
MIJ: Making Interoperability Between ImageJ and Matlab Possible

Daniel Sage¹, Dimiter Prodanov², Jean-Yves Tinevez³, Johannes Schindelin⁴

¹Biomedical Imaging Group, EPFL, Lausanne, Switzerland; ²Bio-Nano Electronics Department, Imec, Leuven, Belgium; ³Institut Pasteur, Imagopole / PFID, Paris, France; ⁴LOCI, University of Wisconsin-Madison, USA.

Abstract

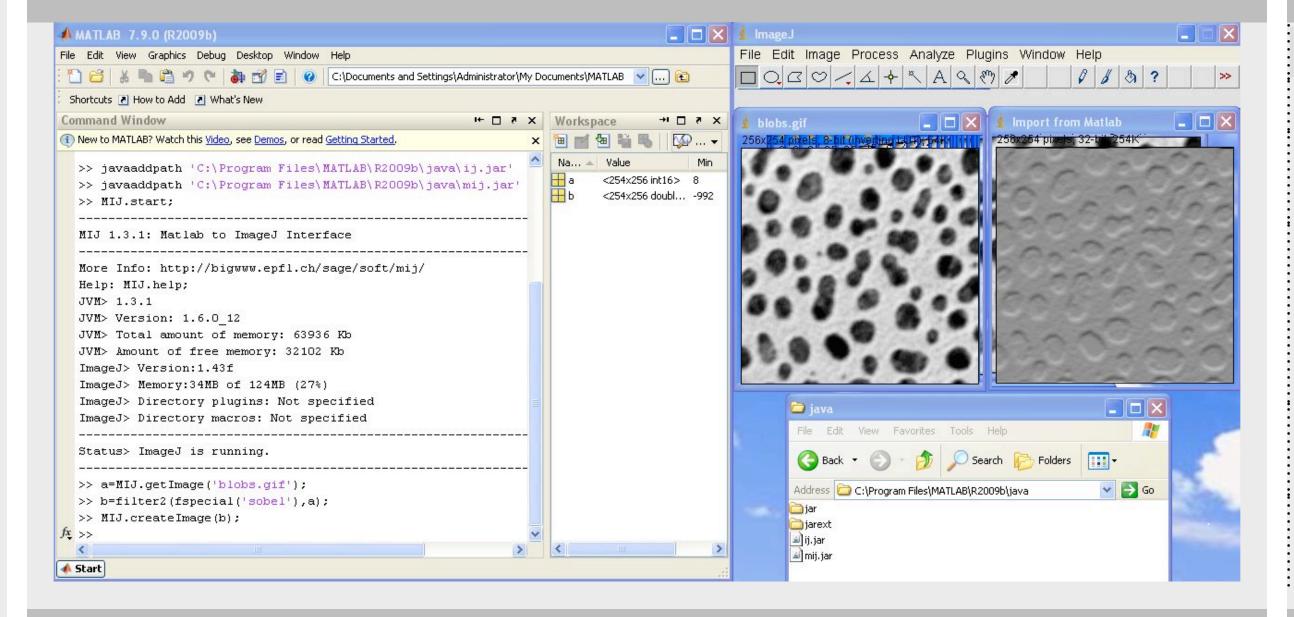
We present a software module MIJ1 that allows to combine the powerful numerical computation of Matlab² and the image-analysis capabilities of ImageJ³. Since both ImageJ and Matlab run on multiple operating systems, MIJ is platformindependent. MIJ uses the Java Virtual Machine (JVM) of Matlab to call ImageJ methods from the Matlab console or scripts. In such way, we could bring the richness of ImageJ and of their plugins to the Matlab world.

MIJ contains a collection of static methods to exchange data bidirectionally between Matlab and ImageJ. MIJ has methods to convert and transpose images of ImageJ to 2D matrices and stacks of images to 3D arrays into Matlab. MIJ tries to avoid loss of accuracy by converting the image data to the closest numerical type of Matlab. The only drawback of this interoperability model is the current limitation of the heap memory in Matlab. Depending of the architecture and of the version of Matlab, the heap space can be increased, but it cannot be changed by MIJ.

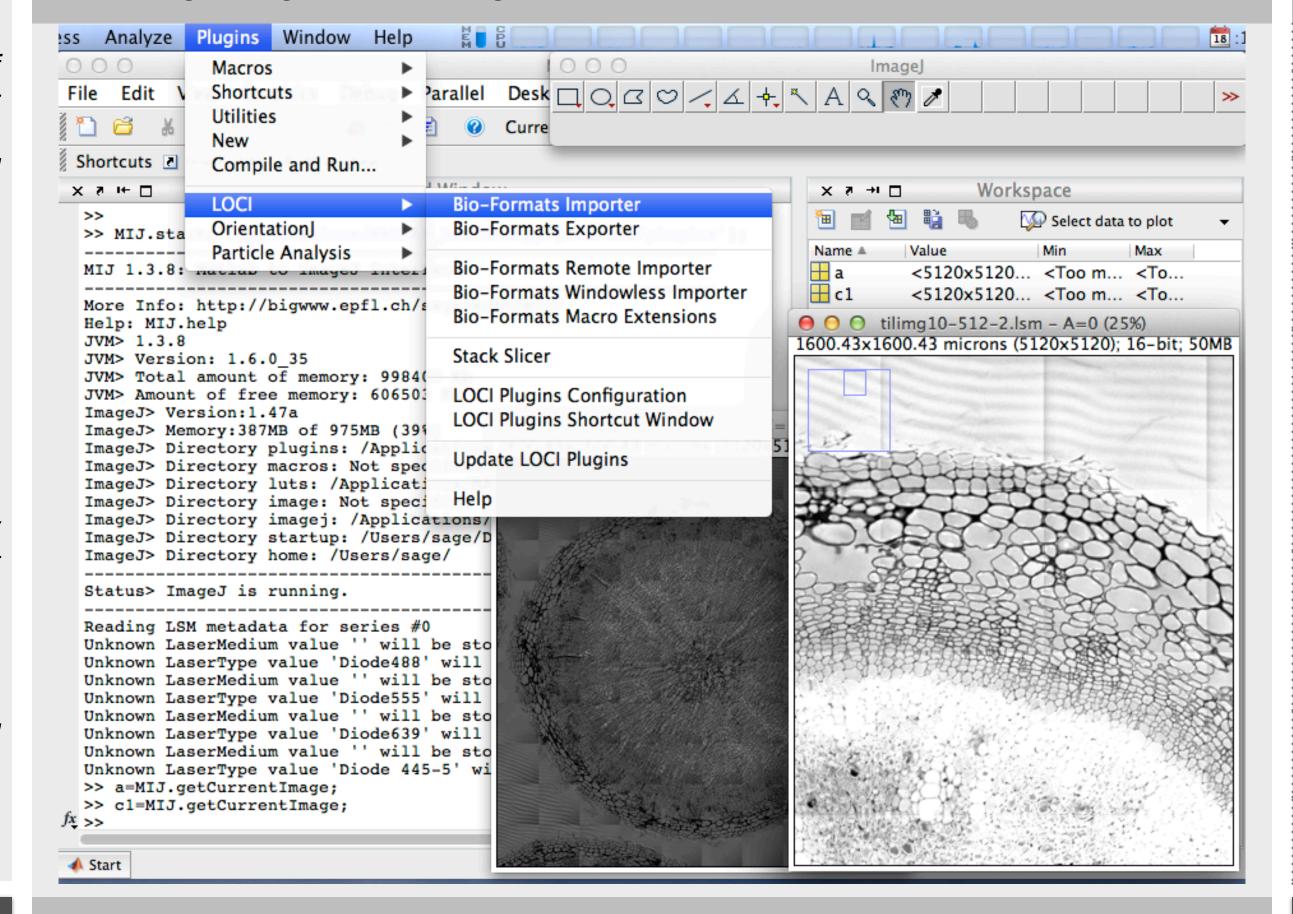
Since 2011, MIJ is included in the Fiji⁴ distribution of ImageJ together with a friendly startup Matlab script called Miji⁵. After calling a single function from Matlab, the full functionality of all the plugins and libraries included in Fiji can be accessed by Matlab scripts, via MIJ. Most notably, Fiji's 3D Viewer can be used to display three- or four-dimensional data in volume-rendering, iso-surface and orthoslice mode⁶.

Users have found MIJ very useful even for simple daily tasks, e.g. opening proprietary image formats using the Bio-Formats⁷ library or using the image viewer of ImageJ to display a 2D or 3D Matlab's matrices. Imaging professionals prefer usually ImageJ to show, control the rendering and interact with images. On the other hand, displaying plots and graphs is more convenient and flexible in Matlab. Exchanging data between the two platforms can be very valuable for iterative processes which imply image analysis, done in ImageJ, and statistical analysis done in Matlab. MIJ allows also to launch ImageJ macros from Matlab scripts and to run powerful plugins, e.g. TrackMate8.

Features


MIJ is an Open-source Java class facilitating interoperability between Matlab and ImageJ/Fiji.

- Run ImageJ in the JVM of Matlab
- Export/Import a 2D Matlab variable as ImageJ's image: the image can be displayed or not
- Export/Import a 3D Matlab variable as ImageJ's stack: the image stack can be displayed or not
- ImagePlus references can be converted to Matlab matrices for further processings using the Java interpreter of Matlab
- Enables to run plugins (setup path)
- Enables to run macros (setup path)
- Additional information from ImageJ can be transferred to Matlab:
 - histogram,
 - table of results,
 - column of results
 - region-of-interests

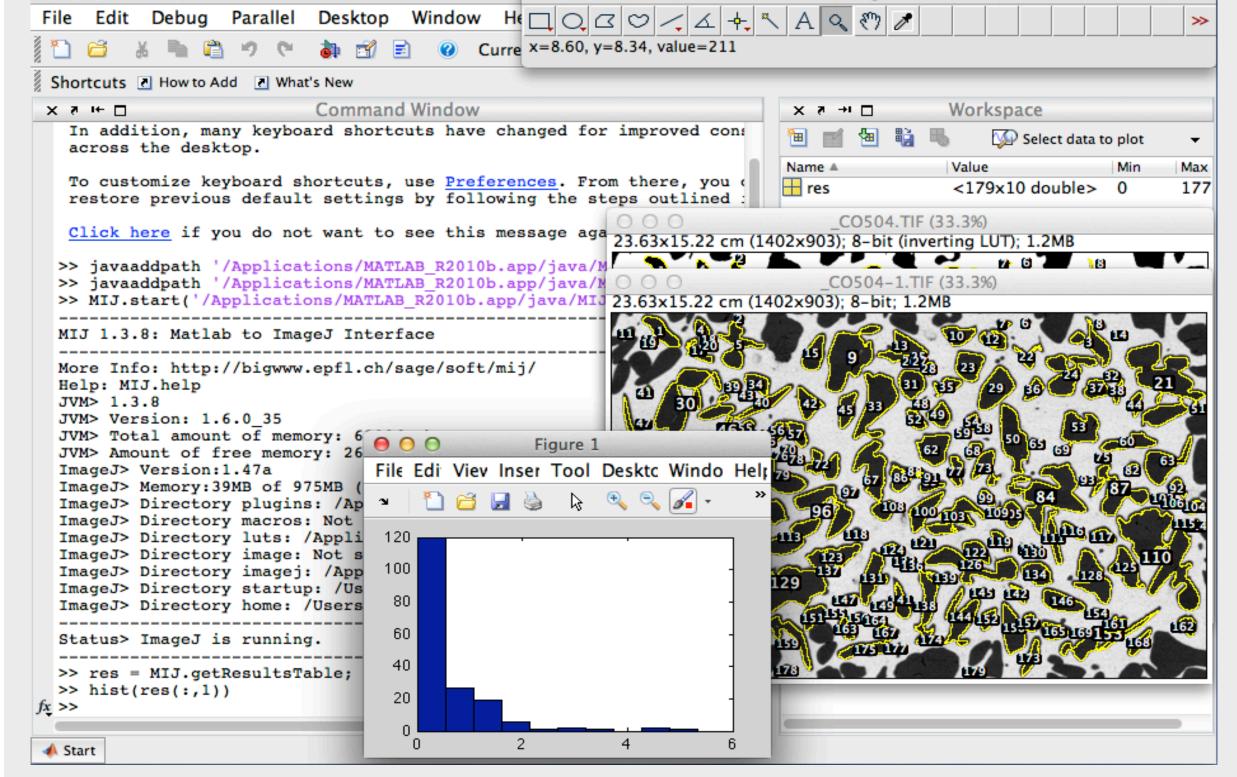


Application Cases

Using fast Matlab routines and display results on ImageJ

Reading image files using Bio-Formats on Matlab

Mapping


Data structure

Dala Siruciui e			
Matlab	ImageJ	Conversion	
2D array	image	XY matrix transposition	
3D array	stack of images	XY matrix transposition, keep Z axis	
2D array	table of results	Exact (n columns)	
1D array	column of results	Exact	
1D array	histogram of image	Exact	
2D array	polygon of the ROI	Exact (2 lines, x and y)	

Type

Type		
Matlab	lmageJ	Conversion
uint8	Grayscale 8-bit	Exact
uint16	Grayscale 16-bit	Exact
uint32	Grayscale 16-bit	Loses precision
uint64	N/A	Not applicable
int8	Grayscale 8-bit	Negative value: lost Positive value: exact
int16	Grayscale 16-bit	Negative value: lost Positive value: exact
int32	Grayscale 16-bit	Negative value: lost Positive value: loses precision
int64	N/A	Not applicable
single	Grayscale 32-bit	Exact
double	Grayscale 32-bit	Loses precision

Image-analysis on ImageJ, statistics on Matlab

Technical Issues

Time performance

The data has to be converted, copied and often transposed which requires a overhead time of computation. On a middle-range machine it takes around 100 ms to transfer 10 Mb.

Memory limitation

Matlab provides a Java Virtual Machine (JVM) which interprets the command of the console. In 2012, the version of the JVM is 1.6. The main drawback is that Matlab has limited the Java heap memory (e.g. 256 Mb on Mac OSX, Matlab R2010_b). This limitation restricts the usage of Java for huge datasets like multidimensional imaging purposes. For some operating systems, Matlab proposes to change the limitation by editing a "hidden" file java.opts: -Xmx1000m

How to use

Interoperability

Matlab

Statistics analysis Optimization method Fast matrix (image) operation Large base of educated engineers Broad scientific community Interpreted language, prototype

ImageJ

Image analysis User interface. Image interaction Advanded research plugins Large base of user (biologist, ...) Biologist and developper community Open-source, reproducible

http://bigwww.epfl.ch/sage/soft/mij/

Reference

- [1] MIJ: http://bigwww.epfl.ch/sage/soft/mij/
- [2] Matlab: http://www.mathworks.ch/
- [3] ImageJ: http://rsbweb.nih.gov/ij/ [4] Fiji: http://fiji.sc/
- [5] Miji: http://fiji.sc/Miji/
- [6] 3D viewer for Matlab: http://www.mathworks.com/ matlabcentral/fileexchange/32344-hardwareaccelerated-3dviewer-
- for-matlab
- [7] Bio-Formats: http://loci.wisc.edu/software/bioformats.
- [8] TrackMate: http://fiji.sc/TrackMate