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Motivation

Self-similar stochastic models (FBM, FSM, 
etc.) have applications in image processing 
and elsewhere

Key property:  Invariances

Vector-field imaging modalities (flow-
sensitive MRI, Doppler ultrasound, etc.) are 
becoming common-place

Idea:  Vector stochastic models and data-
processing schemes based on invariances
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Question:  How to define a natural vector 
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First, an indicative characterization of FBM
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Innovation Modelling (1)

U∗W B

1. Pick an innovation field

2. Pick an operator

3. Get a random model
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Characterized by characteristic functionals:

Innovation Modelling (3)

W B

〈φ, W 〉 φ ∈ $ 〈φ, B 〉 φ ∈ $

model
linear observations

positive-definite, continuous, normalized

yields finite joint observation probabilities 
s.t. consistency and continuity

fin.-additive cylinder set measure (CSM)

= CSM extends to count.-additive 
measure (sample path interpretation) 

if space is nuclear (Minlos)

!!B(φ) =
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Innovation Modelling (5)

U∗W B
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2. Pick an operator

3. Get a random model
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Back to FBM, FSM (1)

1.  Innovation:  Gaussian and stable innovations

Continuous, normalized, pos.-definite (Lemma 1.t)

Spatially independent:

Rotation-invariant, homogeneous (Lemma 1.W)

φ ψ ⇒ 〈φ, W 〉 〈ψ, W 〉

!!W (φ) = e−2−
α
2 ‖φ‖αα φ ∈ % = Lα( d)
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Back to FBM, FSM (1)

1.  Innovation:  Gaussian and stable innovations

Continuous, normalized, pos.-definite (Lemma 1.t)

Spatially independent:

Rotation-invariant, homogeneous (Lemma 1.W)

φ ψ ⇒ 〈φ, W 〉 〈ψ, W 〉

hence define GRFs

hence valid innovations

 i.e. fulfil required invariances

!!W (φ) = e−2−
α
2 ‖φ‖αα φ ∈ % = Lα( d)
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U−λc : φ "→ φ ∗ρλ−d
c

Back to FBM, FSM (2)

2. Operator:

Homogeneous isotropic distributions (§2.2.1)

Complete characterization (Theorem 2.ab)

Singularity regularized by analytic continuation in

Closed under rotation, scale, Fourier, Laplacian, products and 
convolutions (when defined)

 

Homogeneous, rotation-invariant (also shift-invariant)  ✔

but not continuous                               ✘ 

λ

ρλc := c |x |λ

2
λ
2 Γ( λ+d

2
)

!( d)→ Lα( d)
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2. Operator (cont.):

Modified operator (§2.2.2):

 where

Remains homogeneous, rot.-invariant (but not shift-invariant) 
(Lemma 2.al)  ✔

                                                                                           ✔

  

!( d)→ Lα( d) n

Back to FBM, FSM (3)

Reg−λc,n : φ "→
∑
|k|≤n

∂kρ
λ−d

k!

∫
d (−y)kφ(y) dy

n+ 1 U−λc

hence stationary (higher-order) increments
13

U−λc,n : φ "→ φ ∗ρλ−d
c −Reg−λc,n φ



Back to FBM, FSM (4)

α

WS,α

U−λ∗c,n

!!B(φ) := !!W (Uφ)
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Vector Generalization

0. Define vector invariances

1. Find invariant vector innovations

2. Find invariant operators

Start with convolution operators

Find continuous modification

3. Vector models defined by CHF

!!W "
U !

!!B(φ) := !!W (Uφ)

! → !′

! →#
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0.  Vector Invariances

Transformations:

Scaling same as before

Vector rotation:

re-expression of the same direction 
in the new coordinate system

Rω,v : f !→ ω f (ωT·)
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1.  Vector Innovations

Gaussian and stable vector GRFs

Continuous, normalized, pos.-definite (Lemma 1.t)  ✔

Spatially independent  ✔

Rotation-invariant, homogeneous (Lemma 1.W)  ✔

!!W (φ) = e−2−
α
2 ‖φ‖αα φ ∈ % = Ld

α(
d)

W S,α

Lα
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‖φ‖α :=
!∫

d (φHφ)
α
2

#1
α



2.  Vector Operators (1)

Homogeneous and rot.-invariant matrix 
distributions (conv. kernels) (§2.3.1)

Complete characterization (Theorem 2.aw)

Two additional parameters beside homogeneity 
order (several parametrizations, 2.av)

Family closed under rotation, scale, Fourier, 
products and convolutions (when defined)

!
Pλ(r1,r2)

"
i j := δi jρ

λ
r2
+ 1
λ+2
∂i jρ

λ+2
r1−r2
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Convolution:

 

Homogeneous, rot.-invariant (also shift-invariant)  ✔

Helmholtz-type decomposition (2.bp):

2.  Vector Operators (2)

!d( d) → (!′)d( d)
✘ not right but we 
know how to fix it

✔ nuclear

Uλ(r1,0) Curl∗φ = 0 φ ∈ #d×d

Uλ(0,r2)
Div∗φ = 0 φ ∈ #defined in any 

number of dims

U−λ(r1,r2)
: φ "→ Pλ−d

(r̂1,r̂2)
∗φ

19



Modified operator (§2.3.2):

                                           (Theorem 2.aq)  ✔

Homogeneous, rot.-invariant (Lemma 2.be)  ✔

Helmholtz-type decomposition (Lemma 2.bq):

                                                  (Lemma 2.bi)

2.  Vector Operators (3)

Uλ(r1,0),n Curl∗φ = 0 φ ∈ #d×d

Uλ(0,r2),n
Div∗φ = 0 φ ∈ #

n+ 1 U−λ(r1,r2)

hence, again, stationary
(higher-order) increments

!d( d) → Ld
α(

d)
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U−λ(r1,r2),n
= U−λ(r1,r2)

− Reg−λ
(r1,r2),n
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Hurst exponent
> 0

controls div.

controls curl

α



Properties

Self-similarity and rotation-invariance (3.o)

                                                           (3.p)

Helmholtz decomposition (3.t):

Variogram                                  : 

!H"+ 1

L(α1,α2)
H,(r1,r2)

= Lα1
H,(r1,0) + Lα2

H,(0,r2)

div.-freecurl-free

independent

!"
BH,r(x)− BH,r(y)

#"
BH,r(x)− BH,r(y)

#H$
= P2H

−2r̂ ′(x − y)

0< H < 1
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Realizations

H = 0.6 r1 = r2 H = 0.9 r1 = r2balanced
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Realizations

div.-free H = 0.9 r1 = 0H = 0.6 r1 = 0
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H = 0.9 r2 = 0H = 0.6 r2 = 0

Realizations

curl-free
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Vec. Field Reconstruction (1)

Problem:

Given imperfect, possibly indirect observations:

To reconstruct an approximation of 

Y = Φ f +

f
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Vec. Field Reconstruction (2)

Solution:

Initial solution set:

f dist(Φ f ; Y ) = µ

typically quadratic distance
(i.e. sample variance)
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Vec. Field Reconstruction (2)

Solution:

Initial solution set:

Parametric regularity energy/criterion:

Energy:  total potential of independent contributions

Invariance (lack of preference):

f dist(Φ f ; Y ) ≤ µ

parameter for 
exploration

min
f

Rα( f )

R( f ) = Ξ(R f ) =
∫
Ω ξ
"
R f (u)
#
µ(du)

∃α′ Rα(T f )≡Rα′( f )

potential functional

decoupling (inverse-
mixing) operator

typically quadratic distance
(i.e. sample variance)
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Vec. Field Reconstruction (3)

Scale-, rot.-invariant regularity criterion (4.r):

Important special cases:  Curl-Div. reg.

Rα( f ) = αc‖Curl f ‖pc
pc
+αd‖Div f ‖pd

pd
+
∑

i αi‖Uλi
r i

f ‖pi
pi

Rα( f ) = αc‖Curl f ‖pp +αd‖Div f ‖pp p = 1, 2
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Algorithm

Discretization (finite diffs, more sophisticated)

Non-quadratic optimization:

Sequence of tight quadratic upper bounds (4.z)

Each local bound optimized using an iterative 
linear solver

Algorithm parameters adjusted for best 
performance (empirical, theoretical for specific 
noise models)

31

minimize
f

dist(Φ f ; Y ) +αc‖Curl f ‖pp +αd‖Div f ‖pp p = 1, 2



Denoised (11.70 dB SNR)

Some Results (1)

Noisy (0 dB SNR)
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Denoised (9.01 dB SNR)

Some Results (2)

Noisy (0 dB SNR)
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Some Results (3)
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§4.�.� Enhancement of flow-sensitive MRI

4.ae Experiment. In a more realistic application of the method, we used it to

enhance directional features of measurements of blood flow in the thoracic

aorta of a healthy human subject. These measurements were obtained using

flow-sensitive Magnetic Resonance Imaging (MRI) in three dimensions plus

time with ECG and respiratory gating, as described in Stalder [Sta09], Markl

& al.[MHB 07], and Frydrychowicz & al.[FAH 08]. A brief description of

the parameters of the MRI apparatus used in the experiment and stand-

ard systematic corrections applied to the measurements can be found in our

conference paper [TDGSU10].

We applied the proposed L algorithm to this dataset. Since the Gaussianity

and independence of additive measurement error were not realistic assump-

tions, and also because our quality criterion was qualitative (namely, better

expression of certain features of the flow), we adjusted the parameters of the
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Enhanced pathlines

Some Results (4)

Original pathlines
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Summary

Innovation modelling framework

Self-similar random vector field models

Invariance-based vector field reconstruction 
algorithms
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Outlook
Other innovation models (may involve other spaces 
beside

Other operators (e.g. with local parameters)

General formulation of invariance for tensors of any 
order

Statistical interpretation of algorithm

Other algorithms (primal-dual, etc.)

Other modelling and reconstruction applications

Lp
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