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On Regularized Reconstruction of Vector Fields
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Abstract—In this paper we give a general characterization
of regularization functionals for vector field reconstruction,
on the basis of requiring that the said functionals satisfy
certain geometric invariance properties with respect to trans-
formations of the coordinate system. In preparation for our
general result, we also address some commonalities of invari-
ant regularization in scalar and vector settings—and give a
complete account of invariant regularization for scalar fields—
before focusing on their main points of difference, which lead
to an entirely different class of regularization operators in
the vector case. Finally, as an illustration of potential, we
formulate and compare quadratic (L2) and total-variation-type
(L1) regularized denoising of vector fields in the proposed
framework.

Index Terms—Regularization, vector fields, rotation-
invariance, scale-invariance, vector Lp spaces, total variation,
fractional Laplacian, curl and divergence in higher dimensions,
fractional vector calculus.

I. INTRODUCTION

Our aim in the present paper is to derive, in a principled
manner, formulae for regularization functionals suitable
for reconstructing vector fields, with a view to applications
such as denoising, deconvolution, and reconstruction from
incomplete (that is, scalar) measurements [1, 2], among
others. Our motivation in approaching the question of vector
field reconstruction derives from the increasing prevalence
of imaging modalities that produce measurements of vector
quantities, and the need to design algorithms for treating
such data [3]. Such algorithms can also be applicable in
other contexts where vector fields appear, such as estimating
optical flow and image registration [4–7].

Throughout the paper, we take invariance under coordinate
transformations as our guiding principle. The importance
of invariance in reconstruction was already apparent to
Duchon [8], who considered the problem of interpolating or
approximating scalar fields in Rd ; however, the mathematical
formulation of invariance laws is in general different for
scalars and vectors, as we shall see briefly in §II and in
more detail in §IV and §V. The appeal of the notion of
invariance partly lies in the fact that invariant regularizers
do not impose a preferential choice of coordinate system
on the model. We give a rather complete characterization
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of invariant vector regularization operators in §IV and §V,
after initially reviewing the related scalar theory in §III.

Regularized reconstruction of vector fields has been
previously considered, notably by Suter and Chen [9],
who proposed quadratic (L2) regularization with mixed-
order differentials of the vector field. Arigovindan et al. [2,
10] studied quadratic regularization with fractional-order
differential operators and paid particular attention to the
invariance properties of the regularization term with respect
to vector rotation, translation, and change of scale, char-
acterizing the complete family of quadratic regularization
functionals with the required invariances, which essentially
extend Duchon’s thin-plate splines [8] to the vector setting.
Specialized examples of such functionals, involving curl and
divergence regularization, had been considered earlier by
Dodu and Rabut [11] and (for the problem of interpolation)
by Amodei and Benbourhim [12] before them.

All of the previous schemes fall under the general heading
of smoothing spline and spline interpolation methods. They
thus exhibit similar advantages (efficient resolution by linear
methods and connection with splines) and limitations (most
notably, over-smoothing of discontinuities and edges which,
e.g., occur naturally at fluid interfaces in fluid dynamical
systems and at object boundaries in optical flow). In this
connection, it has been observed in the scalar setting that
schemes using L1 regularization—in particular total variation
(TV) type methods—do a better job of preserving edges and
discontinuities than their quadratic (L2) counterparts [13,
14]. The framework we have adopted in this paper allows
us to find natural vector equivalents of these non-quadratic
methods. (On the algorithmic side, the non-quadratic prob-
lems we formulate here can be solved using techniques
similar to those employed in the scalar case (see for instance
Figueiredo et al. [15]) as we show by way of examples in
§VI.)

On the theoretical side, another common property of
quadratic schemes is that, due to the association of quadratic
functionals with inner products, they can all be reduced
to regularization with self-adjoint differential operators
(essentially fractional Laplacians and their extensions; see
§IV). This is in contrast to the general non-quadratic case
considered here, where the factorization of these self-adjoint
operators into skew-symmetric ones becomes relevant (see
§V).

Finally, we wish to point out that unlike at least some of the
previous works which have been concerned exclusively with
2D and/or 3D vector fields, the approach we have adopted
in the present paper makes it possible to consider vector
fields in any number number of dimensions on the same
footing. This is particularly apparent in our dimensionless
formulation of fractional Laplacians in §III, §IV, and of curl-
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and divergence-like operators in §V.

Regularized reconstruction

The standard scenario for regularized reconstruction is
as follows. We are given a vector y of measurements or
observations that are assumed to depend, in a known
probabilistic fashion (or deterministically but with some
measurement and/or modelling error), on the unknown
entity ftrue which we wish to reconstruct. ftrue will in our
case be a function defined on some finite or infinite domain.
We then define the regularized reconstruction of ftrue as the
(hopefully unique) minimizer over f of a cost functional

Jλ( f ; y) := d( f ; y) +λR( f ) (1)

composed of a fidelity criterion d quantifying the proximity
of the observed measurements (y) to hypothetical measure-
ments made from some possible reconstruction f , and a
regularization functional R that measures the undesirability
of f based on our (deterministic or probabilistic) prior
information or assumptions about the solution. The above for-
mulation can be arrived at in different ways, some of which
we shall now mention in passing for the sake of motivation,
while reminding the reader that our primary purpose here is
to derive some specific families of regularization functionals,
and not to justify the regularized variational framework for
reconstruction in general (for comparable classifications see
Poggio et al. [4] and Figueiredo et al. [16]).

(I.1) In finite sample/parameter dimensions, that is, when
both f and y are finite vectors, it is often possible to
view the minimization of (1) as a case of maximum
a posteriori (MAP) estimation. In this interpretation,
d and λR essentially play the respective roles of the
negative log-likelihood and the negative log of the prior,
usually up to some normalization (and possibly also
discarding some terms that do not modify the solution).
To come up with a prior, one might seek an operator R
that whitens the vector f (i.e. renders its components
independent); the log of the joint probability of elements
of Rf then becomes additive due to independence. This
fits nicely with the most common form of regularization
functionals used in practice, i.e. sums of the form

∑

i

Φ([Rf ]i) (2)

where R is a regularization operator, [Rf ]i is the i-th
element of Rf , and Φ is a convex function such as
| · |2 for `2 regularization or the absolute value for `1
regularization.
Although MAP estimation is not the only purely probab-
ilistic interpretation of (1), it is by far the most common
one, and hence the only one we shall mention here.

(I.2) The form given in (1) can also be justified from a
hybrid probabilistic-deterministic standpoint, where d
again represents a negative log-likelihood, while R now
corresponds to the constraint

R( f )≤ a (3)

on the solution, put in Lagrange form with λ serving
as the Lagrange multiplier. Such schemes are known
under the names of constrained or penalized likelihood.
In addition, a connection can often be made with
Grenander’s method of sieves [17] (where one considers
a limiting sequence of minimizers of the cost functional
with varying λ).

(I.3) Finally, a purely deterministic interpretation is also
possible, where λR is again the Lagrange relaxation
of the constraint R( f ) ≤ a, while d is a deterministic
measure of data fidelity such as the Euclidean distance
between y and samples of f . However, we remark that
in many practical situations, the constraint bound a on
which λ depends is not known (or the constraint is not
really a hard one); consequently, λ can also be seen as
a tuning parameter of the reconstruction algorithm.

Among the above justifications for the regularized re-
construction framework, the MAP interpretation does not
trivially generalize to the case where an infinite number
of values need to be estimated, which occurs for example
when the domain of f is an infinite set such as Rd (rather
than a finitely countable set); for one thing, it is generally
not possible to associate a probability distribution function,
in its finite-dimensional sense, with probabilities on the
function space to which f belongs, due to the fact that the
Lebesgue measure does not admit of an infinite-dimensional
generalization.

It is therefore constructive, in what follows, to imagine
that the term λR( f ) is derived from an inequality constraint
as in the second and third interpretations. Moreover, we
shall consider all algorithms based on the same R at the
same time, and consider λ (or equivalently, the constraint
bound), as a tuning parameter of the algorithm. Probabilistic
considerations then become secondary to geometrical/ana-
lytical ones, for which reason they shall not be emphasized
in the remainder of the paper.

Even so, we still draw inspiration from the observation
made at the end of paragraph (I.1) to define our regulariza-
tion functionals as integrals of the form

R( f ) =

∫

Dom f

Φ(Rf (x)) dx (4)

where R (previously the whitening operator) is now re-
ferred to as the regularization operator. Formally, the above
integral—which replaces the sum in (2)—can be thought
of as the normalized aggregate contribution of individual
independent point-wise innovations; i.e., the values of Rf (x)
as a function of x (even though, strictly speaking, without
proper normalization such a contribution should be infinite
from the probabilistic point of view).

After this brief introduction to regularized reconstruction,
let us now describe the direction and contents of the
paper. Our primary focus in the present work is vector field
regularization. Thus, assuming the general form given in (4)
for the reason we just described, our task is then to specify
the linear operator R as well as the function Φ. We shall
derive the general form of admissible Rs and Φs—for scalars
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as well as for vectors—by imposing invariances under certain
geometric transformations, namely rotation (and reflection),
translation, and scaling.

The motivation behind using invariances is that, in many
physical systems, there exists no obvious preferential choice
of direction, position, or scale, at least within a reasonably
wide range relevant in many applications. We therefore seek
reconstruction algorithms that lead to a consistent solution
under such transformations, possibly by appropriately adjust-
ing a single parameter (λ). This requires the regularization
functional R to be invariant under such transformations
(possibly up to a computable multiplicative factor).

Although our main goal here is to formulate regularization
functionals for vector fields, we begin the exposition by
general considerations that apply equally to scalars and
vectors (§II) and, for completeness, proceed to include a
detailed account of invariant scalar regularization in §III,
where we derive the general form of R and Φ for the scalar
case under suitable assumptions. Next, in §IV, we turn our
attention to vector fields and invariances relevant for them.
This is followed by some extensions of the framework in §V,
where we additionally consider regularization operators that
map vector fields to scalars and tensors. It will become clear
by the end of §V that, with a high level of generality, the
functional R takes the form ‖Rf ‖qp where:
• In the scalar setting, ‖ · ‖p is the standard Lebesgue

Lp norm and R is either a fractional scalar Laplacian
(defined in §III) or a fractional gradient (defined in §V).
• In the vector setting, ‖·‖p is a suitable generalization of

the scalar Lp norm to vector- or matrix-valued functions
(introduced, respectively, in §II and Appendix A), and
R is either a generalized fractional vector Laplacian
(introduced in §IV) which incorporates a Helmholtz de-
composition into curl- and divergence-free components,
or else, it is a fractional curl or a fractional divergence
(both introduced in §V).

We then illustrate the proposed construction in §VI, where
we consider the problem of vector field denoising in 2D and
3D, and compare two solutions (quadratic and TV-like) that
fall within our framework. Some remarks in §VII conclude
the paper.

Symbols and other notation are defined when first used
and summarized in Table I for reference.

II. GENERALITIES REGARDING REGULARIZATION AND INVARIANCE

As noted in the introduction, in identifying suitable
families of regularization functionals we are guided by the
principle of invariance under specific geometric transforma-
tions. With any such transformation is associated a symbol
S that can be a scalar σ > 0 (the scale) for changes of scale,
a vector τ ∈ Rd (the displacement vector) in the case of
translations, an orthogonal transformation matrix ω ∈ Rd×d

when considering rotations and reflections, or, once again,
a scalar α > 0 (the gain) when multiplication by positive
reals (change of units) is considered.

Since, in general, the same transformation group can act
differently on scalars and vectors (this is particularly true

Table I: Notation

symbol description

d number of spatial dimensions

R+ set of positive reals = {a ∈ R|a > 0}

x = (x1, . . . , xd ) spatial coordinates

ξ= (ξ1, . . . ,ξd ) Fourier coordinates (dual to x)

f = f (x) field of scalars, vectors, or bivectors (usu.
denoting a possible reconstruction)

f̂ = f̂ (ξ) Fourier transform of f

Ω = {ω} group of orthogonal matrices ω ∈ Rd×d

T = {τ} group of displacement vectors τ ∈ Rd

A= {α} group of spatial scale factors α ∈ R+
S placeholder for ω, τ, or α

[S] f transformation of f by S; [S] can be
understood as the operator that transforms
f

[S]s f same as above, additionally indicating that
f is scalar-valued

[S]v f same as above, additionally indicating that
f is vector-valued

[S]b f same as above, additionally indicating that
f is bivector-valued

|a| for a ∈ R, the absolute value of a

for a ∈ Rd , the Euclidean length of a

‖ f ‖p for scalar-valued f , the standard Lebesgue
Lp norm of f

for vector-valued f , the Lp norm defined
in Corollary 1

for matrix-valued f , the Lp norm defined
in Appendix A

〈a, b〉 the scalar product of vectors a, b ∈ Rd

〈 f , g〉 the scalar product of functions f , g (=
∫

Rd f T g)

R regularization operator

div divergence operator (vector to scalar)

grad gradient operator (scalar to vector)

curl curl operator (vector to bivector)

curl∗ adjoint curl operator (bivector to vector)

? star operation (bivector to pseudo-vector,
see (21))

for rotations, as we shall see in §IV), the same symbol S
can describe different laws of transformation depending on
whether it is acting on scalars or vectors or other entities.
For this reason, we introduce the notation [S] to denote
the operator associated with the symbol S, and distinguish
between scalar and vector operators by using subscripts as
per [S]s and [S]v where necessary.

Definition 1: In mathematical terms, we assume that S
belongs to one of several transformation groups T = {τ ∈ Rd}
(the translation group), Ω = {ω ∈ Rd×d : ω orthogonal}
(the orthogonal group), Σ = {σ ∈ R+} (the scaling group),
or A = {α ∈ R+} (the gain group), and consider maps
(isomorphisms) S 7→ [S]C between transformation groups
and groups of operators (actions or transformation laws)
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acting on objects of some class C (C = s for scalar fields,
= v for vector fields, = b for bivector fields, etc.).

We then define [τ] f (·) = f (·−τ) for τ ∈ T (translation);
[α] f (·) = α f (·) for α ∈ A (gain); [σ] f (·) = f (σ−1·)
for σ ∈ Σ (scaling); and [ω]s f (·) = f (ωT·) for ω ∈ Ω
(orthogonal transformation of scalars). Note that the first
three identities are valid for scalars as well as for vector fields,
while the last one only applies to scalars. Vector rotation
follows a different rule: [ω]v f (·) = ω f (ωT·). The reason
is that the coordinates f1, f2, . . . , fd of a vector field f (x),
x ∈ Rd , are specified in the same coordinate system as that
of its argument x , which means that if the coordinate system
of the argument is rotated by ωT, the coordinates f1, . . . , fd
have to be transformed by the inverse (ω) in order to keep
the direction of the vectors fixed.

We recall (cf. (4)) that we shall be seeking invariant
regularization functionals of the form

R( f ) =

∫

Rd

Φ(Rf (x)) dx

where the scalar-valued function Φ and the operator R are
to be determined.

Requiring that the regularization be S-invariant up to some
re-adjustment of the parameter λ amounts to demanding
that

R([S] f ) = cS,RR( f ) (5)

for all f under consideration, where cS,R is a constant. In
order to have more flexibility in constructing regularization
functionals, we wish to find families of functions Φ and
operators R that we can then pick and combine independently.
In particular, since we shall always include identity in our
family of regularization operators, we require Φ to satisfy
∫

Rd

Φ([S] f (x)) dx = cS

∫

Rd

Φ( f (x)) dx (6)

for all f and all S and for some constant cS > 0 that depends
on S.

From (6) immediately follows
Proposition 1: Let Φ satisfy (6) and be continuous on some

open neighbourhood. Φ is then equivalent to a homogeneous
function; that is, Φ(a) = c|a|p (almost everywhere) for some
c > 0 and p ∈ R (|a| denotes the absolute value or the
modulus of a as appropriate).

Conversely, (6) holds for any such Φ as long as the
integrals are well-defined.

Proof: From (6) we have
∫

[Φ([S] f (·))− cSΦ( f (·))] = 0 for
all f and therefore

Φ([S] f (x)) = cSΦ( f (x)) for almost all x .

We shall first consider the case of scalar f , where Φ is a
function of the reals. Let S = α belong to the gain group A,
and let φ(α) := cα > 0. We then have, for arbitrary α=−1
and arbitrary a = f (x), Φ(a) = Φ(−(−a)) = [φ(−1)]2Φ(a)
whence φ(−1) = 1 and Φ(a) = Φ(|a|). Next, for arbitrary α
and a, we may write

φ(|α|)Φ(|a|) = Φ(αa) = Φ(aα) = φ(|a|)Φ(|α|).

Fixing either α or a then proves that φ = c′Φ for some
constant c′. Therefore, for all α, a ∈ R+,

Φ(αa) = c′Φ(α)Φ(a).

This shows that Φ is an exponential function and can
therefore be written as Φ(·) = c(·)p for some constants c, p,
as claimed.

When f is vector-valued, rotation invariance implies that
Φ is in fact only a function of the modulus |α| of α; we may
then repeat the argument of the previous paragraph to once
again deduce that Φ(α) = c|α|p for some c, p.

To prove the converse one can directly inspect each of
the groups of transformations involved by a simple change
of variables in the integrals, whence it is observed that the
desired result follows immediately from the invariances of
the Lebesgue measure.

The following corollary is immediate.
Corollary 1: The vector norms

‖ f ‖p :=

(

�∫

Rd | f (x)|p dx
�1/p

, 1≤ p <∞,

ess sup | f (x)|, p =∞,
(7)

are S-invariant in the sense that ‖[S] f ‖p = cS,p‖ f ‖p for
all (vector-valued) f . Conversely, any convex S-invariant
integral functional (as defined in (6)) that satisfies the
requirements of Proposition 1 is of the form ‖ f ‖pp for some
p ≥ 1.

It is then sufficient, in order to have the desired in-
dependence between the choice of Φ and R, to require
that R commute with coordinate transformations up to a
multiplicative constant kS 6= 0, in the sense that

R [S] f = kS[S]Rf (8)

for all f . This, we note, is the quintessence of invariance, as
it means that applying the coordinate transformation before
or after the application of R yields the same result (up to
normalization).

Consequently, the regularization functional given in (4)
can be written as (the p-th power of) the Lp norm of Rf
(we absorb all the constants in λ; p is required to be ≥ 1
for the sake of convexity). We may also include the ∞-norm
R( f ) = ‖Rf ‖∞ for completeness since, even though it is not
strictly derived from an integral, it nevertheless satisfies the
required invariances.

It is worth noting that, following the Lagrangian inter-
pretation given in the introduction (cf. (3)), we may in
practice replace R( f ) by Ψ(R( f )) where Ψ is an arbitrary
continuous strictly increasing function on R+, since all such
functions define equivalent inequality constraints in the
Lagrangian formulation, for R( f ) ≤ a⇔Ψ(R( f )) ≤Ψ(a).
Such a function Ψ can therefore be introduced as convenient.
However, if it is desired to have (5) hold with a constant
cs,R not depending on f , one can then show that Ψ needs
to be a multiple of the homogeneous function |a|q for some
q (cf. the proof of Proposition 1). Putting all this together,
we get
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Proposition 2: Let R be S-invariant in the sense of (8).
Then, given p ∈ [1,∞] and any q ∈ R+, the regularization
functionals

Rq
p( f ) := ‖Rf ‖qp (9)

are S-invariant up to a multiplicative factor; that is, we have,

Rq
p([S] f ) = cS,p,qR

q
p( f )

for some cS,p,q 6= 0.

Proof: This is an immediate consequence of Corollary 1 and
(8).

Excepting the case of p =∞ where one normally takes
q = 1, the preferred choice of q in practice is q = p, which
simplifies the formulae by getting rid of the p-th algebraic
root hidden in the definition of the Lp norm.

As a reminder, in (8) (reproduced below for convenience)
we required that the operator R : X → Y commute with the
transformation associated with S, where S is taken from one
of the transformation groups Σ, A, T , Ω (cf. Definition 1):

R [S]X = kS[S]Y R. (10)

Note that, in general, when R maps objects of type X to
those of a different type Y (such as vectors to scalars or
vice versa), the operator associated with S will be different
on the two sides of (10); we have emphasized this in the
above equation by subscripting the operator with X and Y
as appropriate.

We say that R is {S}-invariant if it satisfies (10) for all
S in some understood transformation group(s) (strictly {S}-
invariant if in addition kS = 1). For instance, we shall talk
about Ω-invariant (T -invariant, etc.) operators, by which we
mean operators that satisfy (10) for S ∈ Ω (S ∈ T , etc.). One
notes that for an {S}-invariant operator the map

S 7→ kS (11)

is a group homomorphism from any of the transformation
groups under consideration (typically Σ, A, T , and Ω) onto
its image under R.

In the sequel, we shall limit ourselves to linear regulariza-
tion operators R, while reminding the reader that in general,
the reconstruction problem remains non-linear due to the Lp
norms involved. We shall also assume that R is stable under
shifts in the sense defined below.

Definition 2: An operator R is said to be minimally T-stable
in Lp if there exists a subset E of Lp, not entirely inside the
kernel of R, that is invariant under the action of T and
on which R has a bounded operator norm; that is, if the
following conditions are simultaneously satisfied.

[τ] f ∈ E for all f ∈ E and all τ ∈ T ;
‖Rf ‖p
‖ f ‖p

< C for some C <∞ and all f ∈ E; (12)

0< ‖Rf ‖p for some f ∈ E.

In some problems of practical interest, one may wish to
consider a combination of, say, N regularization terms rather
than a single one of them. These different regularizers may,

for instance, measure the regularity of the projections of f
onto different subspaces with special physical significance
(we shall see some examples of these in §IV where we
consider curl- and divergence-free subspaces). In this case,
the cost functional to be minimized takes the form

J(λ1:λN )( f ; y) = d( f ; y) +
∑

1≤i≤N

λi‖Ri f ‖qi
pi

,

which can also be interpreted as the Lagrange relaxation of
a constrained optimization problem with several inequality
constraints (i.e. ‖Ri f ‖qi

pi
< ai , 1 ≤ i ≤ N). Since, per

Proposition 2, each of the regularization terms is invariant
under the desired geometric transformations, their weighted
sum will also have this property, up to a suitable independent
adjustment of the λis for each given geometric transforma-
tion. As such, all that was or will be said here in connection
with the interplay of invariance and regularization, will be
understood to generalize in the sense just described to linear
combinations of regularization terms.

Having established the general form of regularization
functionals in terms of Lp norms of Rf , where R is the
regularization operator with invariance properties dictated
by (10), we shall now take up the task of identifying such
operators. This will require us to consider scalar and vector
cases separately, primarily due to the difference in the law
of rotation in the two settings.

III. REGULARIZATION OPERATORS: SCALAR CASE

In this section we shall derive the general form of linear
regularization operators that possess specific invariance
properties in the sense of (10). Our main result here is
stated in Theorem 1, which shows that these operators take
the form of fractional Laplacians.

We refer the reader to Definition 1 for a list of invariances
that are of interest to us. Some peculiarities of the translation
group (T) and the orthogonal group (Ω), together with
the stability assumption described in Definition 2, allow us
to show that for transformations in these two groups the
constant kS in (10) is always 1:

Lemma 1: A minimally T -stable operator R (cf. Defini-
tion 2) that is invariant under the action of Ω and T in the
sense of (10) is strictly invariant under Ω and T , that is, it
has

kS = 1

for all S ∈ Ω∪ T .

Proof: First, note that for those elements of Ω that are of
some finite order m, i.e. for any orthogonal matrix ω such
that ωm = Id, by the ω 7→ kω homomorphism (cf. (11)) we
have 1= kId = kωm = km

ω ⇒ kω = 1 (knowing that kω ∈ R+).
Furthermore, any element ω of Ω, including those of

infinite order, can be written as a product of at most d
reflections ωi , where d is the dimension (this is the Cartan-
Dieudonné theorem). Reflections are of order 2, and hence
have coefficient kωi

= 1 by the previous paragraph. We
therefore have, for arbitrary ω ∈ Ω, kω =

∏

i kωi
= 1. This

proves the Ω part of the lemma.
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We shall prove the second part by contradiction. To this
end, assume that there exists τ ∈ T with kτ 6= 1. Without
loss of generality we may assume kτ > 1 (simply replace τ
by −τ in the other case). Then, for some f ∈ E not in the
kernel of R, with E defined in Definition 2,

lim
m→∞

‖R [mτ] f ‖
‖[mτ] f ‖

= lim
m→∞

km
τ

‖Rf ‖
‖ f ‖
→∞,

which contradicts (12).
Finally, note that if we had restricted ourselves to rotation

matrices instead of general orthogonal transformations in
the first part of the lemma, we could still have proved kω = 1
with the aid of an additional minimal Ω-stability assumption,
arguing as we did for T .

We also have
Lemma 2: The factor kσ corresponding to scaling with

σ > 0 (cf. (10)) is homogeneous in σ, that is, it can be
written as

kσ = σ
−γ

for some γ ∈ R.

The proof is very similar to that of Proposition 1, hence we
omit it.

The stage is now set for the following result. It essentially
goes back to Duchon, although here we derive it from
somewhat different premises (such as minimal T -stability).

Theorem 1: Let R be a real, minimally T -stable, Fourier
integral operator, initially defined from the Schwartz space
S to Lp for some p ≥ 1, that is invariant under the action
of T , Ω, and Σ in the sense of (10). R is then characterized
by a Fourier multiplier of the form

R̂(ξ) = c|ξ|γ (13)

where γ > d − d/p is the exponent identified in Lemma 2.
Conversely, Fourier operators with symbols given by (13)

are strictly invariant under the action of T and Ω, and
invariant under the action of Σ with the same coefficient kσ
as in Lemma 2.

Proof: First observe that, by Lemma 1, R is strictly T - and
Ω-invariant and, by Lemma 2, its Σ-invariance coefficient kσ
is a homogeneous function σ−γ of σ ∈ R+. Since R is a linear
and translation-invariant Fourier operator, it is associated
with an integral as per

Rf (x) = (2π)−d

∫

Rd

ei〈x ,ξ〉R̂(ξ) f̂ (ξ) dξ

= (2π)−d〈R̂, ei〈x ,·〉 f̂ 〉,

where R̂ is the Fourier multiplier corresponding to R.
One can then directly verify that in order for R to commute

with rotations and scalings (the latter up to a homogeneous
multiplicative factor of kσ = σ−γ), its Fourier expression R̂
must be rotationally symmetric and homogeneous of degree
γ. It is known [18, 19] that, subject to Lp boundedness, all
such distributions can be represented in the form:

R̂(ξ) = c |ξ|γ with γ > d − d/p.

The same proof goes through when restricting ourselves
to rotations instead of general orthogonal transformations if
we make the additional assumption of minimal Ω-stability.

The converse is easily verified by simple changes of
variables in the Fourier domain.

Note that |ξ|γ is the Fourier symbol of the 1
2
γ-th (frac-

tional) power of the negative Laplacian (−∆). We can
therefore write the reconstruction cost functional as

Jλ( f ; y) = d( f ; y) +λ‖(−∆)γ/2 f ‖qp.

Moreover, by the argument given at the end of the previous
section, we may additionally consider multiple additive
regularization terms, as in

J(λ1:λN )( f ; y) = d( f ; y) +
∑

1≤i≤N

λi‖(−∆)
γi/2 f ‖qi

pi
.

Two of the most important regularization functionals
traditionally used in image processing are the total variation
of f and its L2 relaxation: ‖grad f ‖1 and ‖grad f ‖22 (using
the vector Lp norms of (7)), both of which satisfy the required
invariances. Note, however, that these regularizers, as such,
fall outside the scope of this section for the reason that they
incorporate an operator (grad) that maps scalars to vectors,
while all operators considered so far map to scalars and not
vectors. Nevertheless, due to a peculiar property of the L2
norm (namely, that it is a Hilbert space and has an inner
product structure), in the L2 case one can write

‖Rf ‖22 = 〈Rf , Rf 〉= 〈R∗Rf , f 〉

= 〈(R∗R)
1
2 f , (R∗R)

1
2 f 〉= ‖(R∗R)

1
2 f ‖22,

(14)

where R∗ is the adjoint of R, and the self-adjoint operator
(R∗R)

1
2 maps scalars to scalars, and is therefore included

in our framework. Hence, in particular, for the L2 grad
regularizer we have ‖grad f ‖22 = ‖(−∆)

1
2 f ‖22, which belongs

to the family we derived above; something that cannot be
said about the L1 total variation.

Partly in order to overcome the latter limitation, later,
in §V, we shall also develop the theory of scalar-to-vector
regularization operators and introduce fractional gradients
gradγ. From there it then follows that, more generally,
invariant scalar cost functionals can be of the form

J(λ1:λN )( f ; y) = d( f ; y) +
∑

1≤i≤N

λi‖(−∆)
γi/2 f ‖qi

pi

+
∑

1≤i≤N ′
λ′i‖gradγ

′
i f ‖q

′
i

p′i
.

IV. REGULARIZATION OPERATORS: VECTOR CASE

Translations τ ∈ T and scalings σ ∈ Σ act in the same way
on vector fields as they do on scalars. On the other hand,
we shall need to redefine the action of the orthogonal group
Ω in the vector setting. Since a vector field is specified in
the same coordinate system in which its argument is given,
when transforming the domain one has to recompute the
coordinates of the vector field accordingly. More precisely,
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the formula for transforming a vector field f = ( f1, . . . , fd)T

by an orthogonal matrix ω is

[ω]v f =ω f (ωT·); (15)

that is, the coordinates of the vector are transformed by the
inverse of the domain transformation matrix. On occasion,
we shall refer to invariance as in (15) as contra-variance
(recall that we distinguish between the scalar and vector
operators associated with ω by subscripting [ω] by s and v
respectively).

The following result, proved indirectly for d = 2,3 in
Arigovindan [10], is the vector counterpart of Theorem 1.
In the Appendix, we give a different and more general proof
of this theorem, valid in any number of dimensions.

Theorem 2: Let R be a real, minimally T -stable, Fourier
operator initially defined S d → Ld

p and mapping vector fields
to vector fields, which is invariant under the action of T ,
Ω, and Σ in the sense of (10). R is then characterized by a
(matrix-valued) Fourier multiplier of the form

R̂(ξ) = |ξ|γ
h

c1
ξξT

|ξ|2
+ c2

�

I −
ξξT

|ξ|2
�i

(16)

where c1, c2 ∈ R are Helmholtz coefficients (see below) and
γ > d − d/p is the exponent identified in Lemma 2.

Conversely, operators with Fourier multipliers as above
satisfy all of the required invariances.

Sketch of the proof: The complete proof appears in the
Appendix. Here is an introduction to it.

The kτ = 1 part of Lemma 1, and Lemma 2 (which
says that kσ = σ−γ for some γ) apply directly and without
modification in the vector setting. Also, following the same
line of argument as in the proof of Lemma 1, one can prove
that once again kω = 1 for all ω ∈ Ω, as was the case for
scalars. Since R is linear and translation-invariant, it admits
a Fourier-domain representation as

Rf (x) = (2π)−d

∫

Rd

ei〈x ,ξ〉R̂(ξ) f̂ (ξ) dξ,

where R̂ is now a matrix-valued Fourier kernel. The scale-
invariance of R with coefficient kσ = σ−γ and its strict
orthogonal contra-variance translate to the following Fourier-
domain identities:

R̂(σ·) = σγR̂(·) for all σ > 0; (17)

R̂(ω·) =ωR̂(·)ωT for all ω ∈ Ω. (18)

In the Appendix, we prove the forward direction in two
steps, first showing that orthogonal contra-variance implies
that R̂(ξ) at any ξ 6= 0 has the eigen-decomposition

R̂(ξ) = µ1(ξ)
ξξT

|ξ|2
+µ2(ξ)
�

I −
ξξT

|ξ|2
�

, (19)

and then noting that, by Theorem 1, µ1 and µ2 must be of
the form ci |ξ|γ, i = 1,2.

The converse of the theorem can be verified easily by
Fourier-domain changes of variables.

With regard to the parameters c1, c2, three cases are of
particular interest; namely, those of c1 = c2, c1 = 0, and
c2 = 0.

For c1 = c2 = c, the operator defined in Theorem 2 has
the Fourier expression c‖ξ‖γ and therefore corresponds, up
to normalization, to the fractional vector Laplacian (−∆)γ/2,
that is, the scalar Laplacian applied coordinate-wise. For this
reason we shall refer to the family of operators identified
by (19) as generalized vector Laplacians, with the notation
(−∆)γ/2(c1,c2)

[20].
To better understand the behaviour of the operator

when either c1 or c2 is zero, note that (−∆)γ/2(c1,c2)
can be

decomposed as
�

c1(Id− P) + c2P
�

(−∆)γ/2 (20)

where the operator P is defined by its Fourier multiplier
P̂ = ξξT/|ξ|2. It is straightforward to see that P and its
complement Id − P are projections and that they in fact
project their argument onto its curl-free and divergence-free
components respectively; in other words, taken together they
provide a Helmholtz decomposition of their argument.

To summarize, the operators identified in Theorem 2
effectively combine a fractional vector Laplacian with a re-
weighting of Helmholtz components. Moreover, one has

(−∆)γ/2(c1,c2)
(−∆)γ

′/2
(c′1,c′2)

= (−∆)(γ+γ
′)/2

(c1c′1,c2c′2)
.

We can now give the general form of our cost functional
for vector fields, as we did for scalar fields in §II. Once
again, we may consider linear combinations of some N
regularization terms, which retain the same invariances as
the individual terms, up to re-adjustment of λ1, . . . ,λN :

J(λ1:λN )( f ; y) = d( f ; y) +
∑

1≤i≤N

λi‖(−∆)
γi/2
(c1,i ,c2,i)

f ‖qi
pi

.

However, the above family is still not complete, for reasons
similar to those given at the end of §III. This, in fact, will
be the subject of the next section.

V. MORE ON Lp REGULARIZATION OF VECTOR FIELDS

A. Motivation

In our discussion in the preceding sections we implicitly
assumed that R mapped scalar or vector fields to similar
objects and in the same number of dimensions. In other
words, we considered the operator associated with S in
(10) to be the same on the left and right sides. In this
way, we overlooked some important possibilities for vector
regularization operators, such as the divergence operator
(mapping vector fields to fields of scalars) or the curl
(mapping vector fields to pseudo-vector fields in 3D; see
below). In this section, we shall remedy this by studying
operators that generalize divergences and curls (and their
adjoints), in the same way that the operators of the preceding
sections generalized scalar and vector Laplacians.

The generalization to d dimensions of the divergence
raises no difficulty. Indeed, the divergence of a vector field
is defined in any number of dimensions by means of the
Fourier multiplier iξT (given in Cartesian coordinates). The
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divergence maps vector fields to scalar fields. Its adjoint is
the negative gradient with Fourier multiplier −iξ, which
maps scalar fields to vector fields.

It is less obvious how the usual three-dimensional defin-
ition of the curl can be generalized to d dimensions. This
difficulty is essentially rooted in the fact that the curl of a
vector in 3D is not a true vector: per the right-hand rule of
physics, the curl of a vector field transforms as an ordinary
vector field under proper rotations, but it flips sign under
improper rotations (those with determinant −1). For this
reason, curl fields in 3D are usually referred to as pseudo-
vector fields.

It is in fact this notion of pseudo-vector that does not
generalize directly to arbitrary d. For this reason, in higher
dimensions, it is constructive to consider the curl operator as
a map from vector fields to bivector fields (d×d matrix fields
with specific transformation laws). We may identify bivectors
with fields of d× d anti-symmetric tensors [21]. These have
d(d − 1)/2 independent components, corresponding to the
upper-diagonal elements of the matrix (only in 3D is d =
d(d−1)/2, hence the difficulty in generalizing the customary
definition of curl and pseudo-vectors to d > 3).

In three dimensions, identification between pseudo-vectors
and anti-symmetric matrices (bivectors) can be made by the
?-map that we introduce below.

1p
2













0 − f3 f2

f3 0 − f1

− f2 f1 0













7→













f1

f2

f3













. (21)

The d-dimensional generalization of the curl, as a map from
vector fields to bivector fields, is then given by the Fourier
expression

(curl f )∧ = 1p
2

�

iξ f̂ T − f̂ iξT�.

Defining the vector-gradient grad f of the vector field f as
the matrix

grad f =













∂1 f1 ∂1 f2 ∂1 f3

∂2 f1 ∂2 f2 ∂2 f3

∂3 f1 ∂3 f2 ∂3 f3













,

we may write the curl of f as

curl f = 1p
2

�

grad f − (grad f )T
�

.

In combination with (21), the above relation yields the
usual definition of curl in 3D.

The adjoint of the curl, which maps bivector fields to
vector fields, is given by the expression

(curl∗ f )∧ = 1p
2
( f̂ − f̂ T) iξ

(note that in the former equation f is a vector field, whereas
in the latter it denotes a tensor).

Finally, we note that in 3D, under an orthogonal transform-
ation of the domain byω ∈ Ω, the bivector and pseudo-vector

representations (the sides of (21)) transform respectively as

1p
2
ωT













0 − f3(ωT·) f2(ωT·)

f3(ωT·) 0 − f1(ωT·)

− f2(ωT·) f1(ωT·) 0













ω

and

(detω)ω













f1(ωT·)

f2(ωT·)

f3(ωT·)













(the determinant captures the sign flip of pseudo-vectors
under parity transformations). The first of these two defines
the general law of action of Ω on bivectors in d dimensions:

[ω]b f =ωT f (ωT·)ω.

B. Curl-like and divergence-like operators and their adjoints

In this subsection we shall give a categorical definition of d-
dimensional curl-like and divergence-like families of operators,
and make the connection between these operators and the
scalar and vector Laplacians of previous sections. But before
this, let us first briefly recall in a single place the law of action
of transformation groups on scalars, vectors, and bivectors.
For orthogonal transformation with ω ∈ Ω we have

[ω]s f = f (ω·); (22)

[ω]v f =ωT f (ω·); (23)

[ω]b f =ω f (ω·)ωT; (24)

for all ω ∈ Ω. Note that in the first equation f is scalar, in
the second it is vector, and, finally, in the last equation its
values are d × d anti-symmetric matrices.

The actions of T and Σ on the three categories (scalar,
vector, and bivector) remain the same in all cases ( f 7→
f (· −τ) for the former and f 7→ f (σ−1·) for the latter, for
all τ ∈ T and σ ∈ Σ).

As noted, we may, in more generality than previous
sections, study the two families of divergence-like and curl-
like operators and their adjoints. Operators in the former
category go from d coordinates to 1, and back by their
adjoint; whereas those in the latter go from d coordinates
to d(d − 1)/2 independent coordinates (forming a d × d
anti-symmetric matrix) and back to d:

(V.1) Divergences (Rdiv) and their adjoints (R∗div): These consist
of maps from vector fields to scalar fields and vice versa.
In the first case the invariance equation takes the form

Rdiv [S]v = [S]s Rdiv;

and in the second case we require

R∗div [S]s = [S]v R∗div.

Given our focus on linear regularization operators and
the shift-invariance assumption, we can restate the
above properties as conditions on the Fourier multipliers
of Rdiv and R∗div. Scale-invariance in all cases leads to
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the same equation as (17). With regard to reflection-
invariance, in place of (18) we have,

R̂div(ω·) = R̂div(·)ωT

for divergence-like operators and

R̂∗div(ω·) =ω
TR̂∗div(·)

for their adjoints. These follow from (22) and (23).
(V.2) Curls (Rcurl) and their adjoints (R∗curl): Curl-like operators

map vector fields to fields of bivectors. Accordingly, their
adjoints map bivectors back to vectors. For the two we
have, respectively,

Rcurl [S]v = [S]b Rcurl;

R∗curl [S]b = [S]v R∗curl.

In the Fourier multipliers, scale-invariance is again reflec-
ted by (17). For orthogonal invariance the equivalents
of the preceding pair of equations are, respectively,

[R̂curl(ω·)]αβγ =ω
T
αiω jβω

T
kγ[R̂curl(·)]i jk;

[R̂∗curl(ω·)]αβγ =ωiαω
T
β jωγk[R̂

∗
curl(·)]i jk.

These are consequences of (22) and (24) (we are using
here a light form of Einstein’s summation convention,
whence repeated indices are summed upon; for instance,
ci j = aik bk j is the product of the matrices ai j and bi j).
Notice that R̂curl and R̂∗curl are third-rank tensors (linear
maps between vectors and matrices), acting, respectively,
on vectors and matrices by
�

Rcurl f
�∧

i j = [R̂curl]i jk f̂k and
�

R∗curl f
�∧

k = [R̂curl]i jk f̂i j .

Example 1: Fractional divergences and gradients: These are
denoted, respectively, as divγ and gradγ, and are defined by
their respective symbols

|ξ|γ
iξT

|ξ|
and |ξ|γ

iξ

|ξ|
.

Fractional divergences act on vector fields, mapping them
to scalars; gradients do the opposite, with divγ and divγ∗ =
−gradγ forming and adjoint pair. The fractional gradient of
order 0 (grad0) is known as the Riesz transform [22].

Example 2: Fractional curls and adjoint curls: We shall
denote the fractional curl and its adjoint by curlγ and
curlγ∗ respectively. They are defined in the Fourier domain
according to

(curlγ f )∧ = 1p
2
|ξ|γ
� iξ

|ξ|
f̂ T − f̂

iξT

ξ

�

,

(curlγ∗ f )∧ = 1p
2
|ξ|γ( f̂ − f̂ T)

iξ

|ξ|
.

These definitions are valid in any number of dimensions
≥ 2 (they are trivial in one dimension). Fractional curls map
d-dimensional vectors to d × d anti-symmetric bivectors;
adjoint curls go in the opposite direction.

One readily verifies that the above examples satisfy the
invariances outlined in (V.1) and (V.2).

Our claim has been that the considerations of this section
are more general than those of the previous two; and
yet, until this point they seem to have been limited to
operators mapping vectors to non-vector and vice-versa.
Hence, at first sight, it might appear that for completeness
we shall have to include in our discussion of regularization
operators, additionally, the families considered in §II (scalar
to scalar) and in §IV (vector to vector). However, we shall
now show that the latter families can be decomposed in
terms of fractional curls and divergences and their adjoints.
Specifically, for the scalar fractional Laplacian we have

(−∆)γ = divγ(divγ)∗

= divγ(−gradγ);

and for the generalized fractional vector Laplacian of §IV,

(−∆)γ(c1,c2)
= c1(divγ)∗ divγ+c2(curlγ)∗ curlγ

= c1(−gradγ)divγ+c2(curlγ)∗ curlγ ;

or, what is the same,

(divγ)∗ divγ = (Id− P)(−∆)γ,
(curlγ)∗ curlγ = P(−∆)γ.

In addition, we record the following factorization results
that relate fractional curls and divergences to combinations
of integer-order operators and the fractional vector Laplacian
(−∆)γ:

divγ = div (−∆)γ/2;

gradγ = (−∆)γ/2 grad ;

curlγ = curl (−∆)γ/2;

curlγ∗ = (−∆)γ/2 curl∗ .

We shall not burden ourselves further by trying to find, in
complete generality, the equivalents of Theorems 1 and 2 for
curl-like and divergence-like families, as the cases covered by
the above examples appear to us to be sufficiently versatile
for applications.

Note, finally, that in order to form regularization function-
als similar to (9) which involve curl-like operators, we shall
need to define the equivalent of p-norms on d × d tensor
fields. The matrix Lp norms defined in Appendix A work
perfectly for this purpose. It is also easy to see that in the
case of anti-symmetric matrices, the functional obtained in
this ways equals the vector Lp norm of the upper diagonal
elements of the matrix (in particular, in 3D this is effectively
the same as the norm applied to vector fields). This means
that we may alternatively define the same regularization
functional in terms of the vector Lp norm of the ?-map of
the curl (cf. (21)).

Given all this, a general vector cost functional with
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multiple regularizers can be written as

J(λ1,λ2)( f ; y) = d( f ; y) +
∑

1≤i≤N

λi‖(−∆)
γi/2
(c1,i ,c2,i)

f ‖qi
pi

+
∑

1≤i≤N ′
λ′i‖ curlγ

′
i f ‖q

′
i

p′i

+
∑

1≤i≤N ′′
λ′′i ‖divγ

′′
i f ‖q

′′
i

p′′i
.

(the three p-norms appearing in the above equation are those
defined for vectors, bivectors, and scalars, in that order; cf.
(7) and Appendix A).

An illustrative example is

J(λ1,λ2)( f ; y) = d( f ; y) +λ0‖(−∆)
γ/2 f ‖pp

+λ1‖(Id− P)(−∆)
γ/2 f ‖pp

+λ2‖P(−∆)
γ/2 f ‖pp

+λc ‖ curlγ f ‖pp
+λd‖divγ f ‖pp,

which incorporates independent regularization of curl-free
and div-free subspaces (see the definition of P after (20)),
as well as fractional curl and div terms. Note that some of
the λis may be zero.

We conclude this section by the observation that, as we
also saw in (14), in the quadratic case (p = 2) the above
functional reduces to the one given at the end of §IV,
since in this particular case the norm is associated with
an inner product, thus allowing us to equate ‖ curlγ f ‖2
with ‖P(−∆)γ/2 f ‖2 and ‖divγ f ‖2 with ‖(Id−P)(−∆)γ/2 f ‖2,
as can be readily verified using Parseval’s identity. This is
generally not true for other values of p (but it would have
been, had we considered Lp norms in the Fourier domain in
place of the usual spatial Lp norms).

VI. ILLUSTRATION

For the purpose of illustration, we now consider the
problem of reconstructing a vector field from noisy
measurements—primarily in 3D (d = 3) but also in 2D—
using a quadratic fidelity criterion (consistent with a white
Gaussian noise assumption). We shall focus on div-curl
regularization with different (L2 vs L1) norms. We note
in passing that in practical problems, higher-order regulariz-
ation, such as the physically-motivated second-order div-curl
regularization of Suter [1], can be of interest, especially
in the context of motion estimation. In this section, our
primary motivation is to demonstrate and compare the use
of L2 vs L1 norms, in line with the similar comparison of
quadratic vs total-variation type regularization of scalars that
has frequently been made in image processing literature. For
this reason we shall limit ourselves to first-order differential
regularization operators. Specifically, we shall consider the
cost functions

J(p)( f ; Y ) =
∑

n

| f (n)− Y [n]|2 +λc‖ curl f ‖pp

+λd‖div f ‖pp
(25)

with p = 1,2, where Y [n]s are the measurements (in this
section, upper case letters will be used to denote discrete
quantities such as Y = Y [n] = (Y1[n], Y2[n], Y3[n]), for n in
some subset of Zd). In interpreting the above formula when
the number of samples and/or estimated values f (x) goes to
infinity, some form of normalization or limit argument may
become necessary. But in practice the number of observations
Y [n] will be finite.

The norm applied to the curl in the former equation is
a matrix Lp norm as defined in Appendix A; but in 3D, we
may use the ?-map defined in (21) and rewrite it as a vector
norm (cf. (7)):

J(p)(x; Y ) =
∑

i

| f (i)− Y [i]|2 +λc

∫

Rd

�

p

| ? curl f |2
�p

+λd

∫

Rd

�

p

|div f |2
�p.

(26)
For p = 1, the mixed L2–L1 functional proposed above is in

the spirit of total variation (TV) regularization. It is of interest
to compare it against its purely quadratic counterpart, if only
to see whether the relative advantage of TV regularization
to quadratic regularization in 2D image denoising carries
over to the vector setting.

In three dimensions, the explicit definitions of curl and
divergence are

div f =
∑

1≤k≤n

∂k fk = ∂1 f1 + ∂2 f2 + ∂3 f3;

? curl f =
h

∂3 f2 − ∂2 f3; ∂1 f3 − ∂3 f1; ∂2 f1 − ∂1 f2

i

.

While guided by the previous continuous formulation,
our implementation on a digital computer is necessarily
discrete. Although there is room for more sophistication,
we shall discretize simply by taking finite differences in
place of derivatives, while emphasizing that in practice, the
discretization scheme used can play an important role in
the numerical solution of inverse problems. It is therefore
advisable, in real-world problems, to look at alternatives such
as discrete orthogonal decompositions; see Yuan, Schnörr,
and Mémin [23].

Let F j = F j[n], j = 1,2, . . . , d, denote the reconstruction
corresponding to samples of f j over some discrete domain
⊂ Zd . Further, let us denote by δi F j the finite difference
associated with the partial derivative ∂i f j , that is,

δi : F j 7→ F j − F j[· − êi]

except at the boundaries where some preferred type of
boundary conditions is applied (êi is the i-th standard unit
vector in Rd). For future reference, also note the adjoint of
δi:

δ∗i : F j 7→ F j − F j[·+ êi].

Discrete divergence and curl can be defined in 3D by the
identities

divδ F = δ1F1 +δ2F2 +δ3F3;

curlδ F =
h

δ3F2 −δ2F3; δ1F3 −δ3F1; δ2F1 −δ1F2

i

.
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The point-wise squared amplitudes of the curl and divergence
that appear under the square root sign in (26) are then
discretized as

| curlδ F[m]|2 =
∑

1≤i< j≤3

(δi F j[m]−δ j Fi[m])
2;

|divδ F[m]|2 =
∑

1≤i, j≤3

δi Fi[m]δ j F j[m].

Our discrete cost function can then be written as

J
(p)
δ
(F ; Y ) =
∑

m

|F[m]− Y [m]|2

+λc

∑

m

�

p

| curlδ F[m]|2
�p

+λd

∑

m

�

p

|divδ F[m]|2
�p

(27)

(recall that F[m], Y [m] are vectors, and | · | denotes the
Euclidean length; the index m runs over the sampling/re-
construction grid in Zd).

For p = 2, the problem is quadratic and can be efficiently
solved using iterative linear methods. For the L1 problem,
following Figueiredo et al. [15], we shall now propose an
iterative reweighted least squares (IRLS) approach belonging
to the family of Majorize-Minimize (MM) algorithms.

Given some F ′ with |RF ′| > 0, the L1 terms of the
functional can be upper-bounded as
∑p

|RF |2 ≤
∑p

|RF ′|2 +
∑

�

|RF |2 − |RF ′|2
�

/2
p

|RF ′|2
(28)
(this follows from the inequality

p
a ≤
p

a′+ 1
2
(a−a′)/

p
a′).

Let the sequence (F̃(n)) be defined by

F̃(n) = argmin
F

Qδ(F, F̃(n−1); Y ) (29)

where

Qδ(F, F ′; Y ) :=
∑

m

∑

1≤i≤3

Fi[m]
2

−
∑

m

∑

1≤i≤3

2Fi[m]Yi[m]

+λc

∑

m

| curlδ F[m]|2
p

| curlδ F ′[m]|2

+λd

∑

m

|divδ F[m]|2
p

|divδ F ′[m]|2
+ Kδ(F

′; Y )

is obtained by majorizing (27) using (28); we have collected
all terms depending only on Y and F ′ in the scalar function
Kδ, which we may discard when solving (29).

Note that Q(F, F ; Y ) = J
(1)
δ
(F ; Y ). Furthermore, we have

J
(1)
δ
(F̃(n); Y )≤Qδ(F̃(n), F̃(n−1); Y )

<Qδ(F̃(n−1), F̃(n−1); Y ) = J
(1)
δ
(F̃(n−1); Y )

which shows that, with increasing n, the J
(1)
δ
(F̃(n))s form a

decreasing sequence (in the second inequality we have used
the strict convexity of Qδ, and assumed that F̃(n) 6= F̃(n−1)).

For fixed F ′, the minimizer of Qδ(F, F ′; Y ) over F is the
solution of the linear system of equations obtained by setting

all of the derivatives of Qδ equal to zero. To see this, let us
first define:

c′m =
p

| curlδ F ′[m]|2; d ′m =
p

|divδ F ′[m]|2.

Further, let:

C ′k F[p] :=
∑

1≤i≤3

δ∗i
δi Fk[p]−δk Fi[p]

c′p
;

D′k F[p] := δ∗k

∑

1≤i≤3 δi Fi[p]

d ′p
.

After some algebraic simplification, one can write

∂

∂ Fk[p]
Qδ(F, F ′; Y ) = 2(Fk[p]− Yk[p]) + 2λC C ′k F[p]

+ 2λD D′k F[p].

The system of equations

∂

∂ Fk[p]
Qδ(F, F ′; Y ) = 0, for k = 1,2, 3 and all p, (30)

thus corresponds to a linear system AF = Y (shorthand
for (AF)k[p] = Yk[p], for all p). This system may then
be solved using a variety of methods (conjugate gradient,
multi-grid-preconditioned GMRES, etc.). In implementation,
one may add a small ε to numerators and denominators to
avoid division by zero.

To summarize, the complete algorithm for L1 regularized
denoising consists of a number of outer cycles in accordance
with (29), which sequentially reduce the cost functional Qδ.
The nth outer iteration takes the measurements (Y ) and
the output of the (n− 1)th iteration (F̃(n−1)) as inputs, and
then moves in the direction of minimizing Qδ(·, F̃(n−1), Y ).
This local minimization corresponds to a linear system as
specified in (30). Within each outer iteration, this system
is then (approximately) solved using a number of inner
iterations of some iterative linear solver.

Simulation and results

We implemented the scheme described above in MATLAB
(The MathWorks, Inc., Natick, MA) in 2D and 3D. As
experiments, we considered the denoising of phantoms
corrupted by different levels of white Gaussian noise. λC
and λD were optimized for best mean squared error (MSE)
performance. In simulation, the true MSE for a given
choice of λC and λD can be calculated using an oracle.
In practice, even though the ground truth is not known
and the true MSE is therefore not accessible, so long
as the white Gaussian noise assumption remains valid, a
highly accurate estimate of the MSE can be obtained using
Monte Carlo techniques that approximate Stein’s Unbiased
Risk Estimate (SURE), as described in Ramani et al. [24]
(see also Girard [25]). This estimate comes at the cost of
solving an extra denoising problem for each choice of λC ,
λD, but in terms of effectiveness in predicting the best values
of λC and λD we found it to be indistinguishable from the
oracle in our experiments.

Results are reported in Table II and in Figures 1–5 (3D
graphics were generated using ParaView 3.8.0 [26]). The
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phantoms, and high resolution images of their noisy and
denoised versions, are available online, at the web address
<http://bigwww.epfl.ch/tafti/gal/vreg/>.

The first 3D phantom, presented in Figure 1, consists of
the gradient field of the potential

φ3D(x1, x2, x3) = x1 x2e−|x |
2
.

The second 3D phantom, depicted in Figure 2, models fully-
developed laminar flow (with a parabolic profile) in a tube,
encircled by constant flow inside a torus.

We solved the L1 version of the denoising problem using
the iterative reweighted least squares scheme described
above, with 8 external cycles per (29) and 600 conjugate
gradient (CG) inner iterations per cycle to solve the linearized
problem in each step. The L2 problem was solved to
convergence using CG iterations.

In Figures 3 and 4 we show the amplitude profile of
L1 and L2 reconstructions of the two 3D phantoms. These
reconstructions are also compared in Table II in terms of
SNR improvement after denoising (with λC ,λD optimized for
best SNR performance) and mean angular error. The latter
performance measure is defined as the average pointwise
angle between the ground truth and the reconstruction; see
Barron, Fleet, and Beauchemin [27].

The point we wish to highlight here is that L1 regulariz-
ation performs remarkably well for the second phantom,
which features discontinuities in the flow, while being
almost comparable to L2 regularization for the first (smooth)
phantom. The former regularization also better preserves
small details and discontinuities at flow boundaries, which
are smoothed in L2 denoising. On the other hand, not
unexpectedly, L2 denoising produces slightly higher SNRs
in the case of the smooth ‘gradient’ phantom, although L1
regularization is still quite comparable in terms of SNR and
even yields smaller angular errors.

As hinted previously, we took advantage of the availability
of the ground truth to optimize the parameters λC ,λD for
best SNR, for which purpose we used a bracketing search
method (it also bears reminding that the parameters were
therefore not optimized for our second quality criterion, the
mean angular error). The parameter values obtained in our
experiments are tabulated in Table III. We remark that the
superior performance of the L1 algorithm is in spite of the
fact that, in contrast to the L2 case, the experimentally-
obtained parameters λC ,λD for the L1 problem may in
fact be sub-optimal, primarily as a consequence of that the
L1 problem is typically solved only partially by fixing the
number of iterations (computational budget) in advance,
meaning that due to the variable state of convergence SNR
performance fluctuates about its optimum, thus breaking the
working assumptions of typical optimization algorithms used
to optimize λC ,λD. It is also worth noting that terminating
the scheme before full convergence can itself be seen as an
additional source of regularization; the optimal parameters
λC ,λD therefore depend also on the state of convergence of
the problem.

As a further demonstration of potential, in Figure 5 we
provide a sample output of 2D vector field denoising. The

Table II: Comparison of denoising algorithms in 3D; al-
gorithm parameters were optimized for best SNR for each
regularizer and input SNR.

(a) gradient field

input SNR [dB] SNR improvement [dB]

angular error [deg.] angular error (mean ± stdev) [deg.]

L1 L2

0 11.70 11.04

(59.12◦ ± 39.93◦) (28.61◦ ± 31.46◦) (31.84◦ ± 33.95◦)

10 7.50 7.78

(37.81◦ ± 36.74◦) (16.90◦ ± 23.05◦) (20.87◦ ± 28.31◦)

20 4.49 4.89

(20.22◦ ± 28.11◦) (10.03◦ ± 15.80◦) (12.40◦ ± 21.25◦)

(b) tube and torus

input SNR [dB] SNR improvement [dB]

angular error [deg.] angular error (mean ± stdev) [deg.]

L1 L2

0 8.03 6.37

(12.11◦ ± 7.29◦) (5.97◦ ± 4.04◦) (5.95◦ ± 3.93◦)

10 7.96 2.55

(3.82◦ ± 2.21◦) (2.58◦ ± 1.82◦) (3.16◦ ± 2.42◦)

20 6.67 0.51

(1.21◦ ± 0.70◦) (0.99◦ ± 0.71◦) (1.25◦ ± 0.85◦)

Table III: Optimal λC ,λD pairs used to obtain the results of
Table II.

input λC , λD

SNR gradient field tube and torus

[dB] L1 L2 L1 L2

0 0.5113, 0.7156 2.4355, 1.8028 0.3353, 1.4690 0.5364, 6.8902

10 0.2414, 0.4739 0.9549, 0.6777 0.0605, 0.0470 0.0958, 0.8582

20 0.0092, 0.0052 0.3848, 0.2434 0.0229, 0.0171 0.0122, 0.0587

phantom used in this case was the gradient of the potential
function

φ2D(x1, x2) = x1e−|x |
2

(contour lines of φ2D are superimposed in colour). For
the example shown in Figure 5 we observed an SNR
improvement of 12.74 dB with L1 regularization, compared
to an improvement of 12.58 dB when using quadratic (L2)
regularization. We note that reconstruction of 2D vector
fields can have applications beyond denoising, for instance
in image registration and motion estimation, although in
the latter case temporal regularization also needs to be
considered.

VII. CONCLUSION

In this paper we studied the question of designing
regularization functionals for variational reconstruction of
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(a) Noisy field (0 dB SNR) (b) Denoised field, using L1 regularization (11.70 dB SNR)

Figure 1: ‘Gradient’ phantom; see text for a description of the experiment.

(a) Noisy field (0 dB SNR) (b) Denoised field, using L1 regularization (9.01 dB SNR)

Figure 2: ‘Tube and torus’ phantom; see text for a description of the experiment.

(a) Original (b) Noisy (0 dB SNR) (c) L1 denoised (11.70 dB im-
provement)

(d) L2 denoised (11.04 dB im-
provement)

Figure 3: Amplitude cross-sections, ‘gradient’ phantom, comparing L1 and L2 denoising.

vector fields. We approached this problem on the basis of
requiring that the regularization functional satisfy certain
geometric invariance properties, which we justified from
different angles. To set the stage for our derivations, we first
addressed some commonalities of invariant regularization

in scalar and vector settings—followed by a derivation
of the general form of invariant regularizers for scalar
fields—before specializing to the problem of invariant vector
regularization. The vector regularization functionals we
derived consist of combinations of (possibly fractional) curl-
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(a) Original (b) Noisy (10 dB SNR) (c) L1 denoised (7.96 dB im-
provement)

(d) L2 denoised (2.55 dB im-
provement)

Figure 4: Amplitude cross-sections, ‘tube and torus’ phantom, comparing L1 and L2 denoising.

and divergence-like operators and their adjoints, wrapped
in scalar, vector, and/or matrix Lp norms (also introduced
in the paper). Generalized vector Laplacians of Tafti and
Unser [20] also fall within this framework.

Finally, we presented an application of the proposed
framework to the problem of vector field denoising in
2D and 3D, where we gave a natural generalization of
L2 (quadratic), as well as L1 (TV-type) regularization for
vector fields. While our preliminary results already show
a systematic advantage of L1- over L2-regularization in
the aforementioned problem, many interesting questions
about the choice of higher-order regularization functionals
for data with specific structure remain open. Also, in
addition to vector denoising, the proposed construction
can find applications in a variety of other problems which
we did not study here. Examples include reconstruction
of vector fields from non-uniform and incomplete (scalar)
measurements, deconvolution, estimation of optical flow,
and image registration. Another possible direction for future
investigations is the incorporation of temporal regularization
in the formulation.

APPENDIX

A. Matrix Lp norms and spaces

The vector Lp norms defined in (7) are special cases of
the Lp norms for matrix-valued functions Rd → Rn×m that
we define below (ρ denotes the spectral radius).

‖ f ‖p :=

(

�∫

Rd Tr
�

[ f (x)H f (x)]p/2
�

dx
�1/p

; p <∞,

‖ρ( f H f )1/2‖∞. p =∞

This definition is motivated by a matrix Young inequality
due to Ando [28]:

Tr
�

(Y HX HX Y )1/2
�

≤ 1
p
Tr
�

(X HX )p/2
�

+ 1
p′

Tr
�

(Y HY )p
′/2�

where 1/p+1/p′ = 1. The preceding inequality can be used
to prove a version of Hölder’s inequality for Lp spaces of
matrix-valued functions. Matrix Lp spaces are then defined
in the standard manner. They have similar properties to
scalar Lp spaces (completeness, inner product structure for
p = 2, duality between Lp and Lp′ with 1/p+ 1/p′ = 1 via
the bilinear form 〈 f , g〉 :=

∫

Rd f T g, etc.).
Definitions of matrix `q norms and spaces are obtained

by replacing the integrals with sums.

B. Proof of Theorem 2

By (18) (this is the only place in this proof where we use
invariance to improper rotations):

R̂(−ξ) = (−I)R̂(ξ)(−I) = R̂(ξ) . (31)

Next, fix ξ 6= 0 and let ξ⊥i , 1≤ i ≤ d−1, be d−1 pairwise
orthogonal vectors in Rd all perpendicular to ξ and with
|ξ⊥i |= |ξ|. We define the rotation matrices

ωi = I − 2ξξT/|ξ|2 − 2ξ⊥i (ξ
⊥
i )

T/|ξ|2, 1≤ i ≤ d − 1.

Each ωi is a simple rotation by 180◦ in the ξ ∧ ξ⊥i plane.
In particular, ωiξ=−ξ. We also define, for each pair i 6= j,
the 90◦ rotation matrix

ωi j = I −
ξ⊥i (ξ

⊥
i )

T

|ξ|2
−
ξ⊥j (ξ

⊥
j )

T

|ξ|2
+
ξ⊥j (ξ

⊥
i )

T

|ξ|2
−
ξ⊥i (ξ

⊥
j )

T

|ξ|2
.

ωi j maps ξ⊥i 7→ ξ
⊥
j 7→ −ξ

⊥
i and leaves ξ fixed (in this proof,

ωi j and ξ⊥i denote, respectively, entire matrices and vectors
and not the entries of some unspecified matrix ω or vector
ξ⊥).

Note that the matrices ωi , 1 ≤ i ≤ d − 1, commute
pairwise; also, by (31) and (18),

R̂(ξ)ωi = R̂(−ξ)ωi = R̂(ωiξ)ωi =ωiR̂(ξ),

which shows that the ωis commute with R̂(ξ) as well.
Since, for d > 2, the vectors ξ,ξ⊥1 , . . . ,ξ⊥d−1 are precisely
the common eigenvectors of ω1, . . . ,ωd−1, they must also
be eigenvectors of R̂(ξ), in particular ξ is an eigenvector of
R̂(ξ). Denote its corresponding eigenvalue by µ1 = µ1(ξ).
By taking the transpose of (18) and applying the same
argument, we can show that ξ is also an eigenvector of
R̂(ξ)T. Its corresponding eigenvalue, temporarily denoted as
µ′1(ξ), is equal to µ1(ξ) since

µ′1ξ
Tξ= ξTR̂(ξ)ξ= µ1ξ

Tξ.

We similarly denote the eigenvalue of ξ⊥i by µ2,i(ξ).
Alternatively, to find the eigenvectors of R̂(ξ) we might

note that R̂(ξ) commutes with all ωi js:

R̂(ξ)ωi j = R̂(ωi jξ)ωi j =ωi jR̂(ξ),

and since ξ is an eigenvector of all ωi js with eigenvalue
1 (it is their only common eigenvector), R̂(ξ)ξ must be a
common eigenvector of all ωi js, thus R̂(ξ)ξ = µ1(ξ)ξ for
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(a) Original (b) Noisy

(c) L1 denoising output (12.74 dB SNR improvement) (d) L2 denoising output (12.58 dB SNR improve-
ment)

Figure 5: Denoising in 2D with L1 and L2 regularization applied to the noisy gradient of φ2D (see text) with contour lines
of φ2D overlaid in colour.

some scalar eigenvalue µ1(ξ). Then, to show that the ξ⊥i s
are also eigenvectors of R̂(ξ), we observe that

R̂(ξ)ξ⊥i = R̂(−ξ)ξ⊥i = R̂(ωiξ)ξ
⊥
i

=ωiR̂(ξ)ω
−1
i ξ
⊥
i =ωiR̂(ξ)(−ξ⊥i ) =−ωiR̂(ξ)ξ

⊥
i ;

whereby, (I + ωi)R̂(ξ)ξ⊥i = 0. This shows that R̂(ξ)ξ⊥i
lies in the kernel of I + ωi . But the kernel of I + ωi
corresponds exactly to the span of {ξ,ξ⊥i }. We can therefore
write R̂(ξ)ξ⊥i = αiξ + µ2,iξ

⊥
i for some αi ,µ2,i . But then

ξTR̂(ξ)ξ⊥i = αi |ξ|2; we also have ξTR̂(ξ)ξ⊥i = µ1ξ
Tξ⊥i = 0.

The last two equations show that αi = 0, that is, we have
R̂(ξ)ξ⊥i = µ2,i(ξ)ξ⊥i . R̂(ξ) therefore has ξ,ξ⊥1 , . . . ,ξ⊥d−1 as d
eigenvectors with respective eigenvalues µ1(ξ),µ2,1(ξ), . . . ,
µ2,d−1(ξ).

Next, we show that all µ2,is are equal to some µ2 = µ2(ξ):
by (18),

µ2, jξ
⊥
j = R̂(ξ)ξ⊥j = R̂(ωi jξ)ξ

⊥
j =ωi jR̂(ξ)ω

−1
i j ξ
⊥
j

=ωi jR̂(ξ)ξ
⊥
i = µ2,iωi jξ

⊥
i = µ2,iξ

⊥
j ,

proving that all µ2,i(ξ)s are equal as claimed. Putting

everything together, we find that R̂(ξ) has the orthogonal
eigenvectors ξ,ξ⊥1 , . . . ,ξ⊥d−1 with eigenvalues µ1(ξ) for ξ
and µ2(ξ) for the remaining vectors. Its eigen-decomposition
is therefore of the form given in (19) (for d = 2 we can
make a similar demonstration of the above decomposition
by working with the reflection matrix with axis ξ instead of
the ωi js). Finally, for (18) and (17) to hold, µ1,µ2 must be
rotation-invariant and homogeneous of degree γ. Thus, by
Theorem 1 we have µi(ξ) = ci |ξ|γ for some ci , i = 1,2.
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