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Abstract

It is possible to interpret multi-resolution analysis from both Fourier-domain

and temporal/spatial domain stand-points. While a Fourier-domain interpre-

tation helps in designing a powerful machinery for multi-resolution refine-

ment on regular point-sets and lattices, most of its techniques cannot be di-

rectly generalized to the case of irregular sampling. Therefore, in this thesis

we provide a new definition and formulation of multi-resolution refinement,

based on a temporal/spatial-domain understanding, that is general enough

to allow multi-resolution approximation of different spaces of functions by

processing samples (or observations) that can be irregularly distributed or

even obtained using different sampling methods. We then continue to pro-

vide a construction for designing and implementing classes of refinement

schemes in these general settings. The framework for multi-resolution re-

finement that we discuss includes and extends the existing mathematical

machinery for multi-resolution analysis; and the suggested construction uni-

fies many of the schemes currently in use, and, more importantly, allows

designing schemes for many new settings.
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Preface

IT IS POSSIBLE to interpret multi-resolution analysis from both frequency

or z-domain (FzD) and temporal or spatial domain (TSD) stand-points.

Traditionally, it has been common in signal processing to rely on FzD no-

tions and techniques in designing and interpreting multi-resolution schemes.

Based on the notions of filters and filter-banks, these interpretations provide

valuable insight into the whole process of multi-resolution approximation;

and using FzD techniques, different classes of multi-resolution schemes that

are optimal in different senses have been successfully devised in the past.

Nevertheless, there are limits on what can be accomplished by relying solely

on FzD techniques: z-transforms and discrete Fourier transforms depend on

translation-invariance, and are suitable only for analyzing data associated

with regularly spaced points on the line or in several dimensions (i.e. on lat-

tices). In many instances, no obvious extension of FzD notions to irregular

and arbitrary settings exists.

On the other hand, results obtained using the FzD machinery can often

be translated to, and derived in, the TSD as well. And what makes TSD

interpretations more attractive is that there is essentially no difference in
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the TSD tools used for analyzing regular versus irregular data-sets: in both

cases, we are concerned with weighted summations: the TSD counterparts of

FzD filters. Translation-variance and any irregularities in the distribution of

data samples can simply be taken care of by suitably modifying the weights

for approximation at different positions.

While TSD designs and interpretations of multi-resolution systems relat-

ing multi-resolution approximations to splines and polynomial interpolation

have existed from the very early days (the works of Deslauriers and Dubuc,

Donoho, and Unser, among others come to mind), the introduction of the lift-

ing scheme by Sweldens (1996), and his successive 1997 introduction of sec-

ond generation multi-resolution constructions, were fundamental in many

generalizations of multi-resolution signal processing to multi-dimensional,

irregular, and translation-variant (for example involving bounded domains)

settings. These contributions helped deepen our understanding of the con-

nection between multi-resolution analysis (MRA), and works on subdivision

and sequential refinement schemes, which date back to at least the 1950s

and ’60s, when Paul de Faget de Casteljau devised his algorithm for sequen-

tially subdividing a piecwise linear curve, so that in the limit it would con-

verge to a smooth curve that we know today by the name of Bézier.1

Works of Schröder, Sweldens, Daubechies, Kovačević, and others, that

shortly preceded or followed the presentation of the lifting scheme, concen-

1 Bézier and de Casteljau worked for two competing companies: Bézier worked for Re-
nault and de Casteljau for Citroën. At about the same time, with two different ap-
proaches, they both discovered a class of smooth curves that are particularly useful
in geometrical design. de Casteljau was not allowed by Citroën to publish his discov-
ery and the family became known as Bézier curves. Today, de Casteljau’s innovative
algorithm for finding a point on a Bézier curve commemorates his name.
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trated on applying this TSD understanding to refinement on multi-dimen-

sional and irregularly-distributed point-sets. In one of the later works, Dau-

bechies et al. (1999) provided a description of multi-resolution refinement

on irregular multi-dimensional point-sets, and suggested a refinement scheme

that uses Lagrange interpolation to insert values for new points at each level.

In this thesis I focus on a more general TSD framework for multi-scale

refinement, and also study designing new classes of multi-resolution refine-

ment schemes in this framework. The hope is to help in developing and

extending a coherent and applicable understanding of multi-resolution re-

finement in a broad sense, and to provide a general machinery that can be

utilized to construct multi-resolution refinement schemes suitable for a wide

variety of settings.

Towards this aim, the main matter of thesis is divided into three chapters.

Chapter 1 is concerned with the theory of multi-resolution refinement. In

the first part of that chapter, I provide an alternate interpretation of multi-

resolution refinement, similar to but more general than that of Daubechies

et al. (1999), that is based exclusively on a TSD understanding of signals

and signal processing; and prove parallels to several fundamental results, in

particular providing a link between discrete representations and spaces of

signals on the continuum. As I was following the path set by Sweldens and

his colleagues, what is discussed in section 1.1 is conceptually very similar to

the work of Daubechies et al. (1999). This section can therefore be viewed as

an introduction to, and review of, their theory. I have not however intended

an exact presentation of their construction; and the exposition is certainly

different in ways, to prepare the stage for the subsequent presentation of a

xv



P.D. Tafti: On Multi-Scale Refinement of Discrete Data.
M.A.Sc. thesis. Department of Electrical and Computer Engineering,
McMaster University, Hamilton, Ontario, Canada, 2005.

new and more general theory of multi-resolution refinement in section 1.2.

Chapter 2 discusses some examples for the theoretical framework pro-

vided in chapter 1. I start by discussing several relevant constructions for

multi-resolution refinement, before going on to provide a general construc-

tion for families of refinement schemes suited to any given space of discrete

signals, as defined in 1.2. It will then be shown that the other discussed

schemes are examples of this general construction.

A few concluding remarks and suggested directions for further investiga-

tion form the final chapter.

In appendix A, I have tried to summarize some mathematical definitons

that the reader may wish to review, but the inclusion of which in the main

text would further deflect the already not-so-straight course of discussion.

For some other mathematical definitions and results I could find a place

within the main text. A summary of the used notation is provided as a

second appendix.

Footnotes have been used extensively. They are intended to provide ex-

planations, side remarks, and/or reservations, that might be of interest, but

which may not directly fit within the course of the thesis. They are aimed

to provide a side note, or to serve as a friendly chat with the reader about

a secondary point; and as such, I have not always attempted for a complete

evaluation of the concept in consideration. Some of the footnote discussions

have therefore been left open-ended.

This thesis addresses, and extends, certain aspects of the theory of multi-

resolution analysis from a particular perspective. Many excellent reference

texts on the general theory exist. Mallat’s (1999) A Wavelet Tour of Signal
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‘Then you should say what you
mean,’ the March Hare went on.
‘I do,’ Alice hastily replied; ‘at
least—at least I mean what I
say—that’s the same thing, you
know.’
‘Not the same thing a bit!’ said the
Hatter. ‘Why, you might just as well
say that “I see what I eat” is the same
thing as “I eat what I see”!’

Alice’s Adventures in Wonderland
CHARLES LUTWIDGE DODGSON (LEWIS CARROLL),

ENGLISH MATHEMATICIAN AND WRITER
(1832–1898)
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1
Multi-Resolution Refinement
Revisited

All generalizations, with the possible
exception of this one, are false.

Paraphrased words of
KURT GÖDEL, MATHEMATICIAN AND LOGICIAN

(1906–1978)

ONE OF THE FIRST notions that someone learning to read a map comes

across is that of scale. As (s)he learns, on a 1 : 1, 000, 000 scale map

only the locations of cities and primary inter-city motorways can be marked.

To see city roads one has to turn to a medium-scale map, for example one at

1 : 50, 000 scale. At 1 : 10, 000, it is even possible to clearly mark details such

as by-ways and major buildings.

The full range of scales that man has explored is even wider—and much

so. He has studied sub-micron and sub-atomic phenomena, but has also

looked at stellar systems hundreds of light-years wide. Philip and Phylis

Morrison, and the Office of Charles and Ray Eames, take us to an expedition

1
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through the sweep of scales in Powers of Ten: A Book about the Relative Size of

Things in the Universe and the Effect of Adding Another Zero (Morrison et al.,

1982).

It may be difficult, or even impossible, at smaller scales to separate some

of the features that are clearly distinguishable at finer resolutions. At the

same time, wide-scale presentations help us notice and better appreciate

general patterns and properties which might otherwise be missed in the lim-

ited scope of highly-detailed microscopic views.

In this context, the word resolution refers to ‘the act, process, or capabil-

ity of rendering distinguishable the component parts of an object or closely

adjacent optical or photographic images, or of separating measurements of

similar magnitude of any quantity in space or time’, and also, to ‘the small-

est quantity which is measurable by such a process’ (Oxford English Dictio-

nary, 1989). From the above discussion, one immediately sees an appeal for

multi-resolution representations. And while in our examples we have thus

far focused on spatial resolution, the concept of resolution may be, and has

been, extended and applied to almost anything that can be perceived.

When dealing with multi-resolution representations, the ability to switch

between different resolutions is of prime importance. Through a refinement

process, we are able to add details to and thus refine an initial representa-

tion, thereby creating a more detailed and more complex image at a higher-

resolution.

As engineers usually find it useful to work with mathematical abstractions

of concepts, in this chapter we study and formalize such an abstraction of

multi-resolution refinement, for which we provide a new formulation based

2
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on our definition of spaces of discrete signals (first introduced in subsec-

tion 1.1.1 and later generalized in subsection 1.2.1). This formulation then

allows us to generalize and extend the notions of multi-resolution refine-

ment, based on a temporal/spatial domain understanding.

It is important to emphasize here that while the classical development of

multi-resolution analysis has depended extensively on Fourier- and z-domain

techniques, these techniques often do not readily—or at all—extend to irreg-

ular settings. Therefore, in the first part of this chapter we adopt a different

approach, structurally similar to that of Daubechies et al. (1999), which we

later generalize in section 1.2. Our treatment, which is based on refinement

operators and hierarchies of sampling procedures, is more general than that

of Daubechies et al. (1999), who study subdivision operators in one and two

dimensions.1

This new approach makes an abstract and general treatment of multi-

resolution in wide ranges of domains and functional spaces possible.

1.1 Multi-Resolution Refinement

1.1.1 Discrete Signals. Of the simplest discrete signals that one may

imagine are sequences of numbers (called samples) that are associated with

equally-spaced points along a single axis (e.g. integral points on the real

line). In a more general setting, a discrete signal may be thought of as an

association of values to—not necessarily uniformly distributed—points in a

1 A brief review of the development of these schemes was provided in the preface.

3
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countable2 subset of the d-dimensional Euclidean space, Rd.

Specifically, if Θ ⊂ Rd is such a countable point-set, `p(Θ) for a choice of

p, 1 ≤ p ≤∞, will be a possible space of signals.3 For a choice of p, a signal

a is then an element of `p(Θ) and maps each θ ∈ Θ to a value, denoted

by a[θ], from a field4 F of scalars. The classic theory of multi-resolution

analysis originated with the study of the setting where d = 1 and F is the

field of reals, R (see e.g. Meyer, 1992; Daubechies, 1992; Cohen and Ryan,

1995; Mallat, 1999).

We like to have a basis for our spaces of signals. One such basis for `p(Θ)

consists of the signals

δφ[θ] := [θ = φ]

for all θ ∈ Θ (cf. A.3.5). A signal a can be decomposed in this basis as

(1.1) a =
∑

φ∈Θ
a[φ]δφ.

1.1.2 Multi-Resolution Representations. Now, to have multi-resolution

representations, one could think of a sequence of point-sets with decreasing

spacings, and signals defined on these point-sets, which form a sequence of

representations at increasing resolutions. For (Θi) to be such a sequence,

the spacing between points in Θi should become smaller in some sense as

i → ∞. We formalize this by requiring that all these point-sets belong to

a domain Ω ⊆ Rd, and that in the limit, this sequence become dense (see

2 By countable we mean either finite or denumerable.
3 `p(I) spaces for a general index set I are defined in A.3.5. Here Θ is the index set.
4 Examples of fields include the reals, R, and the complex numbers, C. For the definition

of a field, see A.1.1.

4
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level −1

level 0

level 1

level 2

Figure 1.1: Dyadic point-sets are constructed by inserting mid-points be-
tween adjacent points.

A.2.2) in Ω, i.e.

(1.2) lim
i→∞

Θi = Ω.

Our discrete multi-resolution representations will then be a sequence (ai) of

signals ai ∈ `p(Θi).

1.1.3 Example. In the uni-dimensional case (d = 1) the simplest exam-

ple of such a sequence of point-sets is perhaps the one obtainable by be-

ginning with an infinite and equally-spaced point-set Θ0, and for i ≥ 0,

recursively constructing Θi+1 by adding to Θi the mid-points between each

two adjacent points. For i < 0, Θi is constructed from Θi+1 by removing

every other point (see fig. 1.1). The resulting (Θi) sequence may be called

dyadic because the spacing between adjacent points changes by a factor of

1/2 at each level.

Along the same line, it is possible to subdivide the interval between two

adjacent points into M ≥ 2 sub-intervals. The scale would then change by

a factor of 1/M at each stage. The following lemma shows that this scheme

leads in the limit to a point-set that is dense in R.

5



P.D. Tafti: On Multi-Scale Refinement of Discrete Data.
M.A.Sc. thesis. Department of Electrical and Computer Engineering,
McMaster University, Hamilton, Ontario, Canada, 2005.

[ ch. 1

1.1.4 Lemma. The limit as i → ∞ of a so-constructed sequence (Θi),

which we denote by Θ∞, is dense in R. Every x ∈ R is a limit point (for a

definition seeA.2.2) of Θ∞.

Proof. Let h be the distance between adjacent points in Θ0. For an arbitrary

point x ∈ R, denote by xk its closest point in Θk that is distinct from all xis

for i < k. Clearly d(x, xk) ≤ h/Mk. Also since the sequence (Θi) is nested5,

xk ∈ limi→∞Θi := Θ∞ for all k. The sequence (xk) consists of distinct points

and converges to x. Therefore, by theorem 5 of section II.9 of Kolmogorov

and Fomin (1998), x is a limit point of Θ∞ and Θ∞ is dense in R.

1.1.5 Example. Let G be a non-singular d × d matrix, and let D be a

non-singular d × d integer matrix with ρ(D) > 1.6 The following lattice

construction provides a sequence satisfying (1.2) in the multi-dimensional

(d ≥ 2) setting (for discussion and some applications see Kovačević and

Sweldens, 2000; Tafti et al., 2005; Gibson and Sayood, 1988):

Θi = GD−iZd =
(
GD−1G−1

)
Θi−1.

That the limit of this sequence is dense in Rd can be proved in a manner

similar to the proof of lemma 1.1.4, based on the understanding that the

distance between adjacent points in Θi approaches 0 as i → ∞ because of

the ρ(D) < 1 condition.

5 A sequence (Ai) of sets is nested if Ai ⊂ Ai+1 for all i.
6 ρ(D) denotes the spectral radius of D, which is equal to maxi |λi|, where λis are the

eigenvalues.

6
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(a) A triangular lattice (b) A checker-board (a.k.a.
quincunx) lattice

Figure 1.2: Choosing Θi = GD−iZd leads to structures known as lattices.

1.1.6 Example: The Quincunx Lattice. An example of the described lat-

tice structure which has found frequent applications in image processing, is

the quincunx (a.k.a. checker-board or red-black) lattice. One of the possible

G,D pairs for this lattice is

G =



1 0

0 1


 , D =



1 −1

1 1


 .

The quincunx lattice is depicted in fig. 1.2.

1.1.7 Linear Approximations. To improve the resolution, one may form

an approximate of the higher-resolution signal to which details can then be

added. For this, a way should be devised to approximate a level i + 1 signal

ai+1 ∈ `p(Θi+1) from the level i signal ai ∈ `p(Θi).

In the simplest case this approximation will be linear, meaning that the

value of the level i+1 approximate, ai+1, is calculated at each point θ ∈ Θi+1

7
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as a weighted summation of ai[φ]s, φ ∈ Θi; i.e.

(1.3) ai+1[θ] :=
∑

φ∈Θi
si,θ,φ ai[φ],

where si,θ,φs are weights. If necessary, this approximation can then be ad-

justed by adding a correction signal, di+1 ∈ `p(Θi+1), representing the de-

tails:7

(1.4) di+1[θ] + ai+1[θ] = di+1[θ] +
∑

φ∈Θi
si,θ,φ ai[φ] for each θ ∈ Θi+1.

di+1 in effect contains the new information that could not be, or simply was

not, extracted from the low-resolution signal in the linear approximation

process.

1.1.8 Refinement Operators. The above formulation can be re-stated us-

ing the notion of linear operators (A.3.4). If the sum in eqn (1.3) converges

for all θ ∈ Θi+1, a linear refinement operator Si—so named because it maps

low-resolution signals to their refined high-resolution associates—may be de-

fined for each i by specifying its operation on an arbitrary ai ∈ `p(Θi):

(1.5) (Siai)[θ] :=
∑

φ∈Θi
si,θ,φ ai[φ] for all θ ∈ Θi+1.

The following proposition holds:

7 We always assume that the summation weights are chosen such that the infinite sum-
mation converges for all ai ∈ `p(Θ) for the chosen p (cf. 1.1.9).
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1.1.9 Proposition. For ai ∈ `p(Θi), 1 ≤ p ≤ ∞, let q be such that 1/p +

1/q = 1. Then if (∑

φ∈Θi
|si,θ,φ|q

)1/q

converges and is bounded for all θ ∈ Θi+1, the sumimations in eqns (1.3)

and (1.5) converge.

The proof follows directly from Hölder’s inequality. For a more general

result see theorem 1.2.7.

Let us now revisit eqns (1.3) and (1.5). Each weight si,θ,φ bears three

indices: The first index, i, indicates the level or resolution; the second one,

θ, informs us that this weight is being used to calculate a new approximation

at point θ; and finally, the third index, φ, over which the summation is

being performed, tells us which sample of the low-resolution signal is being

weighted by this coefficient. We therefore see that each sample in ai is given

different weights in the calculation of different samples in ai+1.

1.1.10 Example. We will see general classes of refinement operators in

the next chapter. Here, as a simple example of an operator related to the uni-

dimensional point-sets introduced in example 1.1.3, suppose that at each

refinement step we approximate the value associated with a newly inserted

mid-point by averaging the values for the two neighbouring points in the

coarse point-set; and for points that exist in both sets we simply copy the

value. This scheme and its associated weights are depicted in figure 1.3.

Informally, we may represent Si by an infinite matrix (cf. Strang and Nguyen

(1997)):

9
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1/2 1/2
1

d d

1/2 1/2
1

d d

1/2 1/2
1

d d

1/2 1/2
1

d d

1

d

level i

level i+ 1

Figure 1.3: A simple uni-dimensional refinement scheme consists in copying
original values and inserting averages between them. Details (corrections)
may then be added.

(si,θ,φ) θ∈Θi+1
φ∈Θi

=




. . . ...
...

...
...

... . . .

· · · 0 1 0 0 0 · · ·

· · · 0 1/2 1/2 0 0 · · ·

· · · 0 0 1 0 0 · · ·

· · · 0 0 1/2 1/2 0 · · ·

· · · 0 0 0 1 0 · · ·
. . . ...

...
...

...
... . . .




1.1.11 Choosing Refinement Operators. Upon introducing the detail

term di+1[θ] in eqn (1.4), the reader may have questioned the need for the

approximation term (i.e. the summation). After all, no matter how inaccu-

rate this approximation may be, it can be nonetheless adjusted by adding

a larger correction term. So why not dismiss the approximation step alto-

gether and save ourselves the trouble?

The answer lies in our wish to find a compact representation for the

high-resolution signal. To this end we would like to be able to construct an

acceptable approximate to our higher-resolution signal based on its coarser

representation, thereby reducing the norm of the difference signal di+1.

10



sec. 1.1] P.D. Tafti: On Multi-Scale Refinement of Discrete Data.
M.A.Sc. thesis. Department of Electrical and Computer Engineering,

McMaster University, Hamilton, Ontario, Canada, 2005.

Hence in practice we intend to choose the refinement weights such that

Siai approximates ai+1 closely and therefore the (norm of the) adjustment

di+1 becomes small. The choice shall thus depend on the properties of the

discrete signal, which in turn depend on the properties of the underlying

distribution on the domain Ω—if such a distribution in fact exists—and our

sampling procedure.

We will describe a novel approach to designing refinement operators, that

makes explicit use of our model for the sampling procedure, in the second

part of chapter 2.

1.1.12 Example. When dealing with point-wise evaluations of a linear

function, we immediately see that, using the weights given in the previous

example, mid-point samples can be exactly computed and there will be no

need at all to consider detail coefficients. And yet for some other function,

the 2-point average might not be a good estimate. This difference is visible

in fig. 1.4.

The 2-point average provides in fact the value of the first-order polyno-

mial interpolant at the mid-point. As we will later see, this idea can be

extended by using higher-order polynomial approximations.

1.1.13 The Cascade Algorithm. We are now in a position to establish a

link between our discrete scheme and spaces of functions. This connection

also underlies the definition of multi-resolution analysis.8

8 A multi-resolution analysis (MRA) consists of a sequence (Vi) of nested functional
spaces satisfying several axioms that are detailed for example in Meyer (1992) and
Mallat (1999). Sweldens (1997) generalized this definition and introduced second
generation constructions. In his definition, Vis should satisfy the following properties
(he uses a slightly different notation):

• Vi ⊂ Vi+1;

11
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Figure 1.4: Approximation with the 2-point average recovers samples of a
linear function without error, but introduces error in approximating a higher-
order curve.

Fix p such that 1 ≤ p ≤∞ and consider an ak ∈ `p(Θk), k ∈ Z. For i ≥ k

we define the signals ai ∈ `p(Θi) by9

(1.6) ai := Si−1ai−1 for i > k.

• ⋃i Vi = L2;

• There exists a Riesz basis for each Vi, given by scaling functions {gki |k ∈ K(i)},
where K(i) ⊂ K(i+ 1) is an index set.

In this study we will not limit ourselves to L2 functions. The reader will see later
that multi-resolution spaces, as we will define them in this thesis, satisfy the first of
the above properties. The second property is replaced by a requirement guaranteeing
the unique representation of any function in our space of functions with the set of its
samples as i → ∞. Our multi-resolution spaces are also defined in terms of a basis
consisting in scaling functions. We do not consider Riesz bases as they are relevant
for a Hilbert space structure, which may not always exist in our choices of functional
spaces. Instead, as a stability condition, we, after fixing p, require that for any ini-
tial sequence ak ∈ `p(Θk) (and later, in section 1.2, any ak ∈ `p(Λk)), the cascade
algorithm converge to a function fak∞ in the functional space in consideration.

The rest of this section concerns multi-resolution functional spaces and their relation
to spaces of discrete signals `p(Θi). In the next section we suggest a more general
definiton of discrete signals, and then construct multi-resolution spaces based on a
generalized understading, of which the discussions of this section will be a special
case.

9 That ai ∈ `p(Θi) (for finite i) follows from proposition 1.1.9.
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As mentioned earlier, Θ∞ := limi→∞Θi is dense in a domain Ω. If in the

limit,

(1.7) a∞ := · · ·Sk+2Sk+1Skak := lim
j→∞

Sk+j · · ·Skak

exists in `p(Θ∞), under certain conditions we can extend (or interpolate

if you may) the function a∞ := limi→∞ ai—which is defined on Θ∞—to a

C0(Ω) function10 fak∞ , that is defined on Ω and satisfies

(1.8) fak∞ (θ) = a∞[θ] for θ ∈ Θ∞.

This approach to defining a function overΩ through refinement ad infinitum

is known as the cascade algorithm (Daubechies, 1992) or sometimes as sub-

division (Cavaretta et al., 1991; Daubechies et al., 1999). Some conditions

for the convergence of the cascade algorithm have been previously studied

for stationary schemes (i.e. schemes in which the refinement coefficients

remain the same across resolutions).11

10 CN(Ω) is the space of functions on Ω that are at least N times continuously differen-
tiable (Al-Gwaiz, 1992, pp. 16–17).

11 Most of the research in this context has addressed regular and one-dimensional set-
tings. See for example Daubechies and Lagarias (1991, 1992) for L1(R) solutions.
Micchelli and Prautzsch (1989); Dyn and Levin (1990) study the problem for inter-
polating schemes. Heil (1992) surveys several approaches. The work of Daubechies
and Lagarias (1992) is extended in Colella and Heil (1994). Cavaretta et al. (1991,
ch. 2) prove (with a different notation) the following condition to be necessary for the
convergence of stationary refinement schemes with finite masks in the uniform case:

(1.9)
∑

φ∈Θi
si,ψ,φ = 1 for φ ∈ Θi,ψ ∈ Θi+1,i ∈ Z.

The regularity of the solution to refinement equations in multi-dimensional settings
linked to lattices introduced in example 1.1.5 has been studied in Ron and Shen
(2000); Cohen et al. (1999); Jia (1999).
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1.1.14 Scaling Functions. We will assume from now on that the refine-

ment operators are such that the cascade algorithm converges to a continu-

ous function fak∞ for any initial ak ∈ `p(Θk) at any level i. Then, for a choice

of ak, fak∞ can be represented as a linear combination of scaling functions gθk

with θ ∈ Θk, which are introduced in the following.

Let us fix θ ∈ Θk and assume the notation em,θ := δθ ∈ `p(Θm). Fur-

thermore, let em→n,θ, m < n, denote the signal in `p(Θn) defined by the

equation:

em→n,θ := Sn−1 · · ·Smem,θ = Sn−1 · · ·Smδθ,

with δθ ∈ `p(Θm).

It then follows from eqn (1.1) that

ek→k+1,θ =
∑

φ∈Θk+1

ek→k+1,θ[φ]δφ (with δφ ∈ `p(Θk+1))

and therefore, from eqns (1.5) and (1.6),

ek→∞,θ := lim
j→∞

Sk+j · · ·Skek,θ

= lim
j→∞

Sk+j · · ·Sk+1 (Skek,θ)

= lim
j→∞

Sk+j · · ·Sk+1 (ek→k+1,θ)

Consideration of the continuity of the solution falls under the more general study of
the regularity of solutions to refinement equations. We will not discuss convergence
and regularity issues any further in this thesis (except briefly on one other occasion:
see footnote 18 on p. 25), and will from now on assume that the refinement operators
are such that for any initial signal ak ∈ `p(Θk) the cascade algorithm converges to a
continuous function fak∞ in the limit.

14



sec. 1.1] P.D. Tafti: On Multi-Scale Refinement of Discrete Data.
M.A.Sc. thesis. Department of Electrical and Computer Engineering,

McMaster University, Hamilton, Ontario, Canada, 2005.

= lim
j→∞

Sk+j · · ·Sk+1

∑

φ∈Θk+1

ek→k+1,θ[φ]δφ

=
∑

φ∈Θk+1

ek→k+1,θ[φ] lim
j→∞

(Sk+j · · ·Sk+1δφ)

=
∑

φ∈Θk+1

ek→k+1,θ[φ]ek+1→∞,φ.

We also have

ek→k+1,θ[φ] = Skek,θ =
∑

ψ∈Θk
sk,φ,ψ δθ[ψ] = sk,φ,θ.

Thus,

ek→∞,θ =
∑

φ∈Θk+1

sk,φ,θek+1→∞,φ;

and as we have assumed that the cascade algorithm for arbitrary ai ∈ `p(Θi)

converges to a unique continuous function fai∞,

fek,θ∞ =
∑

φ∈Θk+1

ek→k+1,θ[φ]fek+1,φ
∞

=
∑

φ∈Θk+1

sk,φ,θf
ek+1,φ
∞ .(1.10)

Eqn (1.10) is known as a two-scale or refinement equation, as it relates

functions from two scales or resolutions. The weights sk,φ,θ, with φ ∈ Θk+1,

are sometimes referred to as refinement coefficients or weights, or collectively

as the refinement mask. The solution to eqn (1.10) is called a scaling or

refinable function, the reason being that it is a linear combination of refinable

functions of the next finer resolution.
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For simplicity in the following we will use gθk to denote fek,θ∞ as defined

above. With this new notation, what was just proved can be re-written as

the following proposition:

1.1.15 Proposition.

(1.11) gθk =
∑

φ∈Θk+1

sk,φ,θg
φ
k+1.

1.1.16 Multi-Resolution Spaces. Now for arbitrary ai ∈ `p(Θi), we have

ai =
∑

φ∈Θi
ai[φ]δφ.

Refining both sides of this relation ad infinitum and looking for the limiting

continuous functions leads us to

(1.12) fai∞ =
∑

φ∈Θi
ai[φ]gφi .

Thus, if we define spaces Vi as

(1.13) Vi := span{g
φ
i |φ ∈ Θi} for i ∈ Z,

it follows from eqn (1.12) that

fai∞ ∈ Vi.

Also, as a result of eqns (1.11) and (1.13) we have the following corollary:
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Vi
Vi−1

. . .

. . .

Figure 1.5: Multi-resolution spaces are nested.

1.1.17 Corollary. If for any initial discrete signal at any resolution the

cascade algorithm converges to a unique continuous function in the limit,

the spaces Vi defined by eqn (1.13) are nested, i.e.

· · · ⊂ Vi−1 ⊂ Vi ⊂ Vi+1 ⊂ · · · .

Proof. From eqns (1.11) and (1.13),

(1.14) giθ ∈ Vi+1 for all θ ∈ Θi.

The conclusion then follows from (1.13).

This nestedness property is depicted in fig. 1.5. We call the spaces Vi
multi-resolution spaces, as they represent families of functions at different

resolutions.
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1.2 Multi-Resolution Refinement Revisited

1.2.1 Discrete Signals Revisited. The generalization of the definition of

a discrete signal in 1.1.1 makes the study of classical (i.e. point-wise) reg-

ular and irregular sampling (using delta distributions) possible in the most

general case. Nevertheless, this representation is still limiting, and also, it is

arguable that when dealing with discrete representations of functions over

the continuum, rarely in practice do we actually come across signals sampled

in such manner.

Sampling is the task of performing measurements on an observable. Now,

first of all, measurements in practice are often not truly point-wise evalua-

tions, as the use of delta distributions would suggest. This causes not much

difficulty when all measurements are identical except for them happening

at different temporal or spatial instances; as in this case again a natural

connection between measurements and point-sets in Rd can be established.

However, it is not difficult to convince oneself that not all different measure-

ments can be simply linked to, and represented by, points in Rd.12

Secondly, it is desirable to be able to consider multi-resolution approxi-

mations of functions in spaces that may not have a Hilbert-space structure, or

those which may be defined over arbitrary domains equipped with different

measures.

To overcome these limitations, we propose the following disposition: Let

the original observable be an element of a Banach space13 F with a separable

12 Think for example of samples that represent averages of a function over irregular do-
mains of different shapes and sizes in the d-dimensional Euclidean space. How is one
going to link each of these domains to a single point in Rd?

13 A Banach space is a complete space equipped with a norm. Examples of separable Ba-
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dual F∗.14 Every continuous linear functional (hereafter functional; cf. A.2.4)

on F is a mapping from F to a field F of scalars, and therefore represents

one type of measurement on elements of F . We define a sampling procedure

Λ as a countable collection of functionals, that is, a countable subset of the

dual (A.2.4) F∗ of F . Next, we define a discrete signal as an element of the

space `p(Λ) for some pre-specified p.

Thus, in this more general definition of a discrete signal, each sample

value is no longer associated with a point in the Euclidean Rd space, but is

rather paired with a point in the dual F ∗ of the space F of observables.

1.2.2 Multi-Resolution Representations. We suppose a sequence (Λi)

of countable subsets of F ∗ with the property that the linear span of

Λ∞ := lim
i→∞

Λi

is weak∗ly15 dense in F∗. It then follows from the next theorem that a set of

evaluations over Λ∞ identify exactly one element of F .16

1.2.3 Theorem. Let x ∈ F . Having λx for all λ ∈ Λ∞ identifies exactly

one x ∈ F iff spanΛ∞ is weak∗ly dense in F∗.

Proof of sufficiency. We will prove that if λx = λy for some x, y ∈ F and all

nach spaces include Lp and `p spaces with 1 ≤ p <∞ (cf. A.3.5 and A.3.6). See A.3.3
for further discussion.

14 cf. A.2.2. From the separability of F∗ the separability of F also follows (Megginson,
1998, theorem 1.2.11).

15 Weakly∗ and weak∗ are more common, and are pronounced weakly-star and weak-
star respectively; however, weak-star-ly is perhaps more grammatically precise. The
adjective weak∗ refers to properties that are true with respect to the weak∗ topology
(A.2.5).

16 This condition was communicated to the author (without proof) by Dr Robert Israel
of UBC in answer to his question on Usenet (Israel, 2005). I here provide an original
proof.
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λ ∈ Λ∞, then x = y.

As spanΛ∞ is dense in F∗, for any x∗ ∈ F∗ there exists a sequence (x∗n)

in spanΛ∞ that weak∗ly converges to x∗.

Now, from the assumption of λx = λy for all λ ∈ Λ∞ it follows that

x∗x = x∗y for all x∗ ∈ F∗. This is because:

The natural map defined by

Ffx
∗ := x∗f

for arbitrary f ∈ F is by definition continuous in the weak∗ topology. Conse-

quently,

(1.15) Fx−yx
∗
n → Fx−yx

∗ as n→∞.

Now, as for all n, x∗n are chosen to be in spanΛ∞, we have

Fx−yx
∗
n := x∗n(x− y) = x∗nx− x∗ny = 0.

The left-hand-side of (1.15) is therefore identically zero, and we have

(1.16) Fx−yx
∗ := x∗(x− y) = 0 for all x∗ ∈ F∗.

We will now proceed to show that (1.16), together with the assumption

that x 6= y lead to contradiction. Specifically, if x 6= y, let z := x − y.

Z := span{z} = {az|a ∈ F} is a subspace of F . We define the map η : Z −→ F
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by

η(az) := a.

η is clearly linear and therefore a functional on Z. By the Hahn-Banach

Extension Theorem (cf. A.3.7) we can extend η to a continuous linear func-

tional over F (i.e. a functional in F ∗). But then,

η(x− y) := ηz = 1,

which contradicts (1.16).

Proof of necessity. We will prove this direction again by contradiction. As-

sume that the set of values λx for all λ ∈ Λ∞ identifies a unique x ∈ F while

spanΛ∞ is not dense in F∗. We can therefore find an x∗0 ∈ F∗ such that

x∗0 /∈ spanΛ∞. From lemma 2.10.1 of Hille and Phillips (1957), there exists

an x0 ∈ F for which we have x∗0x0 = 1, but x∗x0 = 0 for all x∗ ∈ spanΛ∞.

x0 is obviously non-zero. It follows that for any λ ∈ spanΛ∞,

(1.17) λx = λ(x+ αx0),

for any scalar α, which contradicts the initial uniqueness assumption.

1.2.4 Remark. Let F = C0(Ω) (i.e. the space of contiuous functions with

compact support). Then choosing Λi to be the set of functionals correspond-

ing to point-wise evaluations on a point-set Θi satisfying the requirements

of section 1.1, leads to all possible muti-resolution representations of sec-

tion 1.1. We therefore see that this new approach includes all cases discussed
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in the previous section. That the linear span of limi→∞Λi is weak∗ly dense

in F∗ for F = C0(Ω) follows from the following lemma.

1.2.5 Lemma. With the definitions of remark 1.2.4, spanΛ∞ is weak∗ly

dense in the dual of the space C0(Ω) of continuous functions with compact

support.

Proof. As a continuous function is uniquely identified by its value over a

dense subset of its domain (in this case Θ∞ ⊂ Ω), from theorem 1.2.3 we

know that spanΛ∞ is weak∗ly dense in the dual of C0(Ω).

The space C0(Ω) is itself dense in Lp(Ω) for 1 ≤ p < ∞ (Adams and

Fournier, 2003, theorem 2.19). Therefore, these discrete representations of

continuous functions in the limit (i→∞) identify a dense subset of Lp(Ω).

1.2.6 Refinement Operators. Now that our spaces of discrete signals

have been defined and we have formally described multi-resolution repre-

sentations, we are in the position to address the issue of travelling between

these spaces. Similar to the definitions of 1.1.8, the means for this change of

resolution will be refinement operators, which are mappings from spaces of

lower-resolution signals to spaces of finer representations.

Formally, for a sequence (Λi) satisfying the properties stated in 1.2.2,

we define refinement operators as bounded linear operators Si : `p(Λi) −→

`p(Λi+1) : a 7→ (Sia) with

(1.18) (Sia)[λ] :=
∑

µ∈Λi
si,λ,µa[µ] for λ ∈ Λi+1.
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The following theorem provides conditions on the weights si,λ,µ assuring

that Si is bounded.

1.2.7 Theorem. Si : `p(Λi) −→ `p(Λi+1), defined in 1.18, is bounded for

1 < p ≤∞ if for q := p/(p− 1),

(∑

µ∈Λi
|si,λ,µ|

q

)1/q

converges and is bounded for all λ ∈ Λi+1. Also, Si is bounded for p = 1 if

supµ∈Λi si,λ,µ is bounded for all λ ∈ Λi+1.

Proof. Consider an arbitrary a ∈ `p(Λi). For all valid i, and for λ ∈ Λi+1,

form the mapping si,λ : Λi −→ F : µ 7→ si,λ,µ. The stated conditions are

equivalent to

si,λ ∈ `q(Λi).

The conclusion then follows from Hölder’s inequality:17

‖asi,λ‖1 ≤ ‖a‖p‖si,λ‖q,

that is,

∑

µ∈Λi
|a[µ]si,λ[µ]| ≤

(∑

µ∈Λi
|a[µ]|p

)1/p
·
(∑

µ∈Λi
|si,λ[µ]|q

)1/q
.

As the right-hand-side is bounded when the conditions of the theorem are

17 ‖xy‖1 ≤ ‖x‖p‖y‖q.
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satisfied, and since

∑

µ∈Λi
a[µ]si,λ[µ] ≤

∑

µ∈Λi
|a[µ]si,λ[µ]|,

Si is bounded.

1.2.8 Adding Details. At the i-th stage, new details may be added in

the form of a signal di ∈ `p(Λi) (cf. 1.1.7). These details account for the

difference between the information that can be represented by an `p(Λi)

signal, and that representable as Si−1ai−1 for some ai−1 ∈ `p(Λi−1).

1.2.9 The Cascade Algorithm. The cascade algorithm in this new setting

is quite similar to that mentioned in the previous section; and, when conver-

gent to a function in F , leads to a similar definition of refinable functions.

Specifically, let ak ∈ `p(Λk) for some chosen p, and for a sequence of

refinement operators (Si), define:

ai := Si−1ai−1.

We have already shown in theorem 1.2.3 that any x ∈ F can be uniquely

identified by the values λx, λ ∈ Λ∞. Now if for any initial choice of ak ∈

`p(Λk) (for a fixed p), as i→∞, the sequence
(
ai
)

converges to a mapping

a∞ that identifies a function fak∞ ∈ F through

(1.19) λfak∞ = a∞[λ] for all λ ∈ Λ∞,
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we say that the cascade algorithm converges.18 We will assume the conver-

gence of the cascade algorithm in the sequel.

1.2.10 Refinable Functions. Similar to the previous section, when the

cascade algorithm converges, we will denote by em→n,λ (with n > m, λ ∈

Λm) the mapping iteratively defined through

em→n,λ := Sn−1em→n−1,λ,

with em→m,λ := em,λ := δλ ∈ `p(Λm).

For λ ∈ Λk, let gλk be the (unique) function in F satisfying

(1.20) µgλk = ek→∞,λ[µ] :=

(
lim
j→∞

ek→k+j,λ

)
[µ] for µ ∈ Λ∞;

i.e. gλk = fek,λ∞ = fδλ∞ in the notation of eqn (1.19) (with δλ ∈ `p(Λi)). The

following proposition holds:

1.2.11 Proposition.

(1.21) gλk =
∑

µ∈Λk+1

ek→k+1,λ[µ]gµk+1 =
∑

µ∈Λk+1

sk,µ,λg
µ
k+1.

The proof is similar to that of proposition 1.1.15.

18 In practice we often choose F to be a space of sufficiently smooth functions (e.g.
CN0 (Ω) for some N). In this thesis we will not further study conditions for the conver-
gence of the cascade algorithm to a smooth function, as these can be quite involved,
especially in the irregular case. The interested reader may wish to review, among oth-
ers, Daubechies et al. (2001) for one possible analysis. (cf. footnote 11 on p. 14.)
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1.2.12 Multi-Resolution Spaces. Again, multi-resolution approximation

spaces19 Vi can be defined as the linear span of functions gλi , λ ∈ Λi. That is,

Vi := span{gλi |λ ∈ Λi}.

It then follows from proposition 1.2.11 that these spaces are nested. Also,

following a discussion similar to that of 1.1.16, we see that when starting

with an arbitrary signal ak ∈ `p(Λk), the limit function of the cascade algo-

rithm will be

(1.22) fak∞ =
∑

λ∈Λk
ak[λ]g

λ
k,

which resides in Vk.

19 For a discussion of how this definition relates to and extends the classical definitions of
multi-resolution analysis, see footnote 8 on p. 11.
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2
A New Construction for
Refinement Operators

A theory has only the alternative of
being right or wrong. A model has a
third possibility: it may be right, but
irrelevant.

In The Physicist’s Conception of Nature, edited by
Jagdish Mehra (p. 618). Dordrecht, 1973.

MANFRED EIGEN, 1967 NOBEL LAUREATE IN
CHEMISTRY (1927–)

IN THE PREVIOUS CHAPTER we saw that multi-resolution representations

and related multi-resolution spaces of functions could be described in

terms of a sequence of sampling procedures (for different resolutions), which

define spaces of discrete signals; and refinement operators that link these sig-

nal spaces. A fundamental question that we did not answer then, was that of

how to choose the refinement coefficients that define those refinement oper-

ators. We briefly mentioned that properties of the underlying function and
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the sampling procedure should be taken into consideration, but did not clar-

ify what we exactly meant by them; nor did we indicate how these properties

could be considered.

In this chapter we will propose a novel construction for refinement op-

erators, that is naturally linked to the sampling procedures underlying our

discrete signal spaces, and also allows us to account for the geometrical

relationship between the samples. But first, we will review some related

examples of multi-resolution on uni-dimensional domains, that have been

previously studied in the literature (section 2.1). We will follow by introduc-

ing some useful mathematical notions and results. Then, after revisiting two

examples of multi-resolution on lattices, we will continue to introduce our

new construction, that is based on local functional interpolation.

2.1 Multi-Resolution on Uni-Dimensional

Domains

As the idea of associating signal samples with points in space is quite com-

mon (see 1.1), not surprisingly, interpolating multi-resolution schemes—

schemes that in the limit converge to functions passing through the original

samples—have received considerable attention in the past. A central tool

in many of the devised schemes, both single- and multi-dimensional, is La-

grange interpolation (see e.g. Deslauriers and Dubuc, 1989; Kovačević and

Sweldens, 2000; Daubechies et al., 1999).

Interest has also existed in average interpolation, where samples are not
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considered as point-wise evaluations of a function, but rather as integrals or

averages on short intervals in the uni-dimensional case (Donoho, 1994) or

on partitions in multi-dimensional settings (Tafti et al., 2005).

Multi-resolution refinement schemes based on Lagrange and average in-

terpolation were first studied for regular uni-dimensional point-sets, and

later generalized to multi-dimensional and/or irregular settings. To provide

an entrée en matière for our ultimate discussion of new families of multi-

resolution schemes, in this section we review uni-dimensional constructions

for Lagrange and average interpolating refinement.

2.1.1 Lagrange Interpolation. Lagrange interpolation deals with finding

polynomial solutions to point-wise interpolation problems: Let Θ be a finite

set of distinct points from R, and let a ∈ `p(Θ), for some p, represent a set

of values associated with these points. In Lagrange interpolation, one then

tries to find the lowest degree polynomial πa that satisfies the conditions

πa(θ) = a[θ] for θ ∈ Θ.

In the univariate case, i.e. when Θ ⊂ R, it is well understood that the

Lagrange interpolation problem has a unique solution, that can be found by

solving the following linear algebra equation:1 , 2

(2.1)
[
θj
]
θ∈Θ
0≤j<n

c = a,

1 For the rest of this chapter, it is easier to assume an order on point-sets Θ (and later
on sampling procedures Λ), and write the equations in the vector form. Then, for an
a ∈ `p(Θ), a is used to denote the vector

[
a[θ]

]
θ∈Θ.

2 We use the convention that 00 := 1.
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where c =
[
cj
]
0≤j<n is the vector of interpolant coefficients (i.e. cj is the

coefficient of ()j), a :=
[
a[θ]

]
θ∈Θ, and n := #Θ.

[
θj
]
θ∈Θ
0≤j<n

is known as a

Vandermonde matrix. For an arbitrary point φ we then have

(2.2) πa(φ) = c0 +
∑

0<j<n

cjφ
j =

[
φj
] ′
0≤j<nc =

[
φj
] ′
0≤j<n

(
inv
[
θj
]
θ∈Θ
0≤j<n

)
a,

which shows that for each map a ∈ `p(Θ), πa(φ) can be evaluated by taking

a weighted average of the sample values (represented by the vector a, with

weights that depend on Θ and φ (represented by
[
φj
] ′
0≤j<n

(
inv
[
θj
]
θ∈Θ
0≤j<n

)
).

The above equation shows that Lagrange interpolation is linear; that is,

given two different maps a and b on the same point-set, and a scalar β, the

polynomial πa+b that interpolates βa+b is equal to βπa+πb. Therefore, the

solutions to all interpolation problems on Θ form a sub-space ΠΘ of Π. We

say ΠΘ is correct for Θ to mean that the interpolation problem has a unique

solution in ΠΘ for any a ∈ `p(Θ).

Eqn (2.2) also shows that the set {1, ()1, . . . , ()n−1} is a basis for all sub-

spaces ΠΘ with #Θ = n,3 which means that all these sub-spaces are in fact

the same: the space Π<n of all polynomials of degree less than n.

2.1.2 Deslauriers and Dubuc’s Lagrange Iterative Interpolation. A lit-

tle less than twenty years ago, Deslauriers and Dubuc introduced their now

famous iterative interpolation scheme (see Deslauriers and Dubuc, 1989).

This interpolation scheme consists in iterative insertion of new sample val-

ues at mid-points of a discrete point-set—thus forming a sequence of dyadic

point-sets (1.1.3)—by interpolating neighbour sample values at each stage.

3 ()j : R −→ R : x 7→ xj is a monomial map (see also 2.2.2).
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To be specific, suppose that (Θi) is a sequence of dyadic point-sets, and that

we are given a map a0 ∈ `p(Θ0). Let ai be the ith level data map. The values

associated with points in Θi+1 are then calculated iteratively from values for

points in Θi:

For each new mid-point θ ∈ Θi+1\Θi, let Nθ be the subset of Θi contain-

ing the n points (n even) in Θi closest to θ. The new sample value at θ,

which is ai+1[θ], is calculated by interpolating the values ai[φ] for φ ∈ Nθ
with a Lagrange interpolant of degree n − 1. For points θ that exist both in

Θi and in Θi+1, ai[θ] and ai+1[θ] will be equal.

Using the formulation of section 1.1, the Deslauriers-Dubuc iterative La-

grange interpolation scheme is equivalent to applying refinement operators

Si defined by the following formula:

(2.3) (Siai)[θ] =





ai[θ] for θ ∈ Θi,
∑
φ∈Nθ si,θ,φai[φ] for θ ∈ Θi+1\Θi,

where from eqn (2.2) we have

[
si,θ,φ

]
φ∈Nθ =

[
θj
] ′
0≤j<n inv

[
φj
]
φ∈Nθ
0≤j<n

.

Furthermore, from the uniqueness of the interpolant (which follows from

that the Vandermonde matrix is not singular), with a simple change of vari-

ables we can see that the interpolation scheme is shift and scaling invariant,

meaning that the refinement weights do not change across scales, and also

that the vectors of refinement weights used to calculate values for any two
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Table 2.1: Deslauriers and Dubuc’s iterative interpolation scheme may be
represented by a vector of refinement weights. These weights are used to
compute ai+1[θ] from ai[φ] for φ ∈ Nθ. In this table (from Kovačević and
Sweldens (2000)) points from Nθ ⊂ Θi are marked with crosses and the
new mid-point from Θi+1 is marked with a dot. n is the size of the neigh-
bourhood.

n × × × × · × × × ×
2 0 0 0 1/2 1/2 0 0 0

4 0 0 −1/22 9/22 9/22 −1/22 0 0

6 0 3/28 −25/28 150/28 150/28 −25/28 3/28 0

8 −5/211 49/211 −245/211 1225/211 1225/211 −245/211 49/211 −5/211

points in Θi+1\Θi have the same elements.

The example we studied in 1.1.10 is the simplest case of Deslauriers-

Dubuc interpolation, with n = 2. Table 2.1, from Kovačević and Sweldens

(2000), summarizes refinement coefficients for some other values of n.

2.1.3 Extension to Non-Uniform Settings. The idea behind Deslauriers-

Dubuc interpolation is easily extensible to non-uniform settings. Again, sup-

posing that we have a nested sequence (Θi)i≥0 of point-sets, for each new

point θ ∈ Θi+1\Θi, the value ai+1[θ] is calculated by locally interpolating the

ai[φ] values for φs in a certain set Nθ (which can be of different sizes for

different θs) of points in Θi neighbouring θ. For points θ ∈ Θi+1 ∩ Θi,4 the

value of ai[θ] is copied to ai+1[θ].5

Even in the uniform setting, this approach provides a natural answer

for multi-resolution refinement on bounded domains; since for points near

the boundaries, the neighbours can be chosen from one side. This results

in different refinement weight vectors for central versus near-the-boundary

4 Since
(
Θi
)

is nested, we actually have Θi+1 ∩Θi = Θi.
5 This is in fact a second generation construction (Sweldens, 1997), and was provided

in Sweldens and Schröder (1996) as an example (with a different formulation).
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points.

It follows from eqn (2.2) that this generalization of Deslauriers-Dubuc

interpolation also results in linear operators which can be realized similar

to (2.3). But in this case the refinement weights are in general no longer

similar for different locations and resolutions.

2.1.4 Average Interpolation. Donoho in 1994 suggested that a multi-

resolution refinement scheme could be based on the idea of average interpo-

lation. Unlike in Lagrange interpolation, where we are looking for a poly-

nomial that takes given values at given points, in average interpolation one

tries to find a polynomial which has given averages on given intervals.

In average interpolating refinement, one begins with a set Υ0 of non-

overlapping equi-length intervals υ that partition the real axis. A dyadic

sequence of interval-sets, (Υi), may be iteratively constructed based on the

following rule: Υi+1, i ≥ 0, is formed by subdividing each interval υ in Υi

into two equi-length intervals, υL and υR.6 In this scheme we start with a

signal a0 on Υ0—which we assume indicates averages of a function on the in-

tervals υ ∈ Υ0—and iteratively construct a multi-resolution sequence (ai) of

signals. A description of the scheme for refining the ith level representation

follows:

First, for υ ∈ Υi, let Nυ be the subset of Υi containing the n closest

neighbours of υ in Υi (υ included). The values ai+1[υL] and ai+1[υR], with

υL, υR ∈ Υi+1 being the subdivisions of υ, are then computed by first finding

6 L and R are for left and right.
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the lowest degree polynomial πυ satisfying

∫
ω
πυ(t) d t∫
ω
1 d t

= ai[ω] for all ω ∈ Nυ;

and subsequently letting

ai+1[υL] :=

∫
υL
πυ(t) d t∫
υL
1 d t

,

ai+1[υR] :=

∫
υR
πυ(t) d t∫
υR
1 d t

.

One question remains, and that is how the average interpolating polyno-

mial can be found. In this case the answer lies in solving a modified version

of (2.1) that involves a modified Vandermonde matrix, containing averages

of monomials on different intervals rather then their evaluations at different

points:

(2.4)
[∫
ω
tj d t∫

ω
1 d t

]
ω∈Nυ
0≤j<n

cυ = ai.

Also, similar to (2.2), we can see that
∫
υL
πυ(t) d t and

∫
υR
πυ(t) d t (and

therefore ai+1[υL] and ai+1[υR]), can be calculated from a weighted average

of ai[ω], ω ∈ Nυ. This shows that average interpolating refinement also fits

in the framework of 1.2.

2.1.5 Extensions. It is not necessary to divide each partition into two at

each level—any other number will do. Also, extension to the case where we

have an irregular partitioning of the real line is straight-forward. We can

choose neighbourhoods Nυ of different sizes for different intervals υ ∈ Υi
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that we want to subdivide, and find the values ai+1[υL] and ai+1[υR] by aver-

aging, over υL and υR respectively, the polynomial that average-interpolates

ai[ω], ω ∈ Nυ (cf. Sweldens and Schröder, 1996).

2.2 A Few Mathematical Notions of Subsequent

Utility

Generalization of the previously described schemes to multivariate cases is

in general not straight-forward.7 Simple as the interpolation problem may

seem in one variable, it is much more involved in the multivariate case.

First of all, unlike the single-variable case, no obvious basis of monomials

of degree less than n exists for arbitrary n; therefore, it is not clear how an

invertible Vandermonde matrix can be formed.8 Secondly, due to a situation

known as the loss of Haar, no n-dimensional subspace of Πd, the space of

d-variate polynomials, is correct for all sets of n points.9

7 Of course in the case of separable lattices one may construct a multi-dimensional
scheme by applying uni-dimensional refinement masks along different dimensions. But
this case is quite limiting, as most lattices are not separable, and moreover, this ap-
proach is not generalizable to irregular settings. Furthermore, we will later introduce
more general constructions for multi-resolution refinement, based on local functional
interpolation, that would not have been possible if we were limiting ourselves to sepa-
rable lattice structures.

8 For example, in the bivariate case, when n = 5 how should we—or indeed should
we—choose a subset of {1, x, y, x2, y2, xy} in forming the Vandermonde matrix?

9 One of the challenges in multivariate interpolation is that, unlike the univariate case,
no n-dimensional subspace of the space of polynomials (or any other space of contin-
uous functions) is correct for all point-sets Θ with cardinality n. In other words, in the
multivariate case in addition to their number, the geometrical relationship of the points
also becomes important. This can be seen for example from the following argument by
de Boor (1992):

Consider an n-dimensional (n > 1) subspace P of C(Rd) (d > 1) with a basis
{m̂0, . . . , m̂n−1}, and a set Θ of n distinct points in Rd. For P to be correct for Θ,
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Nevertheless, Lagrange and average interpolation are only examples of a

more general conception of interpolation that we are just about to introduce.

2.2.1 Functional Interpolation. The definition of an interpolation prob-

lem may be generalized to that of finding a function q in a space Q that

satisfies a set of functional equations of the form

(2.7) λq = a[λ] for λ ∈ Λ,

with Λ ⊂ Q∗ being a set of functionals on Q, and a ∈ `p(Λ) for some p.

Lagrange interpolation will then be concerned with the special case where

Q is the space of polynomials of degree < #Λ, and λs are point-wise evalu-

the (generalized) Vandermonde matrix
[
m̂j(θ)

]
θ∈Θ
0≤j<n

should be non-singular, as the interpolation problem is equivalent to solving the linear
system (cf. eqn (2.1))

(2.5)
[
m̂j(θ)

]
θ∈Θ
0≤j<n

c = a.

Now consider a continuous curve

γ : [0, 1] −→ (Rd)n : t 7→ (γ0(t), . . . , γn−1(t)),

and let us define the function

g : [0, 1] −→ R : t 7→ det
[
m̂j (γi (t))

]
i
j

.

g is continuous because it is a composition of continuous functions. As n, d > 1, we
can choose γ such that

(2.6) γ(1) = (γ1(0), γ0(0), . . . , γn(0)),

while γi(t)s remain distinct for each value of t. (This is not true in the case of d = 1

because there (2.6) implies that γ0(t) and γ1(t) meet for at least one value of t.) We
consequently have g(1) = −g(0), which implies that g vanishes at some t0 in [0, 1]
(due to continuity). {γ0(t0), . . . , γn−1(t0)} is then a set of n distinct points for which
the matrix described in (2.5) is rank-deficient.
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ation functionals.

2.2.2 Multi-Indices and d-Variate Polynomials. We introduce the fol-

lowing notation for further usage. In the d-variate case, a multi-index α :=
[
αi
]
0≤α<d is an element of Zd0+ (the set of non-negative integer d-tuples). For

X :=
[
xi
]
0≤i<d ∈ Rd, we then define:

Xα :=
∏

0≤i<d
xαii .

Also,

|α| :=
∑

0≤i<d
αi.

When π is a polynomial in d variables (or more generally, a formal power

series10 in d indeterminates), it is convenient to denote the normalized coef-

ficient of the αth-degree term in π by α(π); i.e.

π(X) =
∑ α(π)

α!
Xα.

We also take this opportunity to introduce de Boor and Ron’s (1992a)

notation:

()α : Rd −→ R : X 7→ Xα.

2.2.3 de Boor and Ron’s Least Solution to the Interpolation Problem.

To address the ambiguity that we have already encountered in finding the

interpolant in the multivariate setting, de Boor and Ron in 1990 provided

10 A formal power series f is an infinite sequence, here represented in the form∑
α∈Zd

0+

α(f)
α!
Xα; however, as Weisstein (2005a) indicates, with the understanding that

no value is assigned to X.
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a solution with many interesting properties. They generalized this solution

in de Boor and Ron (1992b) to include functional interpolation using mul-

tivariate polynomials, and addressed its computational aspects, via Gaus-

sian elimination on generalized Vandermonde matrices, in de Boor and Ron

(1992a) and de Boor (1994).

Briefly speaking, their solution uses the following duality pairing between

polynomials and formal power series:11

〈π, f〉 =
∑

α∈Zd
0+

α(π)α(f)/α! =
∑

α∈Zd
0+

α(f) D
α π(0).

Here Dα π(0) denotes the αth partial derivative of π, evaluated at 0.

For any formal power series f, de Boor and Ron introduce the notation

f↓ to denote the least term of f, i.e. the unique homogeneous polynomial

for which the least-degree term of f − f↓ is of a higher degree than that of f

(de Boor and Ron, 1992b). They then go on to prove that the space

Λ↓ := span{λ↓|λ ∈ spanΛ},

is correct for Λ, and call it the least solution to the interpolation problem.12

Gaussian elimination by segments, on the generalized Vandermonde matrix,

(2.8)
[
λ()α

]
λ∈Λ
α∈Zd

0+

,

11 This duality pairing shows that every linear functional on Πd can be identified with a
unique power series f, and vice versa. Thus, we can identify the dual of Πd with the
space of formal power series.

12 There is a minor difference in notation: de Boor and Ron (1992b) actually use Λ to
denote what in our notation would be spanΛ.
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is suggested as a method for systematically finding the interpolant to given

data (de Boor and Ron, 1992a; de Boor, 1994). In Gaussian elimination by

segments, all columns of the Vandermonde matrix that are related to power

maps of the same total degree (i.e. ()αs with identical |α|) are considered

together, resulting in a block row-echelon matrix. The details of the interpo-

lation are technical, and could be the subject of a monograph in their own

right. Nevertheless, it is agreeable that this scheme is a justified generaliza-

tion to the discussion given in 2.1.1.

In realizing our construction for refinement operators, that we will in-

troduce in the sequel, we have used Grandine’s ISO C implementation of

de Boor and Ron’s algorithm for finding the least solution (Grandine).

2.3 Multi-Resolution on Multi-Dimensional

Lattices

Multi-dimensional lattices were introduced in example 1.1.5. In this section

we will review how, with proper generalization, the Lagrange and average

interpolating refinement schemes that were discussed in 2.1 can also be ap-

plied to these multi-dimensional structures.

2.3.1 Kovačević and Sweldens’s Interpolating Multi-Resolution on Lat-

tices. Kovačević and Sweldens (2000) used the machinery of de Boor and

Ron for Lagrange interpolation and introduced a multi-resolution refine-

ment scheme on multi-dimensional lattices. Their refinement scheme can

be viewed as a generalization of Deslauriers-Dubuc interpolation. Using the
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Figure 2.1: Neighbours of a point on the quincunx lattice form rings (labeled
by numbers). An × marks the location of the newly inserted point at which
we are interpolating.

fact that a Lattice Θi+1, as defined in 1.1.5, is a union of translates of Θi,13

they suggested the following procedure:14

for each θ ∈ Θi+1\Θi, a neighbourhood Nθ ∈ Θi of a fixed pre-chosen

size, of closest points to θ in Θi are considered. ai+1[θ] is computed by

Lagrange interpolation of the values ai[φ] for φ ∈ Nθ. For θ ∈ Θi+1 ∩Θi, the

value of ai[θ] is copied to ai+1[θ].

Similar to Deslauriers and Dubuc’s iterative interpolation, Kovačević and

Sweldens’s scheme can be represented by linear operators and therefore

falls within the framework of 1.2. We will prove this in more generality

in proposition 2.4.4. For example, for the quincunx lattice (see 1.1.6) and

the neighbourhood rings shown in fig. 2.1, this scheme can be represented

by refinement weights of table 2.2 (from Kovačević and Sweldens, 2000).

2.3.2 Average-Interpolating Refinement on Lattices. As a variation of

the above-mentioned scheme, and also a generalization of Donoho (1994),

in Tafti et al. (2005) we suggested how Donoho’s average interpolating re-

13 Or the other way around: Θi is a subsampled version of Θi+1.
14 To be consistent with the rest of this thesis, we have changed the formulation.
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Table 2.2: Refinement weights of Kovačević and Sweldens’s Lagrange inter-
polating multi-resolution scheme, for neighbourhoods of sizes 4 and 12.

neighbourhood size ring (no. points)
1(4) 2(8)

4 1/22 —
12 10/25 −1/25

finement scheme could be extended to arbitrary multi-dimensional lattices.

There we introduced the notion of a partitioning ♦♦♦ of a domain Ω, as a col-

lection of disjoint subsets ♦θ of Ω, indexed by points of a lattice Θ,15 whose

union covers Ω (except possibly for a set of measure zero).

Then, considering a sequence (Θi) of point-sets in Rd with the lattice

structure of 1.1.5, we specified a corresponding sequence (♦♦♦i) of partition-

ings: provided with a partitioning ♦♦♦0 for level 0,16 one can construct ♦♦♦is by

transforming ♦♦♦0 with the same lattice matrices, G,D (as we did for Θ0 and

Θis in 1.1.5).

Next, for a chosen neighbourhood size n, in Tafti et al. (2005) we in-

troduced a refinement scheme resulting in a sequence of signals (ai), ai ∈

`p(Θi). This scheme consists in the sequential application of the following

two steps, here formulated for the ith level:

1. Insertion: For each θ ∈ Θi+1\Θi, we first find the minimum degree

polynomial solution πi,θ to the functional interpolation problem:

∫
♦i,φ πi,θ∫
♦i,φ 1

= ai[φ] for φ ∈ Nθ,

15 We have here simplified the unnecessarily complex notation that was used in Tafti et al.
(2005).

16 This partitioning may be, for example, given by Voronoi regions of the lattice points.
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where Nθ ⊂ Θi is the set of n closest points to θ in Θi. ai+1[θ] is then

defined:

ai+1[θ] :=

∫
♦i+1,θ πi,θ∫
♦i+1,θ 1

.

This step amounts to resampling, by locally averaging at a finer scale, a

polynomial with given local averages on nearby partitions. It is dubbed

‘insertion’ because the points θ ∈ Θi+1\Θi and their associated values

are inserted into Θi.

2. Update: In the second step, the original values ai[θ] for θ ∈ Θi are

updated to give us ai+1[θ] for θ ∈ Θi. This is necessary because ai[θ]s

correspond to averages on coarser resolution (i.e. bigger) partitions

in ♦♦♦i, and should be changed to match local averages on the finer

partitions in ♦♦♦i+1.

To find the new values we first find the minimum degree polynomial

π̃i,θ satisfying

∫
♦i+1,φ π̃i,θ∫
♦i+1,φ 1

= ai+1[φ] for φ ∈ Nθ.

This time, Nθ is a subset of Θi+1\Θi, and we are average interpolating

values calculated in the previous step. Next, ai+1[θ] is calculated:

ai+1[θ] :=

∫
♦i+1,θ π̃i,θ∫
♦i+1,θ 1

.

This step is labeled ‘update’ because we change the values for sam-

ples at θ ∈ Θi in this step—unlike Lagrange interpolating refinement
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where, as we saw in 2.3.1, these values were simply copied.17

Again, these two steps define a linear refinement operator, as detailed in 1.2.

Linearity follows from the linearity of the solution to the interpolation prob-

lem, which again consits in solving a linear system.

Not knowing about de Boor and Ron’s solution to the functional interpo-

lation problem, in Tafti et al. (2005) we suggested that the average interpo-

lating polynomial satisfying

∫
♦φ π∫
♦φ 1

= a[φ] for φ ∈ Θ,

could be found by choosing proper columns of the (semi-infinite) modified

Vandermonde matrix [∫
♦φ X

α

∫
♦φ 1

]

φ∈Θ
α∈Zd

0+

,

to form an invertible submatrix.

More specifically, we suggested choosing A := {α0, . . . , αn−1} (where n =

#Θ), with |α0| ≤ |α1| ≤ · · · ≤ |αn−1|, such that the matrix

V :=

[∫
♦θ X

α

∫
♦θ 1

]

θ∈Θ
α∈A

would be invertible, and |αn−1| would be minimum among all possible choices

of such n αs.18 Then, our suggested solution to the interpolation problem

17 Note that the inputs to this step are sample values ai+1[θ] for θ ∈ Θi+1\Θi, themselves
obtained at the insertion step from ai[φ]s. Alternatively, we could have calculated the
outputs of this step directly from ai[φ]s.

18 We then did not address the uniqueness problem. However, it turns out that due to the
degree-reducing property of de Boor and Ron’s solution (see de Boor and Ron, 1992b,
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Figure 2.2: Partitionings ♦♦♦i,♦♦♦i+1 for subsequent levels are related by the
same transformation matrices G,D that relate lattice point-sets Θi, Θi+1 of
the two levels (depicted here for the quincunx lattice).

(a) Level i (b) Level i+ 1

would be obtained by solving the linear system

Vc = a.

2.3.3 Example: Average-Interpolating Refinement on the Quincunx Lat-

tice. As an example for this scheme, we may consider average-interpolating

refinement on the quincunx lattice (1.1.6). The matrix D =
[
1 −1
1 1

]
, that re-

lates Θi to Θi+1, for this lattice corresponds to a rotation by 45◦ and a scaling

by a factor of
√
2. Accordingly, each partition in ♦♦♦i+1 is obtained by a −45◦

rotation and 1/√2 scaling of a partition in ♦♦♦i (fig. 2.2).

The neighbourhood rings for insertion and update steps are shown in

fig. 2.3. Weights for insertion and update steps for two neighbourhood sizes

are summarized in table 2.3.

theorem 5.10), their solution satisfies the requirements set in Tafti et al. (2005).
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Figure 2.3: Neighbourhoods for average interpolation on the quincunx lat-
tice have different shapes for insertion and update steps. Here neighbour-
hood rings are labeled by numbers and the partition at which we are inter-
polating is shaded.

1

1

1

1

22

22

22

22

3

3

3

3

44

44

44

44

(a) Insertion

1

1

1

1

22

22

22

22

3

3

3

3

44

44

44

44

(b) Update

Table 2.3: Insertion and update weights for average-interpolating refinement
of Tafti et al. (2005) on the quincunx lattice.

neighbourhood size Insertion Update
on ring 1 on ring 2 on ring 1 on ring 2

4 0.2500 — 0.2500 —
12 0.3229 −0.0365 0.3125 −0.0313

2.4 Refinement Based on Functional

Interpolation

The schemes mentioned in the previous sections all shared several key fea-

tures. They all depended on interpolation with polynomials (Lagrange or

average interpolation) and, as a result, could be represented by linear re-

finement operators. Also, the properties of the underlying signal, in the

sense of the correlation between nearby samples (which itself depends on

the smoothness of the underlying function), could be taken into account by
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choosing neighbourhoods of different sizes.

As we have already implied, Lagrange and average interpolation are ex-

amples of functional interpolation (2.2.1). And while the focus in previous

sections of this chapter has been only on the special cases of Lagrange and

average interpolation, and then again only in one dimension or on multi-

dimensional lattices, basing our refinement scheme directly on functional

interpolation, as we will see, allows us to consider refinement on arbitrary

domains, or in different functional spaces, in much more generality. It also

provides us with the means to naturally consider the underlying sampling

procedure. Furthermore, the resulting class of refinement schemes can be

directly implemented, since as we saw, a powerful machinery for polynomial

functional interpolation already exists (cf. 2.2.3).

When sampling a function on the continuum, the correlation between

nearby sample values depends on the properties of this function. The smooth-

er the function is, the more correlated these sample values become. In de-

signing a multi-resolution scheme, this could be taken into consideration

by choosing neighbourhoods of samples, on which samples at the next finer

resolution would depend. Introducing the notion of neighbourhoods also

allows us to deal with arbitrary domains and different boundary conditions

in a consistent manner.

2.4.1 Reminder: Multi-Resolution Representations and Signals. The

reader will recall that in 1.2 we discussed how a multi-resolution sequence

of discrete signals
(
ai
)

could be represented by elements of a sequence of

discrete signal spaces:
(
`p(Λi)

)
for some p; where Λis (the sampling pro-

cedures for different resolutions) are subsets of F ∗, the dual of the Banach
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space F that our discrete signal spaces approximate. We further required

that span(Λ∞) be weak∗ly dense in F∗, thus allowing any function in F to

be represented uniquely by a collection of sample values on Λ∞ (see theo-

rem 1.2.3).

We will attend to this relationship between multi-resolution representa-

tions and sets of functionals in our upcoming construction for refinement

operators.

2.4.2 Neighbourhoods. We have already argued the utility of the notion

of neighbourhoods. This notion will now be formally defined. With each

λ ∈ Λi+1, we associate a finite set Nλ ⊂ Λi and call it the neighbourhood of

λ. As we will see, the values ai[µ], µ ∈ Nλ, are those that will be considered

when computing ai+1[λ].

2.4.3 Refinement Based on Functional Interpolation. We are now in a

position to finally define our refinement operators Si. This task, against the

provided background, is now pleasantly simple: Given ai ∈ `p(Λi), for each

λ ∈ Λi+1 with a neighbourhood Nλ ⊂ Λi we first find the polynomial πλ

satisfying

(2.9) µπλ = ai[µ] for µ ∈ Nλ,

using de Boor and Ron’s algorithm for functional interpolation (see 2.2.3

and de Boor and Ron (1992b)).19 Next, the value ai+1[λ] := (Siai) [λ] is

19 Note however that this approach is not restricted to de Boor-Ron interpolation, or even
to polynomial interpolation. For special functional spaces, other spaces of interpolating
functions may be more suitable.
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assigned:

ai+1[λ] := (Siai) [λ] := λπλ.

We will undertake the trouble to prove that such defined, the operator

Si can be represented by weighted averages as detailed in 1.2; and will also

show how the refinement weights can be computed.

2.4.4 Proposition. Linear refinement operators Si, as defined above, cor-

respond to weighted averagings of the form

(Siai) [λ] =
∑

µ∈Nλ
si,λ,µai[µ],

with weights si,λ,µ satisfying

(2.10) si,λ,µ = (Siδµ) [λ].

Proof. From A.4 we have:

ai =
∑

µ∈Λi
ai[µ]δµ,

and therefore,

Siai =
∑

µ∈Λi
ai[µ] (Siδµ)

or equivalently,

(2.11) (Siai) [λ] =
∑

µ∈Λi
ai[µ] (Siδµ) [λ].

Now, (Siai) [λ] is zero for µ /∈ Nλ. This is because, with µ /∈ Nλ, all the val-
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ues that are being interpolated (i.e. δµ[ν] for ν ∈ Nλ) are zero, and therefore

the interpolant is also identically zero. Hence, we can rewrite (2.11) as

(Siai) [λ] =
∑

µ∈Nλ
ai[µ] (Siδµ) [λ].

We may now denote (Siδµ) [λ] by si,λ,µ to have

(2.12) (Siai) [λ] =
∑

µ∈Nλ
si,λ,µai[µ].

The following lemma also holds. We will use it to prove a subsequent

result.

2.4.5 Lemma. Let 111 ∈ F : x 7→ 1 be the constant unity function. Let also

µs be normalizable such that µ111 = 1. Then, for a signal ai ∈ `p(Λi) that is

constantly equal to c ∈ F on Nλ, we have

(Siai) [λ] = c.

Proof. From µ111 = 1 for linear functionals µ ∈ Nλ, it follows that

µ(c111) = c = ai[µ] for µ ∈ Nλ.

(c111) therefore satisfies the interpolation conditions at λ (2.9). (c111) is the

constant polynomial, and is the lowest degree polynomial that satisfies our

interpolation conditions. Therefore πλ = c111. Then, as by the normalization
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assumption we also have λ(c111) = c, it follows that

(Siai) [λ] := λπλ = λ(c111) = c.

2.4.6 Corollary. With the same conditions as those of lemma 2.4.5, we

have

(2.13)
∑

µ∈Nλ
si,λ,µ = 1 for all λ ∈ Λi+1.

Proof. Follows directly from lemma 2.4.5 and eqn (2.12) by setting c = 1

and for each λ, considering a function in `p(Λi) that is constantly equal to 1

on Nλ.

The above result shows that, with the suggested normalization, our re-

finement operators satisfy the conditions that Daubechies et al. (1999) re-

quire of their subdivision operators.20

2.4.7 Remark. Constructions for interpolating and average-interpolating

multi-resolution refinement that we have discussed in 2.1 and 2.3 are in fact

special cases of the construction introduced above:21

20 Daubechies et al.’s subdivision operators are very similar to the refinement operators
we introduced in section 1.1, where we considered discrete functions on point-sets
(rather than on sets of functionals). While in general, (2.13) is neither strictly nec-
essary nor sufficient for the convergence of a non-stationary cascade algorithm (the
cascade algorithm is defined in 1.1.13 and 1.2.9), the reader may wish to consult foot-
note 11 on p. 13 for a brief discussion of the relevance of this condition for stationary
refinement schemes. (For stationary schemes refinement masks do nat change across
resolutions.) As emphasized earlier, in this thesis we do not intend to investigate con-
ditions for the convergence of the cascade algorithm.

21 Actually, in the multi-dimensional average interpolating scheme of 2.3.2, rather than
the scheme itself, each of the two insertion and update steps can be realized by our new
refinement operators.
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Simply, for the uni- and multi-dimensional schemes based on Lagrange

interpolation (see 2.1.2, 2.1.3, and 2.3.1), it is sufficient to compose Λi of

point-wise evaluation functionals at points in Θi. Extending the same idea to

irregular multi-dimensional point-sets directs us to the operators Daubechies

et al. (1999) suggest.

Similarly, for average interpolation, Λi should consist of functionals cor-

responding to averaging over intervals in Υi (in the univariate case) or over

partitions in ♦♦♦i (in the multivariate case).

2.4.8 Remark. Notice how this refinement scheme is naturally linked to

the sampling procedures, as defined in 1.2, that lead to our discrete signals.

Properties of the underlying function, and the domain, can also be taken

into consideration when choosing the neighbourhoods for each functional.

Additionally, basing our definitions on topological notions such as function-

als and dual spaces allows us to collectively consider refinement schemes for

different spaces of functions.

2.4.9 Example. As discussed above, we have in fact already encountered

several special cases of this new construction. Here we will produce a more

complex situation. Let F be a space of locally integrable functions including

bivariate polynomials, defined on a domain Ω in R2; and suppose that each

functional λ ∈ Λi ⊂ F∗ corresponds to calculating the average of its argu-

ment on the area enclosed by an arbitrary and probably irregular polygone,

say Dλ, in Ω. That is,

λf :=

∫∫
Dλ
f d x dy∫∫

Dλ
1 d x dy

.
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The construction we have just introduced then provides us with a multi-

resolution refinement scheme for data maps associated with Λis.

In practice, in order to find the multivariate polynomial satisfying (2.9),

we initially need to be able to form the generalized Vandermonde matrix

of eqn (2.8), upon which we may then exercise Gaussian elimination by

segments (cf. 2.2.3). We should therefore find a way to compute

λ()α :=

∫∫
Dλ
xmyn d x dy∫∫
Dλ
1 d x dy

.

where α :=
[
m
n

]
.22 The denominator is simply the area ofDλ, and is a special

case of the numerator integral,

(2.14)
∫∫

Dλ

xmyn d x dy,

with m = n = 0. It is therefore sufficient to be able to compute (2.14)

numerically, for an arbitrary M-gone Dλ. This computation is made possible

by an application of Green’s theorem:23 , 24

Let the polygone Dλ be defined by its M vertices,
[
xi
yi

]
, 0 ≤ i < M. Also

define
[
xM
yM

]
:=
[
x0
y0

]
. For f(x, y) = −1

n+1
xmyn+1 and g(x, y) = 0, the right-

hand-side of (2.15) will be equal to the desired integral (eqn (2.14)). Evalu-

22 Recall that ()α : Rd −→ R : X 7→ Xα is a function in F .
23 A version of Green’s theorem states that over a region D in the plane with boundary

∂D,

(2.15)
∫

∂D

f(x, y) d x+ g(x, y) dy =

∫∫

D

(
∂g

∂x
−
∂f

∂y

)
d x dy.

(From Weisstein, 2005b).
24 The method for computing the integral of a bivariate monomial over a polygonal do-

main, that we discuss here, is known to the numerical computation community.
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ation of the left-hand-side involves calculating
∫
f(x, y) d x over the edges of

Dλ. It can be easily shown that after elementary integrations we have:25

L.h.s. =
−1

n+ 1

∑

k∈K

∑

0≤r≤n+1

(
n+1
r

)

m+ r+ 1
arkb

n+1−r
k

(
xm+r+1
k+1 − xm+r+1

k

)
;

where K is the subset of {0, 1, . . . ,M}, such that for k ∈ K the edge connecting
[
xk
yk

]
and

[
xk+1
yk+1

]
is not vertical and can be parametrized as y(x) = akx+ bk.

This also defines ak, bk.

For this setting, we have implemented our refinement scheme in ISO C,

and have used Grandine’s implementation of de Boor and Ron’s algorithm

(Grandine). Two of the inputs to our programme are the two sets of func-

tionals, Λi andΛi+1, members of which are identified with the coordinates of

their corresponding polygones. (These polygones may have different shapes

and numbers of corners.) Another input is the neighbourhood database, that

indicates the functionals µ ∈ Λi belonging to the neighbourhoodNλ of λ, for

each λ ∈ Λi+1. Finally, the last input is the ith level signal, ai[λ] for λ ∈ Λi.

Our software then outputs the i+ 1th level signal, ai+1 := Siai.26

As an example, suppose that the solid polygones of fig. 2.4 form a neigh-

bourhood Nλ for the dashed polygone λ. As we saw in proposition 2.4.4, the

refinement operator Si may be identified with weighted summations of the

25 To see this, simply write the line equation for non-vertical edges connecting
[
xk
yk

]
to[

xk+1
yk+1

]
as y(x) = akx+ bk, and replace this in the integral

∫xk+1

xk
f (x, y (x)) d x, which

now becomes: ∫xk+1

xk

−1

n+ 1
xm (akx+ bk)

n+1
d x.

Then use the binomial expansion for (akx+ bk)
n. (For vertical edges the integral is

trivially zero.)
26 The source code and Linux x86 binaries can be found on the accompanying CD-ROM,

and are also available from the author upon request.
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Figure 2.4: Several irregular polygones (solid) form a neighbourhood for
another irregular polygone (dashed).

form

(Siai) [λ] =
∑

µ∈Nλ
si,λ,µai[µ],

and the same proposition also provides us with a way to calculate the weights

(by passing δµ signals as the input to the refinement scheme). We have sum-

marized the weights for µ ∈ Nλ (here indexed by numbers) in table 2.4. As

predicted by corollary 2.4.6, these weights add up to 1.

Table 2.4: The new value associated with the dashed polygone is equal to a
weighted summation of the values given for the solid polygones, using the
following weights.

Neighbour’s Index Weight
0 −0.722514
1 1.008270
2 −0.857378
3 1.175449
4 −0.616545
5 1.012718
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3
Conclusion

A conclusion is the place where you
got tired of thinking.

ANON.

THE MAIN PURPOSE of this thesis was to provide a definition and formu-

lation of multi-resolution refinement, general enough to allow multi-

resolution approximation of different spaces of functions based on samples

(or observations) that could be irregularly distributed or even differently

obtained (chapter 1). We also provided a construction for designing and im-

plementing refinement schemes in these general settings (chapter 2). The

framework for multi-resolution refinement that we discussed in chapter 1

includes and extends (within a new formulation) the existing mathemati-

cal machinery for multi-resolution analysis. And the structure suggested in

chapter 2 provides a unified formulation for many of the schemes currently

in use, and allows us to design schemes for many new settings. The ap-

proach we have proposed also gives rise to many questions that we have not
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fully addressed here, and would benefit from further study. In this conclud-

ing chapter some of these will be outlined. In addition, several questions

need to be answered when designing a refinement scheme for a particular

application. While the answeres to these questions are application-specific,

we provide some general remarks and considerations.

3.1 Suggestions for Further Investigation

3.1.1 The Stability and Convergence of the Cascade Algorithm. As we

pointed out on many occasions throughout this thesis, a question that is

of critical importance but which we did not investigate is that under what

conditions on the refinement coefficients the cascade algorithm is stable,

and converges to a continuous solution; and when this happens, how the

regularity of the solution can be characterized.

We briefly mentioned in footnote 11 on page 14 that a necessary (but

insufficient) condition for the convergence of stationary refinement schemes

is that the refinement coefficients used for calculating each new sample value

from lower resolution values sum up to 1. However, this condition is not

strictly necessary and may be weakened in the non-stationary case.

Another important aspect of the problem is the characterization of the

regularity of the solution. In the uniform one-dimensional case, as well as in

the multi-dimensional cases where we deal with lattice structures, Fourier-

domain techniques may be used to answer this question, as has been done

for example in Cohen et al. (1999), Jia (1999), and Ron and Shen (2000)

for refinement on multi-dimensional lattices. Yet, when dealing with the
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more general case of irregular sampling, frequency-domain methods are not

applicable, and temporal/spatial techniques should be sought. Moreover, it

should be kept in mind that in these cases our refinement schemes have dif-

ferent properties at different locations. We should therefore look for methods

for evaluating local regularity of the solution. A logical approach is to study

differences between values associated with nearby samples: the smoother

the solution is, the faster the sample values converge as a function of dis-

tance between their related sample points or functionals.1 Daubechies et al.

(2001) follow a similar path.

Apart from these general analyses that use the refinement weights, one

may choose to study the regularity of solutions to the schemes described

in 2.4 by studying the construction itself. Since those schemes are based

on functional interpolation, perfect reconstruction of functions that fall in

the intersection of the subspaces of solutions to the interpolation problem

is guaranteed. Also, as we showed for example in corollary 2.4.6, known

properties of the interpolant can help in proving results about the solutions.

3.1.2 Spaces of Interpolating Functions. In the construction for refine-

ment operators that was suggested in section 2.4, we considered subspaces

of the space of polynomials, provided by de Boor and Ron’s solution, as our

spaces of interpolating functions. This use is justified by the many interest-

ing properties of the de Boor-Ron interpolant, which are listed for example

in de Boor and Ron (1992b). For all that, still other polynomial solution

spaces, and more generally, other spaces of interpolating functions may be

1 Of course, the notion of distance between functionals, in the sense that we intend here,
should itself be suitably defined.
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considered, and may prove to be more suitable for certain classes of func-

tions.

3.1.3 Formation of Multi-Resolution Sampling Procedures. A question

that needs to be answered when designing a multi-resolution refinement

scheme for a particular setting is that of how to form multi-resolution sam-

pling procedures2 that satisfy the requirements set forth in 1.2.2, keeping

in mind that for many applications we may not actually need an infinite

sequence of sampling procedures.

In some cases, the layout of these multi-level sets of functionals may be

dictated by the application. (For example when a natural subsampling or

clustering of the samples exists, as may be the case when processing sensor-

network measurements.) In others, we may have the freedom to define the

sampling procedures. When dealing with point-wise evaluation functionals,

a common practice is to impose a mesh structure on the sampling points,

and add new sampling points at midpoints of the edges connecting mesh

points, or at mid-points of the faces bounded by these edges. Similarly, when

working with averages on a partitioning of the domain (as in example 2.4.9),

we may choose to exploit the duality between Voronoi regions and Delaunay

triangluations, subdividing the Delaunay triangluation to insert new vertices

for our Voronoi partitioning.

3.1.4 Forming Neighbourhoods. Our construction in 2.4 required that

functionals in two subsequent sampling procedures be related through the

notion of neighbourhoods. In general, the formation of these neighbourhoods

2 The reader will remember that we defined sampling procedures as sets Λi of function-
als on our space F , that define our spaces `p(Λi) of discrete signals.
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should reflect the properties of the underlying function, the samples of which

we are processing. The neighbourhood for each higher-resolution functional

determines which lower-resolution samples will be considered when calcu-

lating a value for this functional. When the underlying function is smooth,

the correlation between sample values for nearby functionals is higher and

as such, we may choose a larger neighbourhood size. Also, in some applica-

tions (such as sensor-network signal processing) a multi-level clustering of

samples may already exist.

I remember one occasion when I tried
to add a little seasoning to a review,
but I wasn’t allowed to. The paper
was by Dorothy Maharam, and it was
a perfectly sound contribution to
abstract measure theory. The
domains of the underlying measures
were not sets but elements of more
general Boolean algebras, and their
range consisted not of positive
numbers but of certain abstract
equivalence classes. My proposed
first sentence was: ‘The author
discusses valueless measures in
pointless spaces’.

I want to be a mathematician, Springer-Verlag, 1985.
PAUL R. HALMOS, MATHEMATICIAN (1916–)
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A
Some Mathematical Concepts

For the things of this world cannot be
made known without a knowledge of
mathematics.

Opus Majus
ROGER BACON (C. 1214–1292)

THIS APPENDIX is a compilation of some mathematical definitions and

concepts cited throughout this thesis. It is not intended to be exhaus-

tive, but is to serve as a brief reference only.

A.1 Preliminaries

A.1.1 Fields. Let F be a set for which two operations, called addition and

multiplication and denoted respectively by + and ·, are defined. The system

〈F,+, .〉 is called a field if the following are satisfied:1

1. Addition is associative and commutative.
1 Quoting Webber (1966, pp. 128–129) begins.
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2. There is an element, denoted by z, such that

u+ z = u = z+ u, for all u ∈ F.

3. For each u ∈ F, there is an element denoted by −u such that

u+ (−u) = z = −u+ u.

4. Multiplication is associative and commutative.

5. There is an element 6= z, denoted by e, such that

u · e = u = e · u, for all u ∈ F.

6. For each u ∈ F, u 6= z, there exists an element in F, denoted by u−1,

for which

u · u−1 = e = u−1 · u.(A.1)

7. Multiplication is distributive over addition.2

Informally, we usually refer to F itself, with its known addition and mul-

tiplication operations, as the field. 〈R,+, .〉 and 〈C,+, .〉, the systems of real

and complex numbers, are familiar examples of fields.

2 Quoting Webber (1966, pp. 128–129) ends.
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A.2 Topological Spaces

A.2.1 Topological Spaces. A topological space is a pair (X ,O), where X

is a set and O is a collection of subsets of X satisfying the following axioms

(Adams and Fournier, 2003; Wikipedia, 2005):

1. ∅,X ∈ O.

2. The union of any collection of elements of O is also in O.

3. For all U,V ∈ O, U ∩ V is also in O.

O is called a topology on X . Elements of O are open sets, and their com-

plements in X are closed sets. Any open set including an x ∈ X is a neigh-

bourhood of x. For the sake of brevity we may also refer to X itself as a

topological space.

A.2.2 More Definitions. Consider topological spaces (X ,O) and (Y,T).

Then:3

• X is a Hausdorff topological space if for any x, y ∈ X where x 6= y

disjoint neighbourhoods for x and y exist.

• The closure of S ⊂ X , denoted by S, is the smallest closed set including

S, i.e. the intersection of all closed sets including S.

• D ⊂ X is dense in S ⊂ X if D ⊂ S ⊂ D.4

• X is separable if it has a countable dense subset.

3 See Megginson (1998, pp. 109,139–140,142), Lang (1969, p. 22) and Kolmogorov
and Fomin (1998, p. 24).

4 For example, the closure of Q (the set of rationals) in R with its familiar topology is
equal to R. Therefore Q is dense in R.
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• x is a limit point of V ⊂ X if every neighbourhood of x includes an

infinite number of points in V .

• A mapping f : X −→ Y is continuous if for each open subset V of Y,

f−1(V) is open.

A.2.3 Topological Vector Spaces. A vector space X over a field F with a

topology O is a topological vector space (TVS) or a linear topological space if

the addition of vectors and multiplication of vectors by scalars are continu-

ous operations.

A.2.4 Functionals and the Dual Space. A functional is a mapping from

a topological space X to a field F of scalars. λ is a linear functional if for all

x, y ∈ X and all α ∈ F,

λ(αx+ y) = αλx+ λy.

The vector space of all continuous linear functionals on a TVS X is called

its continuous dual space or quite often simply its dual space,5 and is denoted

by X ∗ (Adams and Fournier, 2003; Megginson, 1998). Equipped with a

topology, X ∗ itself becomes a TVS.

A.2.5 The Weak∗ Topology. Let X be a TVS. The weak∗ topology on X ∗ is

the smallest topology on X ∗ with respect to which the functional

(A.2) Fx : X ∗ −→ F : x∗ 7→ x∗x,

5 In the latter case, the space of all linear functionals on X is referred to as the algebraic
dual space.
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known as the natural mapping, is continuous for each x ∈ X (cf. Adams and

Fournier (2003, p. 4) and Megginson (1998, sec. 2.6)). The adjective and

adverb weak∗ and weak∗ly then refer to properties that hold with respect to

this topology.

A.3 Normed Vector Spaces

A.3.1 Normed Vector Spaces. A normed vector space is a pair (X , ‖ · ‖X ),

where X is a vector space and ‖ · ‖X is a norm on X , that is, a real-valued

function ‖ · ‖X : X −→ R : x 7→ ‖x‖X satisfying the following conditions

(Megginson, 1998, p. 9):

For x, y ∈ X and scalar α,

1. ‖x‖X ≥ 0, with equality iff x = 0;

2. ‖αx‖X = |α|‖x‖X ;

3. ‖x+ y‖X ≤ ‖x‖X + ‖y‖X .

Where not necessary to distinct different normed spaces, the subscript of

‖ · ‖X will usually be dropped. Also informally we may refer to X itself as

the normed space.

A.3.2 Norm Induced Metric. The norm of X induces a metric on X th-

rough the formula d(x, y) := ‖x − y‖. With this definition X is a metric

space.

A.3.3 Banach Spaces. A normed vector space is a Banach space or B-

space or complete normed space if it is a complete metric space with the metric
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induced by its norm. A complete metric space is a metric space in which

every sequence (xn) satisfying the Cauchy criterion (see below) converges.

(xn) satisfies the Cauchy criterion if for all ε > 0 there exists Nε, such that

for all n ′, n ′′ ≥ Nε, d(xn ′ , xn ′′) < ε (Kolmogorov and Fomin, 1998).

A.3.4 Linear Operators. A linear operator T : V −→ W is a mapping

from a first vector space V (the domain) to a second vector space W (the

codomain), both over the same field F, whereby for x, y ∈ V and α ∈ F,

T(x+ y) = Tx+ Ty,

T(αx) = αTx.(A.3)

The notations Tx and T(x) may be interchangeably used.

When V and W are normed spaces, boundedness of operators may be

studied. T : V −→W is bounded if a scalar c ∈ F exists such that

‖Tx‖W ≤ c‖x‖V , for all x ∈ V.

The norm of a bounded linear operator can then be defined:

‖T‖ := sup
x∈V,
‖x‖V 6=0

‖Tx‖W
‖x‖V

.

Bounded linear operators extend the concept of linear transformations—

which are represented by matrices in the finite-dimensional case—to possi-

bly infinite-dimensional spaces.
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A.3.5 `p(I) Spaces. For a countable set I of indices, called the index set,

and a field F, `p(I) is defined for 1 ≤ p ≤ ∞ as the normed vector space of

all mappings a : I −→ F : ι 7→ a[ι] for which the norm defined as

‖a‖p =





(∑
ι∈I |a[ι]|p

)1/p for 1 ≤ p <∞,

supι∈I |a[ι]| for p =∞,

is finite.

One possible basis for `p(I), 1 ≤ p < ∞, is formed by functions δι (de-

fined below6) for all ι ∈ I.

δι[κ] := [ι = κ].

Any a ∈ `p(I) can be decomposed as

a =
∑

κ∈I
a[κ]δκ.(A.4)

The spaces `p(I), 1 ≤ p ≤∞, are examples of Banach spaces.

A.3.6 Lp(Ω) Spaces. Let Ω be a σ-finite7 positive measure space with

a measure µ. For 1 ≤ p ≤ ∞, the Lebesgue space Lp(Ω) is the space of

6 Using Iverson’s convention (see Graham et al. (1994, p. 24) or Knuth (1992)), in
which a true-or-false statement enclosed in square brackets is equal to one if true and
equal to zero if false. (Iverson himself used parantheses instead of square brackets.
See Iverson (1962, p. 11).)

7 A measure µ on Ω is σ-finite if Ω is a countable union of sets of finite measure.
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functions f with domain Ω and codomain F for which the norm

‖f‖p =





(∫
Ω

|f|p dµ
)1/p for 1 ≤ p <∞,

ess supΩ|f| for p =∞,

is finite. Lp(Ω), 1 ≤ p ≤∞, for each choice of p, is an example of a Banach

space. For 1 ≤ p < ∞ the dual of Lp(Ω) is isomorphic to Lq(Ω), where q

satisfies 1/p+ 1/q = 1.

A.3.7 The Hahn-Banach Extension Theorem (Normed Space Version).

Let λ0 be a bounded linear functional on a subspace X0 of a normed vector

space X . Then there exists a bounded linear functional λ on all of the space

X that agrees with λ0 on X0, and satisfies ‖λ‖X ∗ = ‖λ0‖X ∗
0

(Megginson, 1998,

p. 75).

‘And you do Addition?’ the White
Queen asked. ‘What’s one and one
and one and one and one and one
and one and one and one and one?’
‘I don’t know,’ said Alice. ‘I lost
count.’
‘She can’t do Addition. . . ’

Through the Looking-Glass
CHARLES LUTWIDGE DODGSON (LEWIS CARROLL),

ENGLISH MATHEMATICIAN AND WRITER
(1832–1898)
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B
Summary of Used Notation

By relieving the brain of all
unnecessary work, a good notation
sets it free to concentrate on more
advanced problems, and, in effect,
increases the mental power of the
race.

In P.J. Davis and R. Hersh: The Mathematical
Experience. Birkhäuser, 1981.

ALFRED NORTH WHITEHEAD, BRITISH
MATHEMATICIAN, LOGICIAN AND PHILOSOPHER

(1861–1947)

Special Sets and Spaces

R The field of reals.

C The field of complex numbers.

Z The set of integers.

Rd The d-dimensional Euclidean space.

Zd0+ The set of non-negative integer d-tuples.

Lp(Ω) The space of functions onΩwith finite Lp norm (A.3.6).
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`p(I) The space of maps on the countable set I with finite `p

norm (A.3.5).

CN(Ω) The space of N-times continuously differentiable func-

tions on Ω.

CN0 (Ω) The space of finitely supported N-times continuously

differentiable functions on Ω.

Π The space of univariate polynomials.

Πd The space of d-variate polynomials.

Miscellaneous

A = B A is equal to B.

A := B A is by definition equal to B.

[statement] Iverson’s convention: The bracketed statement is equal

to 1 if the statement is true, is equal to 0 otherwise

(footnote 6 on p. 67).

#X The cardinality of the set X.

T : V −→W : v 7→ w T maps (the space) V to (the space) W. The element

v ∈ V is mapped to w ∈ W (A.3.4).

〈a, b〉 (Denotes a duality pairing between a and b.)
(
·
)

(Used to denote a sequence.)
[
·
]

index 1 (Indicates a column vector with elements indexed by

index 1.)
[
·
]

index 1
index 2

(Indicates a matrix with rows indexed by index 1 and

columns indexed by index 2.)

Xα
∏
xαii (with X :=

[
xi
]

and α ∈ Zd0+.)
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Dα f The αth partial derivative of f (α ∈ Zd0+).

()α (For α ∈ Zd0+) the mapping Rd −→ R : X 7→ Xα (2.2.2).

α(f) (Where f is a polynomial or a formal power series, and

α ∈ Zd0+) the coefficient of ()α in f (2.2.2).
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1994.

Eric W. Weisstein. Green’s theorem. In MathWorld: A Wolfram Web Re-

source. 2005b. URL http://mathworld.wolfram.com/GreensTheorem.

html. [Online; accessed 2005-10-06, 15:22 EDT].

G. Cuthbert Webber. Number Systems of Analysis. Addison-Wesley Series

in Mathematics. Addison-Wesley Publishing Company, Inc., Reading, MA,

1966.

78



P.D. Tafti: On Multi-Scale Refinement of Discrete Data.
M.A.Sc. thesis. Department of Electrical and Computer Engineering,

McMaster University, Hamilton, Ontario, Canada, 2005.

Wikipedia. Topological spaces—Wikipedia, the free encyclopedia, 2005. URL

http://en.wikipedia.org/wiki/Topological space. [Online; accessed

2005-06-29, 14:06 EDT].

Serge Lang. Analysis II. Addison-Wesley Series in Mathematics. Addison-

Wesley Publishing Company, Inc., Reading, MA, 1969.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathe-

matics: A Foundation for Computer Science. Addison-Wesley, second edi-

tion, 1994.

Donald E. Knuth. Two notes on notation. American Mathematical Monthly,

99:403–422, 1992.

Kenneth E. Iverson. A Programming Language. Wiley, New York, NY, 1962.

79


