
Daniel Sage1, Dimiter Prodanov2, Jean-Yves Tinevez3, Johannes Schindelin4

1Biomedical Imaging Group, EPFL, Lausanne, Switzerland; 2Bio-Nano Electronics Department, Imec, Leuven, Belgium;
3Institut Pasteur, Imagopole / PFID, Paris, France; 4LOCI, University of Wisconsin-Madison, USA.

MIJ: Making Interoperability Between 
ImageJ and Matlab Possible

Abstract
We present a software module MIJ1 that allows to 
combine the powerful numerical computation of 
Matlab2 and the image-analysis capabilities of 
ImageJ3. Since both ImageJ and Matlab run on 
multiple operating systems, MIJ is platform-
independent. MIJ uses the Java Virtual Machine 
(JVM) of Matlab to call ImageJ methods from the 
Matlab console or scripts. In such way, we could 
bring the richness of ImageJ and of their plugins to 
the Matlab world.
MIJ contains a collection of static methods to 
exchange data bidirectionally between Matlab and 
ImageJ. MIJ has methods to convert and transpose 
images of ImageJ to 2D matrices and stacks of 
images to 3D arrays into Matlab. MIJ tries to avoid 
loss of accuracy by converting the image data to the 
closest numerical type of Matlab. The only 
drawback of this interoperability model is the current 
limitation of the heap memory in Matlab. Depending 
of the architecture and of the version of Matlab, the 
heap space can be increased, but it cannot be 
changed by MIJ.
Since 2011, MIJ is included in the Fiji4 distribution of 
ImageJ together with a friendly startup Matlab script 
called Miji5. After calling a single function from 
Matlab, the full functionality of all the plugins and 
libraries included in Fiji can be accessed by Matlab 
scripts, via MIJ. Most notably, Fiji's 3D Viewer can 
be used to display three- or four-dimensional data in 
volume-rendering, iso-surface and orthoslice 
mode6.
Users have found MIJ very useful even for simple 
daily tasks, e.g. opening proprietary image formats 
using the Bio-Formats7 library or using the image 
viewer of ImageJ to display a 2D or 3D Matlab's 
matrices. Imaging professionals prefer usually 
ImageJ to show, control the rendering and interact 
with images. On the other hand, displaying plots 
and graphs is more convenient and flexible in 
Matlab. Exchanging data between the two platforms 
can be very valuable for iterative processes which 
imply image analysis, done in ImageJ, and 
statistical analysis done in Matlab. MIJ allows also 
to launch ImageJ macros from Matlab scripts and to 
run powerful plugins, e.g. TrackMate8.

Mapping

Reference
[1] MIJ: http://bigwww.epfl.ch/sage/soft/mij/
[2] Matlab: http://www.mathworks.ch/
[3] ImageJ: http://rsbweb.nih.gov/ij/
[4] Fiji: http://fiji.sc/
[5] Miji: http://fiji.sc/Miji/
[6] 3D viewer for Matlab: http://www.mathworks.com/
matlabcentral/fileexchange/32344-hardware-
accelerated-3dviewer-
for-matlab
[7] Bio-Formats: http://loci.wisc.edu/software/bio-
formats.
[8] TrackMate: http://fiji.sc/TrackMate

MIJ is an Open-source Java class facilitating 
interoperability between Matlab and ImageJ/Fiji.
• Run ImageJ in the JVM of Matlab
• Export/Import a 2D Matlab variable as ImageJ’s 

image: the image can be displayed or not
• Export/Import a 3D Matlab variable as ImageJ’s 

stack: the image stack can be displayed or not
• ImagePlus references can be converted to Matlab 

matrices for further processings using the Java 
interpreter of Matlab
• Enables to run plugins (setup path)
• Enables to run macros (setup path)
• Additional information from ImageJ

can be transferred to Matlab: 
- histogram, 
- table of results, 
- column of results
- region-of-interests

Features

Application Cases

http://bigwww.epfl.ch/sage/soft/mij/ 

Matlab ImageJ Conversion
uint8 Grayscale

8-bit
Exact

uint16 Grayscale
16-bit

Exact

uint32 Grayscale
16-bit

Loses precision

uint64 N/A Not applicable
int8 Grayscale

8-bit
Negative value: lost
Positive value: exact

int16 Grayscale
16-bit

Negative value: lost
Positive value: exact

int32 Grayscale
16-bit

Negative value: lost
Positive value: loses 
precision

int64 N/A Not applicable
single Grayscale

32-bit
Exact

double Grayscale
32-bit

Loses precision

Matlab ImageJ Conversion
2D array image XY matrix transposition

3D array stack of 
images

XY matrix transposition, 
keep Z axis

2D array table of 
results

Exact (n columns)

1D array column of 
results

Exact

1D array histogram of 
image

Exact

2D array polygon of 
the ROI

Exact (2 lines, x and y)

Technical Issues

Reading image files using Bio-Formats on Matlab

Using fast Matlab routines and display results on ImageJ

Image-analysis on ImageJ, statistics on Matlab

Matlab
Statistics analysis

Optimization method
Fast matrix (image) operation

Large base of educated engineers
Broad scientific community

Interpreted language, prototype

ImageJ
Image analysis

User interface. Image interaction
Advanded research plugins

Large base of user (biologist, ...) 
Biologist and developper community

Open-source, reproducible

Interoperability

Time performance

The data has to be converted, copied and often 
transposed which requires a overhead time of 
computation. On a middle-range machine it takes 
around 100 ms to transfer 10 Mb.

Memory limitation

Matlab provides a Java Virtual Machine (JVM) which 
interprets the command of the console. In 2012, the 
version of the JVM is 1.6. The main drawback is that 
Matlab has limited the Java heap memory (e.g. 256 
Mb on Mac OSX, Matlab R2010_b). This limitation 
restricts the usage of Java for huge datasets like 
multidimensional imaging purposes. For some 
operating systems, Matlab proposes to 
change the limitation by editing 
a “hidden” file java.opts: 
-Xmx1000m

Type

Data structure

ImageJ Fiji

Download mij.jar included

Installation Copy files into Matlab 
(Java dir) automatic

Setup Add mij.jar and ij.ar in 
the Java class path Set the path

Run Mij.start(‘...’) Miji;

How to use

http://fiji.sc/TrackMate
http://fiji.sc/TrackMate

