Self-Similar Vector Fields

Pouya Dehghani Tafti

Biomedical Imaging Group

Motivation

- Self-similar stochastic models (FBM, FSM, etc.) have applications in image processing and elsewhere
- O Key property: Invariances
- Vector-field imaging modalities (flowsensitive MRI, Doppler ultrasound, etc.) are becoming common-place
- O Idea: Vector stochastic models and dataprocessing schemes based on invariances

From FBM to Vector Models

From FBM to Vector Models

• Question: How to define a natural vector generalization of FBM in terms of invariances?

From FBM to Vector Models

- Question: How to define a natural vector generalization of FBM in terms of invariances?
- O First, an indicative characterization of FBM

Gaussian innovation

spatiallyindependent

spatiallyindependent

4

- I. Pick an innovation field
- 2. Pick an operator
- 3. Get a random model

- I. Pick an innovation field
- 2. Pick an operator
- 3. Get a random model

mathematical sense?

a generalized random field (GRF) on some test function space \mathscr{X}

a generalized random field (GRF) on some test function space \mathscr{X}

their products, subspaces, quotients, etc.

O GRFs W, B: Collections of RVs

 $\langle \phi, W \rangle, \quad \phi \in \mathscr{X} \qquad \langle \phi, B \rangle, \quad \phi \in \mathscr{E}$

O Characterized by characteristic functionals:

$$\widehat{\mathscr{P}_B}(\phi) = \mathbb{E}\left\{ e^{i\langle\phi,B\rangle} \right\} = \int_{\mathscr{E}'} e^{i\langle\phi,b\rangle} \mathscr{P}_B(db)$$

O Characterized by characteristic functionals:

positive-definite, continuous, normalized $\widehat{\mathscr{P}_B}(\phi) = \mathbb{E}\left\{e^{i\langle\phi,B\rangle}\right\} = \int_{\mathscr{E}'} e^{i\langle\phi,b\rangle} \mathscr{P}_B(db)$

O Characterized by characteristic functionals:

$$\widehat{\mathscr{P}_{B}}(\phi) = \mathbb{E}\left\{e^{i\langle\phi,B\rangle}\right\} = \int_{\mathscr{E}'} e^{i\langle\phi,b\rangle} \mathscr{P}_{B}(db)$$

yields finite joint observation probabilities s.t. consistency and continuity

O Characterized by characteristic functionals:

positive-definite, continuous, normalized

$$\widehat{\mathscr{P}}_{B}(\phi) = \mathbb{E}\left\{e^{i\langle\phi,B\rangle}\right\} = \int_{\mathscr{E}'} e^{i\langle\phi,b\rangle} \mathscr{P}_{B}(db)$$
yields finite joint observation probabilities
s.t. consistency and continuity
II
fin.-additive cylinder set measure (CSM)

O Characterized by characteristic functionals:

Innovation Modelling (4)

 $\widehat{\mathscr{P}_B}(\phi) \Leftrightarrow \langle \phi, B \rangle = \langle \phi, U^*W \rangle = \langle U\phi, W \rangle \Leftrightarrow \widehat{\mathscr{P}_W}(U\phi)$

Innovation Modelling

- I. Pick an innovation field
- 2. Pick an operator
- 3. Get a random model

I. Innovation: Gaussian and stable innovations

$$\widehat{\mathscr{P}}_{W}(\phi) = \mathrm{e}^{-2^{-\frac{\alpha}{2}} \|\phi\|_{\alpha}^{\alpha}}, \quad \phi \in \mathscr{X} = \mathrm{L}_{\alpha}(\mathbb{R}^{d})$$

- O Continuous, normalized, pos.-definite (Lemma I.t)
- Spatially independent:

 ϕ, ψ disjoint $\Rightarrow \langle \phi, W \rangle, \langle \psi, W \rangle$ independent

• Rotation-invariant, homogeneous (Lemma I.W)

I. Innovation: Gaussian and stable innovations

$$\widehat{\mathscr{P}}_{W}(\phi) = e^{-2^{-\frac{\alpha}{2}} \|\phi\|_{\alpha}^{\alpha}}, \quad \phi \in \mathscr{X} = L_{\alpha}(\mathbb{R}^{d})$$

hence define GRFs

- O Continuous, normalized, pos.-definite (Lemma I.t)
- Spatially independent:

 ϕ, ψ disjoint $\Rightarrow \langle \phi, W \rangle, \langle \psi, W \rangle$ independent

• Rotation-invariant, homogeneous (Lemma I.W)

I. Innovation: Gaussian and stable innovations

$$\widehat{\mathscr{P}}_{W}(\phi) = \mathrm{e}^{-2^{-\frac{\alpha}{2}} \|\phi\|_{\alpha}^{\alpha}}, \quad \phi \in \mathscr{X} = \mathrm{L}_{\alpha}(\mathbb{R}^{d})$$

hence define GRFs

- O Continuous, normalized, pos.-definite (Lemma I.t)-
- Spatially independent: hence valid innovations

 ϕ, ψ disjoint $\Rightarrow \langle \phi, W \rangle, \langle \psi, W \rangle$ independent

• Rotation-invariant, homogeneous (Lemma I.W)

I. Innovation: Gaussian and stable innovations

$$\widehat{\mathscr{P}}_{W}(\phi) = \mathrm{e}^{-2^{-\frac{\alpha}{2}} \|\phi\|_{\alpha}^{\alpha}}, \quad \phi \in \mathscr{X} = \mathrm{L}_{\alpha}(\mathbb{R}^{d})$$

hence define GRFs

- O Continuous, normalized, pos.-definite (Lemma I.t)-
- Spatially independent: hence valid innovations

 ϕ, ψ disjoint $\Rightarrow \langle \phi, W \rangle, \langle \psi, W \rangle$ independent

O Rotation-invariant, homogeneous (Lemma I.W)

i.e. fulfil required invariances

2. Operator:

O Homogeneous isotropic distributions (§2.2.1)

$$\rho_c^{\lambda} := c \frac{|x|^{\lambda}}{2^{\frac{\lambda}{2}} \Gamma(\frac{\lambda+d}{2})}$$

- **O** Complete characterization (Theorem 2.ab)
- **O** Singularity regularized by analytic continuation in λ
- O Closed under rotation, scale, Fourier, Laplacian, products and convolutions (when defined)
- **O** Convolution: $U_c^{-\lambda} : \phi \mapsto \phi * \rho_c^{\lambda-d}$

Homogeneous, rotation-invariant (also shift-invariant)

O but not continuous $\mathscr{D}(\mathbb{R}^d) \to L_{\alpha}(\mathbb{R}^d) \times$

- 2. Operator (cont.):
 - O Modified operator (§2.2.2):

$$\mathbf{U}_{c,n}^{-\lambda}: \phi \mapsto \phi * \rho_c^{\lambda-d} - \operatorname{Reg}_{c,n}^{-\lambda} \phi$$

where

$$\operatorname{Reg}_{c,n}^{-\lambda}:\phi\mapsto\sum_{|k|\leq n}\frac{\partial_k\rho^{\lambda-d}}{k!}\int_{\mathbb{R}^d}(-y)^k\phi(y)\,\mathrm{d}y$$

- Remains homogeneous, rot.-invariant (but not shift-invariant)
 (Lemma 2.al)
- Continuous $\mathscr{D}(\mathbb{R}^d) \to L_{\alpha}(\mathbb{R}^d)$ for the right *n* (Theorem 2.aq)

• n + 1 st finite diffs the same as those of $U_c^{-\lambda}$ (Lemma 2.ao) —

 $\widehat{\mathscr{P}}_{B}(\phi) := \widehat{\mathscr{P}}_{W}(U\phi)$

Vector Generalization

- 0. Define vector invariances
- I. Find invariant vector innovations $(\widehat{\mathscr{P}}_W, \mathscr{X})$
- 2. Find invariant operators (U, \mathscr{E})
 - **O** Start with convolution operators $\mathscr{E} \to \mathscr{E}'$
 - **O** Find continuous modification $\mathscr{E} \to \mathscr{X}$
- 3. Vector models defined by CHF

$$\widehat{\mathscr{P}}_{B}(\phi) := \widehat{\mathscr{P}}_{W}(U\phi)$$

0. Vector Invariances

- **O** Transformations:
 - O Scaling same as before
 - **O** Vector rotation:

$$\mathbf{R}_{\omega,\nu} \, : \, f \, \mapsto \, \omega f(\omega^{\mathrm{T}} \cdot)$$

re-expression of the same direction
in the new coordinate system

I. Vector Innovations

O Gaussian and stable vector GRFs $\underline{W}_{S,\alpha}$ with CHFs on vector L_{α} spaces:

- O Continuous, normalized, pos.-definite (Lemma I.t) 🖌
- O Spatially independent ✓
- O Rotation-invariant, homogeneous (Lemma I.W) ✓

2. Vector Operators (I)

O Homogeneous and rot.-invariant matrix distributions (conv. kernels) (§2.3.1)

$$\left[P_{(r_1,r_2)}^{\lambda}\right]_{ij} := \delta_{ij}\rho_{r_2}^{\lambda} + \frac{1}{\lambda+2}\partial_{ij}\rho_{r_1-r_2}^{\lambda+2}$$

- O Complete characterization (Theorem 2.aw)
- Two additional parameters beside homogeneity order (several parametrizations, 2.av)
- Family closed under rotation, scale, Fourier, products and convolutions (when defined)

2. Vector Operators (2)

2. Vector Operators (3)

O Modified operator (§2.3.2): $\underline{U}_{(r_1,r_2),n}^{-\lambda} = \underline{U}_{(r_1,r_2)}^{-\lambda} - \underline{\operatorname{Reg}}_{(r_1,r_2),n}^{-\lambda}$ **O** maps $\mathscr{D}^d(\mathbb{R}^d) \to \mathrm{L}^d_{\alpha}(\mathbb{R}^d)$ (Theorem 2.aq) \checkmark O Homogeneous, rot.-invariant (Lemma 2.be) ✓ O Helmholtz-type decomposition (Lemma 2.bq): $\underline{\mathrm{U}}_{(r_1,0),n}^{\lambda} \operatorname{Curl}^* \phi = 0, \quad \phi \in \mathcal{D}^{d \times d}$ • Same n + 1st finite diffs as $\underline{U}_{(r_1,r_2)}^{-\lambda}$ (Lemma 2.bi)

20

 $\underline{W}_{S,\alpha_1}$ independent

Properties

- O Self-similarity and rotation-invariance (3.0)
- **O** Stationary $\lfloor H \rfloor + 1$ st-order incerements (3.p)
- **O** Variogram (Gaussian, 0 < H < 1):

$$\mathbb{E}\left\{\left[\underline{B}_{H,\underline{r}}(x) - \underline{B}_{H,\underline{r}}(y)\right]\left[\underline{B}_{H,\underline{r}}(x) - \underline{B}_{H,\underline{r}}(y)\right]^{H}\right\} = P_{-2\underline{\hat{r}}'}^{2H}(x-y)$$

Realizations

Gaussian, H = 0.6, $r_1 = r_2$

balanced

Gaussian, H = 0.9, $r_1 = r_2$

Realizations

Gaussian, H = 0.6, $r_1 = 0$

div.-free

Gaussian, H = 0.9, $r_1 = 0$

Realizations

Gaussian, $H = 0.6, r_2 = 0$

curl-free

Gaussian, H = 0.9, $r_2 = 0$

Vec. Field Reconstruction (1)

O Problem:

O Given imperfect, possibly indirect observations:

 $Y = \Phi f_{\rm true} + {\rm noise}$

O To reconstruct an approximation of $f_{\rm true}$

Vec. Field Reconstruction (2)

typically quadratic distance

(i.e. sample variance)

O Solution:

O Initial solution set:

f s.t. dist $(\Phi f; Y) = \mu$

Vec. Field Reconstruction (2)

Vec. Field Reconstruction (2)

Vec. Field Reconstruction (3)

O Scale-, rot.-invariant regularity criterion (4.r):

$$\Re_{\underline{\alpha}}(f) = \alpha_c \|\operatorname{Curl} f\|_{p_c}^{p_c} + \alpha_d \|\operatorname{Div} f\|_{p_d}^{p_d} + \sum_i \alpha_i \|\underline{U}_{\underline{r}_i}^{\lambda_i} f\|_{p_i}^{p_i}$$

O Important special cases: Curl-Div. reg.

$$\Re_{\underline{\alpha}}(f) = \alpha_c \|\operatorname{Curl} f\|_p^p + \alpha_d \|\operatorname{Div} f\|_p^p, \quad p = 1, 2$$

Algorithm

minimize $dist(\Phi f; Y) + \alpha_c ||Curl f||_p^p + \alpha_d ||Div f||_p^p, \quad p = 1, 2$

- O Discretization (finite diffs, more sophisticated)
- **O** Non-quadratic optimization:
 - O Sequence of tight quadratic upper bounds (4.z)
 - Each local bound optimized using an iterative linear solver
- O Algorithm parameters adjusted for best performance (empirical, theoretical for specific noise models)

Some Results (1)

Noisy (0 dB SNR)

Denoised (11.70 dB SNR)

Some Results (2)

Noisy (0 dB SNR)

Denoised (9.01 dB SNR)

Some Results (3)

(a) Original

(b) Noisy (0 dB SNR)

dB

im-

(11.70

provement)

Some Results (4)

Enhanced pathlines

Original pathlines

Summary

- O Innovation modelling framework
- O Self-similar random vector field models
- O Invariance-based vector field reconstruction algorithms

Outlook

- O Other innovation models (may involve other spaces beside L_p)
- O Other operators (e.g. with local parameters)
- O General formulation of invariance for tensors of any order
- Statistical interpretation of algorithm
- O Other algorithms (primal-dual, etc.)
- Other modelling and reconstruction applications