = ZI Ar, MY | Ag?
k=1
2
- ’Z(i,j)esupp(Ak)[M]i,j 5
=2 T Al
k=1 kllo
2
. (Z(i,j)esupp(Ak) |[M]i,j|) s
=2 I A
k=1 lAxllo
n
=2 > MRl
k=1 (i, j)esupp(Ax)
= M1 1%
- mln{nl,nz} Z Z IIM]i,1

k=1 (i, j)esupp(Ax)

ni n»
B 2
- mm{nl,nz} ;; M)
1 & 2
< max ZH *Muza _ZZHMejuz
i=1 Jj=1

2 2

< mon (s Bl s, Dt ).

where the third inequality follow from (A.17).
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