
Extension of wavelet compression algorithms to 3D and 4D image data: 
Exploitation of data coherence in higher dimensions allows very high 

compression ratios 
Li Zeng*a, Christian Jansena, Michael Unserb, Patrick Hunziker ** a 

aDivisions of Cardiology and Intensive Care Medicine, University Hospital,  Basel, Switzerland; 
bBiomedical Imaging Group, Swiss Federal Institute of Technology, Lausanne, Switzerland 

 
 

ABSTRACT 
High resolution multidimensional image data yield huge datasets. For compression and analysis, 2D approaches are often 
used, neglecting the information coherence in higher dimensions, which can be exploited for improved compression. We 
designed a wavelet compression algorithm suited for data of arbitrary dimensions, and assessed its ability for compression of 
4D medical images. Basically, separable wavelet transforms are done in each dimension, followed by quantization and 
standard coding. Results were compared with conventional 2D wavelet. We found that in 4D heart images, this algorithm 
allowed high compression ratios, preserving diagnostically important image features. For similar image quality, compression 
ratios using the 3D/4D approaches were typically much higher (2-4 times per added dimension) than with the 2D approach. 
For low-resolution images created with the requirement to keep predefined key diagnostic information (contractile function 
of the heart), compression ratios up to 2000 could be achieved. Thus, higher-dimensional wavelet compression is feasible, 
and by exploitation of data coherence in higher image dimensions allows much higher compression than comparable 2D 
approaches. The proven applicability of this approach to multidimensional medical imaging has important implications 
especially for the fields of image storage and transmission and, specifically, for the emerging field of telemedicine. 
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1. INTRODUCTION 
High resolution multidimensional image data are increasingly used in many fields, yielding huge datasets. For example, 3D 
CT, 3D texture, video  images, light field of 3D object, 4D(3D moving) object recognition, 4D (moving 3D) 
echocardiography images1, can be mentioned. For compression and analysis of these data, conventional 2D approaches2,3 are 
often used, neglecting the high information coherence in higher image dimensions, which could be exploited for improved 
compression and analysis algorithms. For 3D compression, some work have been done6. For example, volumetric medical 
image compression with three-dimensional wavelet transform and octave zerotree coding has been described4.  
 
To explore the potential of applying a 4-dimensional approach to 4D medical datasets, and to analyze the gains in 
compression efficiency when using this approach compared to conventional 2D wavelet compression, we designed a wavelet 
compression algorithm which handles data of an arbitrary number of dimensions in a coherent fashion and applied it to 4D 
(moving 3D) medical image data acquired by multidimensional echocardiography. The algorithm consists of wavelet 
decomposition using standard wavelet bases consecutively in each dimension followed by quantization (lossy), and standard 
lossless compression. Compression ratios and image quality attainable by this 4D approach were then compared with 
conventional 2D wavelet algorithms using similar wavelet bases. We found that in 4D image data acquired in subjects with 
heart disease, using this new algorithm allowed high compression ratios with retention of the image features necessary for 
diagnosis of heart disease within the datasets. For achievement of similar visual quality, compression ratios using the 4D 
approach were typically much higher than with the 2D approach. For low-resolution images created with the requirement to 
keep predefined key diagnostic information (contractile function of the heart) with maximum compression, compression 
ratios up to 2000 could be achieved. 
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2.  BASIC ALGORITHMS 
2.1   1D wavelet decomposition 
For the decomposition of a 1D signal f(n), the two analysis filters are  ih(n) and ig(n).  ih(n) is the low-pass filter and ig(n) is 
the high-pass filter. Discrete convolution of the signal f(n) with filter ih(n) or ig(n), decomposes the signal f(n) to a low 
frequency component L1(n) (corresponding to a smoothed signal) and a high frequency component H1(n) (corresponding to  
signal detail). Repeated decomposition of the lowpass component yields Lk(n) (corresponding to increasingly smooth signal 
representations) and Hk(n) with k=1,..,log2N-1,  (corresponding to detail information of each scale).  The bi-orthogonal 10/6 
wavelet from 2 was used; analysis filter coefficients were the following: 
lowpass filter ih: ( -1.25E-01  1.25E-01  1.00E+00  1.00E+00   1.25E-01 -1.25E-01; filter hotspot at position 3); 
highpass filter ig: ( -7.8125E-03  7.8125E-03  6.25E-02  6.25E-02  -4.84375E-01  4.84375E-01 -6.25E-02 -6.25E-02  -
7.8125E-03  7.8125E-03; filter hotspot at position 5).  
 
2.2  1D wavelet reconstruction 
Starting from the wavelet decomposed data, the synthesis filters h(n) and g(n) were used, with h(n) for reconstruction of low-
pass data and g(n) for reconstructed of detail data. 
Here, the bi-orthogonal (10,6) wavelet from 2 was against used, with the following filter coefficients: 
Synthesis lowpass filter h: (7.8125E-03, 7.8125E-03  -6.25E-02  6.25E-02  4.84375E-01  4.84375E-01  6.25E-02  -6.25E-02  
7.8125E-03  7.8125E-03; filter hotspot at position 6) and 
Synthesis highpass filter g: (-1.25E-01 -1.25E-01  1.00E+00 -1.00E+00   1.25E-01  1.25E-01; filter hotspot at position 4) 
 
2.3  Extension of algorithms to 2D, 3D, and 4D. 
For 2D data, the 1D algorithm was first applied row-by-row to all rows. In a second step, the same 1D algorithm was applied 
column by column. (Figure 1) 
 
 

 
 
 
 
 
 
 

Figure 1  One-scale 2D wavelet decomposition  
Here, LL is the lowpass image component, LH, HL and HH are detail images. We repeat decomposing the LL component to 
yield a multi-scale wavelet decomposition of the image. From a wavelet decomposed 2D image, reconstruction is done 
inversely by applying a 1D reconstruction in columns, followed by 1D reconstruction in rows. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2   One-scale 3D wavelet decomposition and reconstruction  
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For a 3D object f(x,y,z) or a group of moving images f(x,y,t), 1D transforms in the z- or t- direction are added. In a 3D 
transform, 8 subband cubes are created at the first decomposition level; in a 4D transform from a 4D object f(x,y,z,t) here 
called ìhypercubeî, there will be 16 subband hypercubes after the first step, one containing pure lowpass information, the 
others representing information with highpass characteristics from at least one dimension. The reconstruction is done 
accordingly. 
   

X

Y

t
z

 
Figure 3:    4D wavelet decomposition: On the left, the original xyzt data. On the right:  shown in light gray is the component that is 

lowpass in all dimensions, after the first 4D decomposition. In dark gray, the lowpass component after 2 decomposition steps. 
 
This process is repeated multiple times to yield a multidimensional multiscale wavelet decomposition. Special considerations 
in 4D compared to the standard 2D approach are the bookkeeping of the 4D data, which is conceptually similar to 2D, but 
requires more attention because our brains are not accustomed to think in 4D. In addition, xyzt data are cartesian, but the 
spacing of data in the z and t-dimension may not be equal as it is typically in the x and y directions. This should be considered 
when designing a 4D wavelet compression algorithm, because the different dimensions should in principle be handled 
differently. In our case, we handled all dimension equally for the sake of simplicity, without apparent problems. The wavelet 
for each dimension can be chosen independently (although we used the same wavelet for all dimensions for simplicity) 
because the temporal signal variation in t may be of different nature than the one in xyz; this could be of importance in special 
cases. 
 

3.  QUANTIZATION  
After the wavelet decomposition step, the same number of coefficients is left as in the original images, resulting in no 
compression up to this step. However, information is now grouped according to scale characteristics. Because large objects 
are often more important to our brain than small details, less bits can be used for highpass information, yielding efficient 
compression. The relative accuracy (number of bits available for coding a given subband) depends  

a) on the importance of highpass versus lowpass characteristics of the data (depending on the data to be compressed),  
b) on the different stepsize of the axes (in our case, the stepsize in z is typically larger than in x and y) 
c) on the information content of the dimensions (in our case, the time axis reflects inherently different information 

compared to the spatial information in xyz) 
d) on the desired level of compression. 
e) the measurable information content of a subband (e.g., in terms of subband RMS) 
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To summarize, a fix precept for choosing bit depth is much more difficult to give in 4D compared to a simple 2D image with 
homogenous coordinates. It depends critically on the requirements of an actual dataset and introduces a number of subjective 
choices. For our examples where the aim was to reach moderate compression rates, we chose to code signal coefficients from 
a given decomposition level with the bit depth for a given level shown in Table 1, and the available bins were distributed 
equally across the range of coefficients observed. 
  

Sub-band HH HL LH LL 2D 
Bit depth 2k-1 2k+1-1 2k+1-1 27-1 

      
Sub-band HHH HHL HLH LHH HLL LHL LLH LLL  

3D Bit depth 2k-1 2k+1/2-1 2k+1/2-1 2k+1/2-1 2k+1-1 2k+1-1 2k+1-1 27-1 
 

Sub-band HHHH HHHL HHLH HLHH LHHH HHLL HLHL LHHL 
Bit depth 2k-1 2k+1/3-1 2k+1/3-1 2k+1/3-1 2k+1/3-1 2k+2/3-1 2k+2/3-1 2k+2/3-1 

 
Sub-band HLLH LHLH LLHH HLLL LHLL LLHL LLLH LLLL 

 
 
 

4D 
Bit depth 2k+2/3-1 2k+2/3-1 2k+2/3-1 2k+1-1 2k+1-1 2k+1-1 2k+1-1 27-1 

 
Table 1  Bit depths of sub-bands of 2D, 3D and 4D wavelet decomposition in the kth scale 

 
For high compression examples, the first, and to yield very high compression, also the second decomposition levels were 
discarded in each dimension.  After quantization, wavelet decomposition coefficients become integer with a large portion of 
0ís and ±1ís (especially for highpass subbands). The bitstream is further reduced through the use of a conventional lossless 
compression algorithm. In our case, we used arithmetic coding. 
 
 
 
 
 
 

Figure 4     How to find the bin size of a subband  
 

4. LOSSLESS COMPRESSION  
After quantization, standard lossless compression methods were evaluated: Huffman coding, and arithmetic coding5. We 
found arithmetic coding to be best suited for compression. Because adaptive frequency arithmetic coding was very slow, but 
a general fixed frequency model was not suited to compress quantized wavelet decomposition coefficients, we first got a 
frequency model (needing about 512 bytes storage space) from quantized wavelet decomposition coefficients. Then, we used 
fixed frequency arithmetic coding to compress the quantized wavelet decomposition coefficients, with a lower limit of the 
average storage space per coefficient (predicted by the theory of entropy coding methods) corresponding to the entropy of the 
quantized wavelet decomposition coefficients. 
 

5. QUANTITATIVE ANALYSIS AND DISPLAY OF RESULTS  
Error measures were done in 4D volumes. Let f(x,y,z,t) denote the gray value of the original hypercube and g(x,y,z,t) the gray 
value of decompressed hypercube. Then, we define max error, average, mean square error, image energy kept, and PSNR 
(Peak Signal-Noise Ratio) as follows: 
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Because volumetric 3D and 4D data are difficult to display in a print paper, we resliced the resulting 3D and 4D volumetric 
data to yield 2D cuts to display the results. When 3D data were visualized as 2D+time on the computer screen, subjectively 
similar results were found. Display of the 4D data (3D+time) as surface shaded animations are currently in progress. 
 

 
Figure 5   Echocardiographic images compressed with wavelet compression at moderate compression rates using a 2D, 3D or 4D approach: 

Using more dimensions improves compression ratios without loosing image quality 
 
 

6. EXPERIMENTAL RESULTS 
To test the proposed compression strategy, we compressed 4D (= dynamic 3D) echocardiographic images. The size of a data 
hypercube was 2402161818 for x,y,z,t, with 256 gray levels, accounting for a storage size of 16 MB when using 1 
byte/pixel. When using 8 bytes floating point accuracy for the wavelet algorithm, this dataset containing only one single 
heartbeat fills up 128MB of RAM. Nevertheless, we were able to run the wavelet compression algorithm within 31 seconds 
(2D), 41 seconds (3D) and 51 seconds (4D) on a recent Notebook PC (Pentium 3; 500MHz). Four scales of wavelet 
decomposition were done. 
Aiming at visually similar image quality with compression in 2D, 3D and 4D using moderate compression rates, we found 
that exploitation of the data coherence in higher image dimensions allows significantly higher compression rates than is 
possible with 2D compression only (Table 2 and Figure 5).  
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Table 2   Comparison between  compressed-decompressed images  and original 4D ultrasound images  
using different compression strategies and different compression intensities 

 
Aiming at very high compression ratios that retain prespecified image features of major medical importance (contractile 
function of the heart), we found that the higher dimensional approach allows much higher compression ratios up to 2000:1 
(Table 2 and Figure 6). 
A two- to fourfold increase in compression ratio was generally observed per added dimension in the compression algorithm. 
 

 
Figure 6  Compression of echocardiographic images with higher dimensional wavelets:  

Extremely high compression ratios of up to 2000:1 can be reached while diagnostic image information is retained. 
 

compression 
intensity 

wavelet 
decomposition 

strategy 

max 
error 

average 
error 

mean  
square 
error 

image 
energy 
kept % 

PSNR compression 
ratio 

Compressed 
file 

length 
2D 32 2.09 11.78 99.67 37.42 28:1 0.572M 
3D 29 2.07 11.80 100.32 37.41 42:1 0.381M 

 
moderate 

4D 28 2.25 13.73 100.49 36.75 97:1 0.165M 
2D 31 2.95 23.52 99.51 34.42 95:1 0.169M 
3D 36 3.60 34.80 98.68 32.71 468:1 0.034M 

 
high 

4D 32 3.45 32.60 100.06 33.00 1000:1 0.016M 
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7.  DISCUSSION  
Ultrasound images are typically strongly textured as each bright pixel corresponds in fact to an individual reflective surface 
in tissue, down to the resolution of the ultrasound signal, which is much less than 1mm. In addition, there is usually a 
significant degree of clutter noise, so that for image processing, ultrasonic data are especially difficult and smooth areas are 
almost inexistent. For these reasons, lossless compression methods yield typically low compression ratios of 2-3, which is 
mainly the result of the compression of the background not containing image information. 
 
In echocardiography, compression of no more than 20:1 (using the JPEG algorithm) has been accepted for clinical 
application (PSNR with JPEG with 16:1 compression on our dataset was 38). With dynamic 3D echocardiography, much 
higher compression is needed for this novel technology to be broadly applicable, especially, in the context of telemedicine. 
The strategy proposed in this paper is to extend the principles of 2D wavelet compression to higher dimensions, exploiting 
the inherent coherence of the data in the third spatial dimension and in time. We can thus document that a 3D and 4D wavelet 
compression algorithm is feasible, and is not too expensive computationally even on standard PCís (because wavelet 
algorithms can often be done in O(N) operations). The resulting image quality with higher compression ratios is similar to 
what is already accepted in cardiovascular imaging. When the requirements for image quality are limited to predefined 
diagnostic information (like contractile function of the heart, the single most important information of echo images), very 
high compression factors of up to 2000:1 can be achieved, so that the compressed images of a few kilobytes in size may be 
transferred even over a standard telephone line within seconds. 
 
 

8.  CONCLUSIONS  
We conclude that higher-dimensional wavelet compression in 3 and 4 dimensions is feasible and computationally not too 
expensive. By exploitation of data coherence in higher image dimensions, it allows much higher data compression rates than 
a comparable 2D approach while retaining image quality. The proven applicability of this approach to multidimensional 
medical imaging thus has important implications in image storage and transmission and, specifically, for the emerging fields 
of dynamic 3-dimensional imaging and telemedicine. 
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