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Joint Angular Refinement and Reconstruction
for Single-Particle Cryo-EM

Mona Zehni , Laurène Donati , Emmanuel Soubies , Zhizhen Zhao , and Michael Unser

Abstract— Single-particle cryo-electron microscopy (cryo-EM)
reconstructs the three-dimensional (3D) structure of bio-
molecules from a large set of 2D projection images with random
and unknown orientations. A crucial step in the single-particle
cryo-EM pipeline is 3D refinement, which resolves a high-
resolution 3D structure from an initial approximate volume by
refining the estimation of the orientation of each projection.
In this work, we propose a new approach that refines the pro-
jection angles on the continuum. We formulate the optimization
problem over the density map and the orientations jointly. The
density map is updated using the efficient alternating-direction
method of multipliers, while the orientations are updated through
a semi-coordinate-wise gradient descent for which we provide
an explicit derivation of the gradient. Our method eliminates
the requirement for a fine discretization of the orientation
space and does away with the classical but computationally
expensive template-matching step. Numerical results demonstrate
the feasibility and performance of our approach compared to
several baselines.

Index Terms— Single-particle cryo-EM, joint reconstruction,
continuous angular refinement, ADMM, gradient descent.

I. INTRODUCTION

S INGLE-PARTICLE cryo-electron microscopy (cryo-EM)
aims at obtaining the three-dimensional (3D) atomic struc-

tures of biological macromolecules such as proteins or viruses.
Replicates of a molecule of interest, in unknown orientations,
are first imaged at cryogenic temperatures. From those 2D pro-
jections (Figure 1 left), one then reconstructs the 3D density
map of the molecule (Figure 1 right), a computational process
named “single-particle analysis” (SPA). The reconstruction
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Fig. 1. Single particle analysis. Left: Samples of the noisy projection
images used in this experiment. Right: Comparison between the central slices
of (a) the ground-truth, (b) the reconstruction from the true orientations,
(c) the reconstruction obtained with our joint refinement method, (d) the
reconstruction from the unrefined initial orientations.

task in SPA is extremely challenging due to the lack of knowl-
edge on the projection directions, heavy noise and the blurring
inherent with the point spread function (PSF) of the micro-
scope. To tackle this difficulty, most methods start by estimat-
ing an ab-initio model from class-averaged particle images.
Then, this initial model is refined iteratively until a high-
resolution map is obtained, a task named “3D refinement”.

A. Standard 3D Refinement Techniques

Currently, state-of-the-art refinement techniques [1]–[4] pro-
duce a high-resolution density map by alternating between

1) the reconstruction of the 3D density map for a given set
of (however inaccurate) projection orientations;

2) the refinement of the projection orientations for all
2D particles based on the previously reconstructed 3D
volume.

The reconstruction problem can be solved using different
approaches such as algebraic methods [5], [6], weighted back-
projection (WBP) [7], direct Fourier methods [8]–[10], and
iterative regularized approaches [11]–[13].

In most SPA packages, direct Fourier methods based on
the central-slice theorem are used. Those methods work ade-
quately when the projections are sufficiently numerous and
their speed is a key advantage. Unfortunately, their use is
less appropriate in the presence of heavy noise, few projection
measurements, or inaccurately known projection angles.

The past years have seen the appearance of more robust
iterative schemes that formulate the 3D reconstruction problem
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as a regularized optimization problem and enable the incor-
poration of prior knowledge on the underlying signal [14].
Their downside is that iterative schemes usually come with a
prohibitive computational cost if not carefully engineered.

Several works have considerably improved this situation
by proposing methods with increased speed. In particular,
an important breakthrough came when a costly step of many
reconstruction algorithms was shown to be quickly computable
as a discrete convolution [13], [15], [16].

For the angular-refinement task, the most commonly used
method is projection-matching [17], [18]. It compares every
projection image against a finite set of clean templates
obtained from the current estimate of the 3D density map
and then assigns the angular parameters based on the clos-
est match [19]. Projection-matching hence performs angular
assignment on a discretized orientation space. As a conse-
quence, the quality of the angular refinement depends on the
fineness of the discretization and the quality of the density map
used to generate the templates. One bottleneck is that a fine
discretization comes at the cost of large set of templates, which
leads to a computationally expensive procedure. Moreover,
methods based on projection-matching were found to degrade
significantly in low SNR regimes [20] or when errors occur
in the estimation of the density map used for the generation
of the clean templates [21].

Examples of joint-reconstruction methods that address 3D
ab initio modeling are found in [22], [23]. In [22], a frequency-
marching approach that increases the resolution of the recon-
struction is proposed. This leads to a smaller computational
overhead in projection-matching steps. In [23], the density
map parameters are updated through gradient descent while the
projection orientations are recovered through exhaustive search
on an SO(3) grid, followed by convex optimization. Although
they provide efficient 3D ab initio modeling, these methods
still suffer from the shortcomings of projection-matching.

Finally, a joint-reconstruction framework for 2D tomogra-
phy with unknown projection orientations is proposed in [24].
The problem is solved through simulated annealing, which
strongly limits its applicability to 3D tomography due to its
high computational cost.

B. Maximum-Likelihood Methods

Scheres followed a Bayesian approach in [1] to formulate
the 3D refinement problem as a maximum marginalized a
posterior (MAP) estimation [25] that is solved by expectation
maximization [26]. This method is less sensitive to the initial
model and brings higher robustness in low SNR regimes.
However, its high computational complexity limits its
applicability.

Punjani et al. proposed a computationally efficient frame-
work in [21]. They formulated the 3D refinement problem as
a MAP estimation and solved it by stochastic average gradient
descent. They also used importance sampling to further reduce
the cost of computing the marginalized likelihood.

An advantage of maximum-likelihood-based methods is
that they do not limit a particle image to a unique angular
class. This leads to increased robustness in high-noise regimes

compared to projection-matching procedures. However, they
still involve some form of discretization of the projection
orientations. In particular, they necessitate an overly fine
discretization of the 3D orientation space, as well as a
compactly supported grid over R

2 for in-plane translations.
Moreover, the marginalization process is usually computation-
ally expensive.

C. Contributions

In this work, we present a refinement method for single-
particle cryo-EM that jointly recovers the 3D density map
and the orientation of each projection. This joint optimization
problem is solved by letting the alternating-direction method
of multipliers (ADMM) and gradient-descent steps take turns
to update the density map and the orientations, respectively.

We use an explicit derivation of the gradient of the objective
function (Theorem 1) to optimize the orientations over a
continuous space. Hence, a key advantage of the proposed
approach over usual methods is that it avoids one to resort
to a fine discretization of SO(3) for the orientations and R

2

for the in-plane translations. Moreover, the computationally
expensive step of projection-matching is skipped.

By using fast algorithms, we are able to efficiently refine 3D
density maps from sets of projections with poor initial angular
estimation. We illustrate in Figure 1 the type of refinements
obtained with our joint-optimization framework, compared to
a few baselines.

The paper is organized as follows: We describe in Section II
the image-formation model. In Section III, we detail our joint-
optimization framework. The experimental setup is described
in Section IV and results are presented in Section V. Finally,
we conclude this work in Section VI.

D. Notations

Sequences from Z
d → R are denoted by c[·]. Then,

sequence samples are c[k] with k = (k1, . . . , kd) ∈ Z
d .

Bold lowercase letters (e.g., c) represent vectors while bold
uppercase letters are reserved for matrices (e.g., H). All vectors
are assumed to be column vectors unless otherwise stated.
The �1 and �2 norms of the vector c ∈ R

N are defined as

‖c‖1 := ∑N
n=1|cn| and ‖c‖2 := (∑N

n=1|cn|2
) 1

2 , respectively.
The spaces �2(Z

d ) and L2(R
d ) contain finite-energy sequences

and functions, respectively. The proximal operator of a convex
functional R : R

N → R is defined as proxR(z;μ) :=
argmins

(
1
2‖s − z‖2

2 + μR(s)
)

, with μ ∈ R
+. The Fourier

transform of f is f̂ . The reflection of a function f is denoted
f ∨ = f (−·). Finally, the projection orientations and the
in-plane translations are referred to as “latent variables”.

II. CRYO-EM IMAGING MODEL

A. Imaging Model for a Single Orientation

Let V ∈ L2(R
3) denote the 3D density map of a molecule

and let �2D ⊂ Z
2 be the discretized projection domain (see

Figure 2). The number of elements in �2D is M = ��2D.
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Fig. 2. 3D Geometry of the imaging model for an orientation θ =
(θ1, θ2, θ3). The Euler angles θ1, θ2, and θ3 represent the rotation, the tilt,
and the in-plane rotation in the projection plane, respectively.

We model a cryo-EM projection image g : �2D → R for
an orientation θ = (θ1, θ2, θ3) ∈ [0, 2π) × [0, π] × [0, 2π)
and an in-plane translation t = (t1, t2) ∈ R

2 as

g[m] = (h ∗ Pθ(V ) )(�m − t)+ ε[m], (1)

where � = diag(�1,�2) is a diagonal matrix formed out of
the sampling steps �1 and �2 of the projection domain and
ε : �2D → R is an additive Gaussian white noise with zero
mean and σ 2 variance. The operator Pθ : L2(R

3) → L2(R
2)

is the projection operator for the orientation θ and h ∈ L2(R
2)

corresponds to the PSF of the microscope. The vectorization
of g is g = (g[m])m∈�2D so that g ∈ R

M . The same goes for
ε and ε.

B. Discretization

To discretize the 3D density map V , we follow a generalized
sampling scheme [27] and define

V (x) =
∑

k∈Z3

c[k]ϕ(x − k), ∀x ∈ R
3, (2)

where ϕ ∈ L2(R
3) is a given basis function and c[·] ∈

�2(Z
3) is a sequence that contains the coefficients of V in the

reconstructing space. The sampling step in the object domain
is assumed to be equal to one, without loss of generality.

In this work, we choose ϕ to be the optimized Kaiser-Bessel
window function (KBWF) [28]

ϕ(x) =

⎧⎪⎨⎪⎩
βa(‖x‖)m Im

(
αβa(‖x‖))

Im(α)
, ‖x‖ ∈ [0, a]

0, otherwise,
(3)

where βa(r) =
√

1 − (r/a)2, a > 0 is the support radius,
α > 0 the window taper, and Im the modified Bessel
function of order m. KBWFs are well suited for tomographic
reconstruction in reason of their isotropy and compact support
[13], [28]. Moreover, the x-ray transform of KBWF does
not depend on the orientation θ and admits a closed-form

expression [29]. It was shown in [28] that a KBWF repre-
sents functions very effectively when using specific parameter
values (e.g., m = 2, a = 4, and α = 19).

Because the density map V is compactly supported,
the sequence c[·] ∈ �2(Z

3) can be restricted to a finite number
of nonzero coefficients c = (c[k])k∈�3D, where �3D ⊂ Z

3 and
N = ��3D.

We then substitute (2) in (1), and use the linearity and the
pseudo-translation invariance of the x-ray transform [30] to
obtain a discrete version of the forward model, as in

g[m] =
∑

k∈�3D

c[k](h ∗ Pθ(ϕ))(�m − Mθ⊥k − t)+ ε[m].

(4)

Here, Mθ⊥ ∈ R
2×3 is the orthogonal projector operator

Mθ⊥ =
(

C1C2C3 − S1S3 C3S1 + C1C2S3 −C1S2
−C1S3 − C2C3S1 C1C3 − C2S1S3 S1S2

)
, (5)

where ∀i = {1, 2, 3}, Ci = cos(θi) and Si = sin(θi ).
Finally, we write (4) as

g = H(θ, t) c + ε, (6)

where H(θ, t) ∈ R
M×N is the discrete imaging operator for

orientation θ and in-plane translation t.

C. Global Imaging Model

We now consider a set of P projection images (indexed
as gp) such that g = {gp ∈ R

M }P
p=1. Similarly, the set of

projection orientations is defined as � = {θp ∈ }P
p=1 and

the set of in-plane translations as � = {tp ∈ R
2}P

p=1.
The global imaging model is thus given by

g = H(�,�) c + ε, (7)

where

g =

⎡⎢⎢⎣
g1
...

gP

⎤⎥⎥⎦ , H(�,�) =

⎡⎢⎢⎣
H(θ1, t1)

...
H(θP , tP )

⎤⎥⎥⎦ , ε =

⎡⎢⎢⎣
ε1
...

εP

⎤⎥⎥⎦ (8)

For the sake of clarity we shall thereafter use the nota-
tions HT H(�,�) = (H(�,�))T H(�,�) and HT (�,�) =
(H(�,�))T .

III. JOINT ANGULAR REFINEMENT

AND RECONSTRUCTION

A. Joint-Optimization Framework

Our goal is to jointly estimate the unknown variables in (7),
which are the coefficients c of the density map, the projection
orientations �, and the in-plane translations �. To do so,
we express the refinement procedure as a regularized least-
squares minimization(

ĉ, �̂, �̂
) ∈
{

arg min
c,�,�

J (c,�,�)} , (9)

where

J (c,�,�) = 1

2
‖g − H(�,�) c‖2

2 + λR(Lc). (10)
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Algorithm 1 Joint-Optimization Framework

Here, R is a sparsity-promoting functional and L a linear
operator. Together, they are used to inject prior knowledge
into the reconstruction process. As an example, setting L = ∇
(i.e., the gradient operator) and R = ‖·‖2,1 leads to the popular
total-variation (TV) regularization [31]. The regularization
parameter λ controls the balance between the data-fidelity and
the regularization terms.

To solve (9), we alternate between the minimization over c
and the minimization over � and �. Although the objective
function in (9) is convex with respect to c, it is not convex
with respect to the latent variables � and �. Moreover, it is
smooth with respect to � and �, but usually not smooth
(due to R) with respect to c. This dictates the choice of
two different minimization procedures within the proposed
alternating scheme.

For the minimization of J with respect to c, we use
ADMM [32], which allows us to split the problem into a
sequence of simpler subproblems (see Section III-B). Then,
taking benefit from the differentiability of J with respect to
� and �, the latent variables are updated using gradient-
descent with line-search (see Section III-C). The outline of
this joint optimization procedure is given in Algorithm 1 and
is implemented within the framework of the GlobalBioIm
library1 [33].

Note that, at Line 3 of Algorithm 1, we use the notation
ADMM

(
J (·,�k,�k), ck

)
to refer to the minimization of

J (·,�k,�k) using ADMM initialized with ck . We do the
same for the gradient-descent algorithm (see Line 4).

B. Update of the Density Map

Given � and �, the reconstruction task consists in solving

ĉ = arg min
c

J (c,�,�). (11)

To do so, we use the ADMM scheme proposed in [13]. The
core idea is to split (11) by introducing an auxiliary variable
u so that

ĉ = arg min
c

(
1

2
‖g − H(�,�) c‖2

2 + λR(u)
)

s.t . u = Lc. (12)

Then, the ADMM algorithm alternates between three steps,
as summarized in Algorithm 2.

1http://bigwww.epfl.ch/algorithms/globalbioim/

Algorithm 2 ADMM (Update of the Density Map)

When TV regularization is used, the proximal operator at
Line 4 admits a closed-form expression that can be computed
efficiently [34]. Then, the linear step at Line 6 is solved
iteratively using a conjugate-gradient algorithm together with
a fast formulation of the HT H(�,�) term [13]. Finally, Line 7
corresponds to a simple update of the dual variable ũ, while
ρ > 0 is a penalty parameter.

For the sake of completeness, the full set of equa-
tions behind the reconstruction algorithm is provided in
Appendix A.

C. Update of the Latent Variables

Let us first remark that the least-squares term in (10) can
be written as

1

2
‖g − H(�,�) c‖2

2 = 1

2

P∑
p=1

‖gp − H(θp, tp) c‖2
2. (13)

Hence, when c is fixed, the minimization of J (c, ·, ·) amounts
to solve

(θ̂p, t̂p) ∈
{

arg min
θ,t

Jp(θ, t)
}

(14)

for all p ∈ {1, . . . , P}, where Jp : (θ, t) 
→ R
+ ∪ {0} is

defined as

Jp(θ, t) = 1

2
‖gp − H(θ, t) c‖2

2. (15)

As the objective function Jp is differentiable, the minimization
in (14) can be achieved using gradient-descent steps. Hence,
we first need to compute the gradients

∇θJp(θ, t) =
(
∂Jp

∂θ1
(θ, t),

∂Jp

∂θ2
(θ, t),

∂Jp

∂θ3
(θ, t)

)
(16)

∇tJp(θ, t) =
(
∂Jp

∂ t1
(θ, t),

∂Jp

∂ t2
(θ, t)

)
. (17)

The explicit expressions of these quantities are provided in
Theorem 1.

Theorem 1: Let ϕ be an isotropic kernel and H(θ, t) ∈
R

M×N be defined by (4). Then, for v ∈ {θ1, θ2, θ3, t1, t2},
there exists rv ∈ R

N and qv ∈ R
N such that

∂Jp

∂v
(θ, t) = 1

2
cT (rv ∗ c − 2qv

)
. (18)

Moreover, ∀k ∈ �3D,
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Algorithm 3 GD (Update of the Latent Variables)

• if v = θi for i ∈ {1, 2, 3},

rv [k] = 1

det(�)

(
∂Mθ⊥

∂θi
k
)T

∇ (ψ ∗ ψ∨) (Mθ⊥k), (19)

qv [k] = 1

det(�)

(
∂Mθ⊥

∂θi
k
)T

∇(gp ∗ ψ∨)(Mθ⊥k + t), (20)

• if v = t j for j ∈ {1, 2},
rv [k] = 0, (21)

qv [k] = 1

det(�)

∂(gp ∗ ψ∨)
∂y j

(Mθ⊥k + t), (22)

where ψ : y = (y1, y2) 
→ (h ∗ P(ϕ))(y), ∂M
θ⊥

∂θi
∈

R
2×3 contains the entry-wise derivatives of Mθ⊥ , and gp

denotes the continuous counterpart of gp (i.e. interpolated
values).

The proof is given in Appendix B and includes details on
the gradients of ψ ∗ ψ∨ and gp ∗ ψ∨. In particular, we show
that they depend on P(ϕ) and ∂P(ϕ)

∂y j
whose expressions are

provided in Proposition 1 for the specific case of the KBWF
ϕ in (3).

Proposition 1: For the KBWF ϕ given in (3), we have

P(ϕ)(y) = a A βa(‖y‖)m+ 1
2 Im+ 1

2

(
αβa(‖y‖)) , (23)

∂P(ϕ)
∂yv

(y) = −αyv A

a
βa(‖y‖)m− 1

2 Im− 1
2
(αβa(‖y‖)), (24)

where A =
√

2π/α
Im (α)

.

The proof is given in Appendix C.
Equipped with those gradient expressions, we deploy

a semi-coordinate-wise gradient-descent to solve (14),

as summarized in Algorithm 3. At each iteration, the para-
meters θ and t are updated sequentially, which allows for
the use of different stepsizes between orientation and in-
plane translation. This is crucial to account for the different
dynamics between these two variables. Moreover, we use
adaptive steps that are selected according to a backtracking
line-search method [35], [36]. Given an initial value, the step
is decreased through the parameter η ∈ (0, 1) until the cost
that corresponds to the updated variable is smaller than its
current value (conditions checked in Steps 6 and 12).

Finally, to further accelerate the update of the latent vari-
ables, we divide the projection set {1, . . . , P} into mini-
batches and process them in parallel. It is the separability
of the objective function in (14), related to the indepen-
dence of projection images, that makes this parallelization
possible.

D. Computational Complexity

We compare the computational complexity of the proposed
latent variable update to that of projection matching. Let n and
m be such that N = n3 and M = m2 (i.e. , c ∈ R

n×n×n and
gp ∈ R

m×m ).
1) Projection Matching: Each iteration of projection match-

ing consists of two steps.

1) Generation of Clean Templates. Given the current den-
sity map c, evaluate the forward model H(θ, 0R2) c for
Nθ1 Nθ2 different values of θ = (θ1, θ2, 0) obtained by
sampling [0, 2π) with Nθ1 points and [0, π] with Nθ2

points. Denoting by CH the cost of one evaluation of
the forward model, the computational complexity of this
step is O(Nθ1 Nθ2 CH ).

2) Matching Projection Images gp. Each projection image
gp (p ∈ {1, . . . , P}) is compared against Nθ1 Nθ2 clean
templates. This requires rotation and in-plane translation
alignment whose complexity is O(m2 log m) if done
efficiently using polar Fourier transform [37], spherical
harmonics [38], or steerable basis functions [39].

The overall complexity of template matching is thus given
by O(Nθ1 Nθ2 (Pm2 log m + CH )). The cost of CH depends
on its implementation. An efficient way to compute it can,
for example, rely on the Fourier-slice theorem and the use of
non-uniform FFT. This strategy roughly requires one 3D-FFT
of the volume c, one interpolation step to extract the central
slice perpendicular to the projection direction, and one inverse
2D-FFT of this slice. This gives CH = n3 log n + m2 +
m2 log m. With such an implementation, the overall complexity
would thus be O(Nθ1 Nθ2 (Pm2 log m + n3 log n)).

2) Proposed Update Scheme: According to (18) in
Theorem 1, the evaluation of the partial derivative ∂Jp/∂v
can be done at the cost of a 3D convolution (only required
when v = θi ), a component-wise subtraction, and a scalar
product. This gives a complexity of O(n3 log n). To this has to
be added the cost of computing rv and qv in Theorem 1. First,
let us remark that

∂M
θ⊥

∂θi
is known in closed form from (5).

Hence, the complexity of computing
∂M

θ⊥
∂θi

k for all k ∈ �3D,
is O(n3). Then, we distinguish two situations:
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• Explicit Expressions of ∇ (ψ ∗ ψ∨) and2 ∇(gp ∗ ψ∨)
are Known. Given θ and t, the computation of rv and qv
amounts to their sampling at points Mθ⊥k (or Mθ⊥k+t),

for k ∈ �3D, followed by a scalar product with
∂M

θ⊥
∂θi

k,
resulting in an overall complexity of O(n3).

• Explicit Expressions of ∇ (ψ ∗ ψ∨) and ∇(gp ∗ψ∨) are
Not Known. Due to their independence upon θ and t,
the relevant quantities can thus be evaluated once (option-
ally upsampled) on the grid �2D using (39) together with
Proposition 1 and discrete convolutions (complexity of
O(m2 log m)). Having this precomputed quantity saved
as a lookup table, the evaluation of ∇ (ψ ∗ ψ∨) and
∇(gp ∗ ψ∨) at points Mθ⊥k (or Mθ⊥k + t) is done
by interpolation. Hence, here again, the computational
complexity is O(n3).

Considering that there are P projection images and that KGD
iterations of gradient descent are performed at each update of
the latent variables (see Algorithm 1), we obtain an overall
complexity of O(P KGDn3 log n).

Finally, given that KGD is typically small (for example in
our experiments KGD = 3) and that it is recommended [20] to
set Nθ1 Nθ2 in the order of n2 to maintain a precise estimation
of projection angles, the proposed method offers an interesting
improvement in runtime over projection matching.

IV. EXPERIMENTS

A. Datasets

We test our algorithm on two synthetic datasets. The first
dataset corresponds to the Holliday junction complex (HJC)
density map, while the second corresponds to the Human
patched 1 (PTCH1) protein. For each dataset, we generate
the synthetic ground truth V from the submitted density map
[40], [41], along with the associated atomic model in the
Protein Data Bank using Chimera [42]. The sizes of the HJC
and PTCH1 volumes used in our simulations are (90×90×90)
and (84 × 84 × 84), with voxel sizes of 2.867Å and 1.8Å,
respectively. We also synthesize a higher resolution version of
HJC with size 124 × 124 × 124 and voxel size 2Å. The first
two volumes are used in our proof of concept simulations;
the last volume is used in an experiment that mimics more
realistic cryo-EM conditions (section V.E).

From those ground truths, we then generate P projection
images according to the image-formation model provided
in (1). We sample the orientation space using P points in an
equi-distributed fashion over {(θ1,p, θ2,p)}P

p=1. The in-plane
rotations are generated by uniformly sampling P points on a
[0, 2π) interval. To perform in-plane translations, we move the
center of the projection images randomly by at most mt pixels
in either horizontal or vertical directions. In our experiments,
we use at most 20000 projection images to demonstrate the
feasibility of our method. Finally, the projection images are
corrupted with additive Gaussian noise with zero mean and
variance σ 2. The average signal-to-noise ratio (SNR) across all

projection images is then given by SNRdata = 1
P

∑P
p=1

‖g�p‖2
2

σ 2

where g�p correspond to noiseless measurements.

2Note that
∂(gp∗ψ∨)

∂y j
is nothing else than the j th component of ∇(gp ∗ψ∨).

B. Initial Density Map, Orientations, and
In-Plane Translations

To generate an approximate density map from which to start
the refinement procedure, we use the initial density map gen-
erated by 3D ab-initio model in Relion [43]. For the projection
orientations, we consider two possible initializations.

• Model Init-1: We add a zero-mean random variable
uniformly distributed in [−eθ , eθ ] to the ground-truth
orientations, i.e., θinit

p = θtrue
p + εθ,p where εθ,p, j ∼

Unif(−eθ , eθ ), p ∈ {1, . . . , P} and j ∈ {1, 2, 3}.
• Model Init-2: We use projection-matching (or another

angular assignment method) to assign the initial projec-
tion orientations θinit

p , p ∈ {1, . . . , P}. For this initial-
ization, we use the angular assignments from the 3D
ab-initio modeling in Relion.

The in-plane translations {tp}P
p=1 are all initialized by zeros.

With our notations we have that �init = {θinit
p }P

p=1, �true =
{θtrue

p }P
p=1, �init = {0}P

p=1, and �true = {ttrue
p }P

p=1.

C. Tuning of the Hyper Parameters

The parameters that need tuning are λ, ρ, and KADMM,
as used in the update of the density map (Algorithm 2), and αθ ,
αt , and KGD, as introduced in the update of the latent variables
(Algorithm 3). In our experiments, we use KADMM = 2 or
KADMM = 5, along with KGD = 3, αθ = 10−7, αt = 10−5,
and η = 0.25. The parameters λ and ρ grow like σ . We use
the same set of parameters for the two molecules. Similar to
[13], the parameters of the KBWF used in the expansion of
the volume in (2)-(3) are a = 4, α = 19, and m = 2.

D. Metrics

To assess the quality of reconstruction, we use the Fourier
shell correlation (FSC) between the reconstructed volume V rec

and the ground-truth V gt, as defined by

FSC(r) =
∑

ri ∈r V̂ rec(ri )V̂ gt(ri )
∗√∑

ri ∈r |V̂ rec(ri )|2∑ri ∈r |V̂ gt(ri )|2
. (25)

where r = {(xi , yi , zi ) : |
√

x2
i + y2

i + z2
i −r | ≤ εr }, for εr > 0,

denotes the set of all points in the discrete Fourier domain that
lie in a spherical shell with inner radius r −εr and outer radius
r +εr , centered at origin. The FSC thus computes the correla-
tion between two corresponding spherical shells of the density
maps in the Fourier domain. Moreover, we use the SNR metric
defined as SNR(V gt, V rec) = 20 log10

‖V gt‖2
‖V gt−V rec‖2

.

To assess the quality of the 3D orientation refinements,
we visualize the deviations of the refined angles from their
ground-truth values. In other words, we examine the distri-
bution of {θ true

i,p − θ rec
i,p }P

p=1 for i ∈ {1, 2, 3} and compare it

to {θ true
i,p − θ init

i,p }P
p=1. When the difference between the angles

is small (up to some global rotations), the distribution of the
differences is more concentrated around zero. On the contrary,
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Fig. 3. Reconstructions of PTCH1 and HJC. Left: Samples of the noisy projection images. Top row: 3D structures. Bottom row: Intensity maps of the central
slice of the structures. The presented volumes are (a) the ground truth, (b) the initial map, (c) the reconstruction with unrefined projection orientations, (d) the
output of our joint refinement approach, (e) the reconstruction with the true projection orientations, (f) the output of Relion after post-processing. For both
experiments, the latent variables are initialized following the Init-1 model with eθ = 0.7 [rad].

Fig. 4. Comparison between the FSC of the density maps obtained from several baselines and the ground-truth density map. Relion-w-postpr (green solid
curve) and Relion-wo-postpr (green dashed curve) refer to the Relion results with and without post-processing, respectively. Note that Relion-wo-postpr is
obtained after averaging the two half-maps. The experimental setups are identical to the ones used in Figure 3.

the distribution is more expanded for angles that are further
away from their ground-truth values.

E. Compared Methods

We compare our joint-optimization method to the following
approaches:

1) Reconstruction with Unrefined Orientations. We do not
refine the initial angles and directly reconstruct the
density map. This gives us an indication of the quality
of reconstruction prior to the refinement procedure.

2) Reconstruction with True Orientations. We reconstruct
the density map with the ground-truth orientations and
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Fig. 5. Probability density function (PDF) of the differences between the
true and refined projection orientations by our method {θ true

i,p − θ rec
i,p }P

p=1
(red curves), the true and refined projection orientations by Relion {θ true

i,p −
θRelion

i,p }P
p=1 (green curves), as well as the true and the initial projection

orientations {θ true
i,p − θ init

i,p }P
p=1 (blue curves). The experimental setup is

identical to Figure 3 (HJC). The x-axis is truncated between -20 and 20
degrees for the sake of clarity.

Fig. 6. Probability density function (PDF) of the differences between the true
and refined in-plane translations by our method {ttrue

i,p − trec
i,p }P

p=1 (red curves),

the true and refined in-plane translations by Relion {ttrue
i,p −tRelion

i,p }P
p=1 (green

curves), as well as the true and the initial in-plane translations {ttrue
i,p −tinit

i,p }P
p=1

(blue curves). The experimental setup is identical to Figure 3 (HJC).

in-plane translations. This serves as an oracle benchmark
that allows us to quantify the improvement brought by
our refinement procedure.

Fig. 7. Evolution through iterations for the refinement of PTCH1. The
experimental setup is the same as in Figure 3.

Fig. 8. Evolution of rc , the radial frequency at which the FSC equals 0.5.
Dash-dotted curve: Our joint-reconstruction framework. Solid curve: Recon-
struction with true orientation projections. Dashed curve: Reconstruction
with unrefined orientation projections. The experimental setup is identical
to Figure 3 (HJC).

3) Reconstruction with the Relion package [1]. We run
the 3D auto-refine function in Relion (version 2.1.0).
The default parameters of this function (e.g., Initial
angular sampling and Local searches from auto sam-
pling) are used. For the particular experiments in which
the in-plane translations are zero, the Initial offset
range and Initial offset step parameters are set to their
minimum values, which are 0 and 0.1, respectively.
Otherwise, they are set to 4 and 0.5, respectively. Note
that, to reduce the impact of noise when using Relion,
we mask the projection images with a soft circular mask
of a diameter that is proportional to the support of the
density map.

All reconstructions from Relion are post-processed. We first
apply a tight soft mask that embeds the maps. We then
low-pass filter the volumes with a cut-off frequency that
corresponds to the gold-standard FSC between the two half-
maps; this is done using the post-processing function in
Relion.
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Fig. 9. Reconstructions of HJC. Left: Samples of the noisy projection images. Top row: 3D structures. Bottom row: Intensity maps of the central slice of the
structures. The presented volumes are (a) the ground truth, (b) the initial map, (c) the output of our joint refinement approach after post-processing, (d) the
output of Relion after post-processing. For this experiments, the latent variables are initialized following the Init-2 model using the results from Relion 3D
ab-initio modeling. The parameters of this experiment are: P = 20000, SNRdata = −14.2 dB, mt = 3.

V. RESULTS

A. Visual Comparison

We compare in Figure 3 the refined maps obtained using our
join optimization scheme (Figure 3-(d)) and the other methods
(Figure 3-(c,e,f)). In that experiment, the latent variables are
initialized following the Init-1 model.

As expected, the reconstruction fails when the unrefined 3D
orientations are used (Figure 3-(c)). This confirms that angular
refinement is required to achieve a successful reconstruction.
Predictable as well is the fact that a perfect knowledge
of the true 3D poses leads to a successful reconstruction
(Figure 3-(e)). It can be clearly seen that the results of our
method (Figure 3-(d)) closely resemble the reconstructed map
resulting from perfect knowledge of the latent variables. This
shows the ability of our method to appropriately refine the
density map and the latent variables.

Figure 3-(f) contains the 3D density map refined by Relion.
We observe that the map refined through our method is more
similar to the ground-truth density map than the Relion output.

B. FSC Curves

The FSC curves of the reconstructed maps are sketched
in Figure 4. These curves confirm that our joint-optimization
approach (red dash-dotted curve) is able to appropriately
refine the low-resolution initial map. Its performance indeed
closely approaches that of the reconstruction with perfect
knowledge of 3D orientations (solid curve). Moreover, our
framework outperforms the Relion outcome with and without
post-processing (green curves).

C. Quality of Angular Refinement

In Figure 5, one finds the probability density function (PDF)
of the differences between 1) the true and initial projection
orientations (blue curve), 2) the true and refined projection
orientations by our method (red curve), and 3) the true and

refined projection orientations by Relion (green curve). The
optimal PDF is obtained when all the differences are zero,
up to a global rotation. The corresponding curve resembles a
delta function that is one at zero, and zero elsewhere. Based
on this, we observe that our proposed method performs well in
recovering the projection orientations and outperforms Relion.

Figure 6 compares the PDF of the difference between 1) the
true and initial in-plane translations (blue curve), 2) the true
and refined in-plane translations by our method (red curve),
and 3) the true and refined in-plane translations by Relion
(green curve). Here as well, the figure demonstrates the ability
of our method to refine in-plane translations, and its increased
performance compared to Relion.

D. Convergence Results

The evolution of the density map during refinement is
presented in Figure 7. The convergence in terms of resolution
of our framework and of two other baselines are shown
in Figure 8, where rc marks the radial frequency at which
the FSC between the true and the reconstructed density map
equals 0.5.

When the 3D projection orientations are perfectly known
(solid curve), the reconstruction process achieves a high-
resolution map in twenty iterations. A key result is that our
framework (dash-dotted curve) is able to converge to an almost
equally-high resolution map starting from less-than-ideal 3D
projection orientations. Once again, we observe failure when
reconstructing with the unrefined set of projection orientations.
This further confirms that refinement of the latent variables is
vital to achieve a high-quality reconstruction of the map.

E. Simulation of a Real Scenario

We then mimic a real scenario in which the output of the 3D
ab initio method provided by Relion is used to initialize both
the density map and the projection orientations. The in-plane
translations are initialized with zeros. We use the same HJC
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Fig. 10. Comparison between the FSC of the density maps obtained from
several baselines and the ground-truth density map. Relion-w-postpr (green
solid curve) and Relion-wo-postpr (green dashed curve) refer to the Relion
results with and without post-processing, respectively. Note that, Relion-wo-
postpr is obtained after averaging the two half-maps. The experimental setups
are identical to the ones used in Figure 9.

Fig. 11. Probability density function (PDF) of the differences between the
true and refined projection orientations by our method {θ true

i,p − θ rec
i,p }P

p=1

(red curves), the true and refined projection orientations by Relion {θ true
i,p −

θRelion
i,p }P

p=1 (green curves), as well as the true and the initial projection

orientations {θ true
i,p − θ init

i,p }P
p=1 (blue curves). The experimental setup is

identical to Figure 9.

structure to synthesize a volume with size 124 × 124 × 124
and with a voxel size of 2Å. The number of projection images
is 20, 000 and the average SNR of the projection images

Fig. 12. Probability density function (PDF) of the differences between the
true and refined in-plane translations by our method {ttrue

i,p − trec
i,p }P

p=1 (red

curves), the true and refined in-plane translations by Relion {ttrue
i,p −tRelion

i,p }P
p=1

(green curves), as well as the true and the initial in-plane translations {ttrue
i,p −

tinit
i,p }P

p=1 (blue curves). The experimental setup is identical to Figure 9.

is −14.2dB. Examples of projection images are provided
in Fig. 9 (left most column).

We split the projection dataset in two halves and refine each
half separately, starting from the same initial volume. Indepen-
dent refinement of the two halves is a common approach in
practice and has two main goals. First, by comparing the two
refined half maps against one another, a convergence criterion
is obtained. More precisely, we stop the refinement when the
FSC between the two half maps fails to improve from one
iteration to the next. Second, it reduces overfitting, especially
in high-noise regimes.

A visual comparison of the density maps refined by our
method and by Relion is presented in Fig. 9 (c)-(d). Both
results are post-processed by combining the half-maps and
filtering out frequencies beyond the gold-standard FSC by
applying a soft tight mask.

A quantitative comparison between our method and Relion
based on FSC is provided in Fig. 10. Our method outperforms
Relion both with and without post processing.

To assess the quality of the refined latent variables, we com-
pute the PDF of the errors between the refined and the
ground-truth projection orientations and in-plane translations.
We do this for both our method and Relion, and display
the comparisons in Fig. 11 and 12. We observe that the
proposed method enjoys comparable performance with Relion
for the refinement of the projection orientations and in-plane
translations.

Hence, while the proposed angular refinement offers a
substantial gain over Relion in the proof-of-concept exper-
iments, the difference here is less significant for a larger
volume and a noisier regime. However, our framework could
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be further improved in several ways. An option would be
to add regularization for the latent variable estimation. The
proposed framework could also be combined with the multi-
scale approach proposed in [13] to perform angle refinements
at coarser scales, which demonstrates increased robustness to
noise. We expect that those extensions would further improve
the performance of the method while keeping an attractive
numerical complexity as demonstrated in Section III-D. These
extensions are to be addressed in future works.

VI. CONCLUSION

We propose a variational 3D refinement framework for
single-particle cryo-electron microscopy that jointly refines
the density map and the 3D projection orientations. The
refinement of the orientations on the continuum does away
with the computationally expensive projection-matching steps.
We take alternating steps to update the density map and the
latent variables. Steps of the classical method known as the
alternating-direction method of multipliers are used to update
the density map, while the latent variables are updated through
gradient-descent. Our results demonstrate the ability of our
framework to refine an approximate map from inaccurate 3D
projection orientations. In addition, we show that the resolu-
tion of the refined map using our method closely approaches
that of the map reconstructed with perfect knowledge of the
3D orientations.

APPENDIX

A. Fast Reconstruction With ADMM

We use the ADMM scheme proposed in [13]. To that end,
we introduce an auxiliary variable u and constrain its value by
setting u = Lc, as done in (12). The form of the augmented-
Lagrangian function used in the ADMM procedure is thus
given by

L�,�(c,u, ũ) = 1

2
‖g − H(�,�) c‖2

2 + λR(u)
+ ũT (Lc − u)+ ρ

2
‖Lc − u‖2

2, (26)

where ũ is the Lagrangian multiplier that corresponds to the
constraint u = Lc and ρ is the penalty parameter. Then,
the ADMM algorithm alternates between a minimization of
L with respect to u, a minimization of L with respect to c,
and an update of the dual variable ũ.

The minimization of L with respect to u (Step 4 in
Algorithm 2) results in

uk+1 = arg min
u

(
λR(u)+ ρ

2
‖Lck − u + ũk/ρ‖2

2

)
, (27)

where one recognizes the proximity operator of R. Hence,

uk+1 = prox λ
ρR(Lck − ũk/ρ). (28)

Then, the objective function involved in the update of c at
Line 2 of Algorithm 2 is

L�,�(c,uk+1, ũk) = 1

2
‖g − H(�, �) c‖2

2

+ρ
2

‖Lc − uk+1 + ũk/ρ‖2
2, (29)

which is a convex quadratic function of c. Its minimization
yields the linear system of equations(

HT H(�,�)+ ρLT L
)

ck+1 = ρLT (uk+1 − ũk/ρ)

+HT (�,�)g. (30)

We solve it in terms of c using a conjugate-gradient method.
Note that, for the x-ray operator H(�,�), the quantity
HT H(�,�)c can be efficiently computed at the cost of one
FFT and one inverse FFT [13], [15], [16]. Indeed, we have
that

HT H(�,�)c = w(�) ∗ c, (31)

where the kernel w(�) ∈ R
N is given by, ∀k ∈ �3D,[

w(�)
]

k = 1

det(�)

P∑
p=1

(
ψθp ∗ ψ∨

θp

)
(Mθ p

⊥k), (32)

with ψθp = h ∗ Pθp(ϕ) a function that maps R
2 to R. It is

worth to mention that the kernel w(�) does not depend on
the in-plane translations �.

A similar strategy can be deployed to efficiently evaluate
the quantity HT (�,�)g. Let gp be the continuous version of
the measurements gp (i.e. , gp[m] = gp(�m)), which can for
instance be obtained via some interpolation of the elements
of gp. We then have that [13][

HT (�,�)g
]

k
= 1

det(�)

P∑
p=1

(
gp ∗ ψ∨

θp

)
(Mθ p

⊥k + tp).

(33)

The interest of (33) is that gp ∗ ψ∨
θp

can be precomputed on
a fine grid using discrete 2D convolutions. Then, each term
in the sum (33) comes at the price of an interpolation of this
precomputed quantity.

Finally, the Lagrange multiplier ũ in ADMM is updated
through a simple gradient-ascent step (Step 7 in Algorithm 2).

B. Proof of Theorem 1

Let us expand Jp(θ, t) in (15) as

Jp(θ, t) = 1

2
cT HT H(θ, t)c − cT HT (θ, t)gp + 1

2
‖gp‖2

= 1

2
cT (w(θ) ∗ c)− cT HT (θ, t)gp + 1

2
‖gp‖2, (34)

where w(θ) corresponds to one term in the sum (32). More-
over, because ϕ is isotropic, we have that Pθ(ϕ) = P(ϕ),
a quantity that does not depend on θ. Hence,[

w(θ)
]

k = 1

det(�)

(
ψ ∗ ψ∨) (Mθ⊥k), (35)

with ψ = h ∗ P(ϕ).
Then, from (34), one easily sees that, for all v ∈ {θ1, θ2,

θ3, t1, t2},
∂Jp

∂v
(θ, t) = 1

2
cT (rv ∗ c − 2qv

)
, (36)

where

rv = ∂w(θ)
∂v

and qv = ∂HT (θ, t)gp

∂v
. (37)

We now distinguish two cases.
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1) Case v = θi for i ∈ {1, 2, 3}: From (35) and the chain
rule, we get that

rv [k] = 1

det(�)

(
∂Mθ⊥

∂θi
k
)T

∇ (ψ ∗ ψ∨) (Mθ⊥k), (38)

where
∂M

θ⊥
∂θi

∈ R
2×3 contains the entry-wise derivatives with

respect to θi of the matrix Mθ⊥ given in (5). Moreover,
from the definition of ψ : y 
→ (h ∗ P(ϕ))(y), with y =
(y1, y2) ∈ R

2, and from the derivation property of the
convolution, we have that

∇ (ψ ∗ ψ∨) =

⎛⎜⎜⎜⎝
∂h

∂y1
∗ P(ϕ) ∗ ψ∨

∂h

∂y2
∗ P(ϕ) ∗ ψ∨

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
h ∗ ∂P(ϕ)

∂y1
∗ ψ∨

h ∗ ∂P(ϕ)
∂y2

∗ ψ∨

⎞⎟⎟⎟⎠ .
(39)

Note that we could have also differentiated ψ∨ (instead of
h or P(φ)).

For qv , we get from (33) that

qv [k] = 1

det(�)

∂(gp ∗ ψ∨)(Mθ⊥k + t)

∂θi

= 1

det(�)

(
∂Mθ⊥

∂θi
k
)T

∇(gp ∗ ψ∨)(Mθ⊥k + t), (40)

where ∇ (gp ∗ ψ∨) is obtained in the same way as (39), with
differentiation on ψ∨ instead of gp.

2) Case v = t j for j ∈ {1, 2}: As w(θ) does not depend
on the in-plane translation t, we have that rv = 0RN . For qv ,
as in (40), we get that

qv [k] = 1

det(�)

∂(gp ∗ ψ∨)
∂y j

(Mθ⊥k + t). (41)

C. Proof of Proposition 1

The closed-form expression of the x-ray transform of the
KBWF ϕ in (3) is provided in [29] as

P(ϕ)(y) = a
√

2π/α

Im(α)
βa(‖y‖)m+ 1

2 Im+ 1
2

(
αβa(‖y‖)) , (42)

where βa(r) = √
1 − (r/a)2 and Im is the modified Bessel

function of order m. Now, let us introduce the function
f (u) = (αu)m+ 1

2 Im+ 1
2
(αu) whose derivative is f ′(u) =

α(αu)m+ 1
2 Im− 1

2
(αu). Then, we can write (42) as

P(ϕ)(y) = a
√

2π/α

Im(α)

1

αm+ 1
2

f (βa(‖y‖)) (43)

and, for all v ∈ {1, 2}, obtain that

∂P(ϕ)
∂yv

(y) = a
√

2π/α

Im(α)α
m+ 1

2

yv
‖y‖β

′
a(‖y‖) f ′(βa(‖y‖)). (44)

Finally, the injection of f ′ and β ′
a(r) =

(
− r

a2

(
1 −

(r/a)2
)− 1

2
)

=
(
− r

a2βa(r)

)
into (44) leads to

∂P(ϕα,a)
∂yv

(y) = − a
√

2π/α

Im(α)α
m+ 1

2

yv
‖y‖

‖y‖α(αβa(‖y‖))m+ 1
2

a2βa(‖y‖)
×Im− 1

2
(αβa(‖y‖)),

= −αyv
√

2π/α

a Im(α)
βa(‖y‖)m− 1

2

×Im− 1
2
(αβa(‖y‖)), (45)

which completes the proof.
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