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Motivation

O Self-similar stochastic models (FBM, FSM,
etc.) have applications in image processing
and elsewhere

O Key property: Invariances

O Vector-field imaging modalities (flow-
sensitive MRI, Doppler ultrasound, etc.) are
becoming common-place

O ldea: Vector stochastic models and data-
processing schemes based on invariances
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O First, an indicative characterization of FBM
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model

O GRFs W, B: Collections of RVs linear observations

T
(P, W), ¢eX (¢,B), p€&

O Characterized by characteristic functionals:

positive-definite, continuous, normalized

(@@) = = | e!'¢:b) %(db)

yields finite joint observation probabilities
s.t. consistency and continuity

1 CSM extends to count.-additive
measure (sample path interpretation)

fin.-additive cylinder set measure (CSM) if space is nuclear (Minlos)
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Innovation Modelling (4)

X > &'
e U* R

W B
LN
U
X < &

Py(¢) := Py (Ug)

Py(p) < (¢,B)



Innovation Modelling (4)

> &
U* ”

%/
Ay
W B
I . 1
V %
U
X < &
Py(¢) := Py (Ug)
Zy(p) & (¢,B) = (¢, U'W) = (Up, W)

9




Innovation Modelling (4)

> &
U* ”

%-/
Ay
%% B
I . 1

U
A < &
Py(¢) := Py (Ug)
Z5(p) = (¢,B) = (¢, U'W) = (Up,W) & 2, (Ug)

9




|10

Innovation Modelling

innovation |  miXing
field (W) "

' operator (U™) o
|. Pick an innovation field

2. Pick an operator

3. Get a random model

random

> el (B)



Back to FBM, FSM (1)

Innovation: Gaussian and stable innovations

Fo(p)=e2210li, ¢ e =L, (RY)

O Continuous, normalized, pos.-definite (Lemma 1.¢)

O Spatially independent:
¢, Y disjoint = (¢p, W), (1, W) independent

O Rotation-invariant, homogeneous (Lemma 1.w)



Back to FBM, FSM (1)

Innovation: Gaussian and stable innovations

Py(p)=e2 10l ¢ € 2 =L,(RY)
hence define GRFs

O Continuous, normalized, pos.-definite (Lemma I.t))

O Spatially independent:
¢, Y disjoint = (¢p, W), (1, W) independent

O Rotation-invariant, homogeneous (Lemma 1.w)



Back to FBM, FSM (1)

Innovation: Gaussian and stable innovations

Py(p)=e2 10l ¢ € 2 =L,(RY)
hence define GRFs

O Continuous, normalized, pos.-definite (Lemma I.t))

O Spatla”y independent; hence valid innovations
¢, ¢ disjoint = (¢, W), (v, W) independent

O Rotation-invariant, homogeneous (Lemma 1.w)



Back to FBM, FSM (1)

Innovation: Gaussian and stable innovations

Py(p)=e2 10l ¢ € 2 =L,(RY)
hence define GRFs

O Continuous, normalized, pos.-definite (Lemma I.t))

O Spatla”y independent; hence valid innovations
¢, ¢ disjoint = (¢, W), (v, W) independent

O Rotation-invariant, homogeneous (Lemma |.W)ﬁ

i.e. fulfil required invariances



Back to FBM, FSM (2)

2. Operator:

O Homogeneous isotropic distributions §2.2.1)

AL x|
ol i=c—
¢ Sk

Complete characterization (Theorem 2.ab)

Singularity regularized by analytic continuation in A

O Closed under rotation, scale, Fourier, Laplacian, products and
convolutions (when defined)

c e TT—A A—d
O Convolution: U_" : ¢ — ¢ * p!
O Homogeneous, rotation-invariant (also shift-invariant) «/

O but not continuous Z(R?%) — La(]Rd) X
12
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Back to FBM, FSM (3)

2. Operator (cont.):
O Modified operator (52.2.2):

UC_% P — P *p?_d —Reg;f; ¢

where

A—d
Reg.”: = X <n 20— [ .(=¥) ¢ (y) dy

O Remains homogeneous, rot.-invariant (but not shift-invariant)
(Lemma 2.al) ¢/

O Continuous 2(R%) — L,(R?) for the right n (Theorem 2.aq)

O n+ 1st finite diffs the same as those of Uc_7L (Lemma 2.20) \

hence stationary (higher-order) increments



Back to FBM, FSM (4)

Gaussian, a-stable
WS,a

- FBM, FSM

Py(¢) := Py (Ud)

| 4
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Vector Generalization

0. Define vector invariances
|. Find invariant vector innovations (%, &)

2. Find invariant operators (U, &)

O Start with convolution operators & — &’

O Find continuous modification § - &

3. Vector models defined by CHF
P5(¢) =P (Us)
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0. Vector Invariances

O Transformations:

O Scaling same as before

O Vector rotation:

Ra),v : f — O)f(wT)

y

re-expression of the same direction
in the new coordinate system
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|. Vector Innovations

O Gaussian and stable vector GRFs WS,a

with CHFs on vector L, spaces:

Fo(p)=e2 2100 ¢ ea =LI(RY)

( lpll, == ( fﬁdw%)‘é)b

norm.:
O Continuous, normalized, pos.-definite (Lemma 1.) ¢/
O Spatially independent v/

O Rotation-invariant, homogeneous (Lemma I.W) ¢
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2. Vector Operators (|)

O Homogeneous and rot.-invariant matrix
distributions (conv. kernels) ¢23.1)

A . A 1 A+2
I:p(’”p’”z):lij " 5ijp’”2 | 7L+28ij‘or1_r2

O Complete characterization (Theorem 2.aw)

O Two additional parameters beside homogeneity

order (several parametrizations, 2.av)

O Family closed under rotation, scale, Fourier,
products and convolutions (when defined)



2. Vector Operators (2)

O Convolution:

—A . A—d
¢/ nuclear H(I”l,l”z) . ¢ — P X qb

19

(flsz)
__ X not right but we
know how to fix it

i
O maps 2¢R?) — (2)4(RY)
O Homogeneous, rot.-invariant (also shift-invariant) ¢

O Helmholtz-type decomposition (2.bp):

H?r o Curl’'d =0, ¢ < 72
o |

defined in any HA r Div* ¢ = 0, ¢ €Y

(Oa 2)
number of dims /
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2. Vector Operators (3)

O Modified operator (23.2):
Ut = U* | — Reg™*

—(rq,r2),n —(r1,72) (r{,ry),n

O Mmaps @d(Rd) — Li(Rd) (Theorem 2.aq) v
O Homogeneous, rot.-invariant (Lemma 2.be) ¢

O Helmholtz-type decomposition (Lemma 2.bq):

Uf, 0n Cutlg =0, ¢ € 7%

Uly )0 DIV'G =0, ¢ %
—A

O Same n + 1st finite diffs as U (Lemma 2.bi)
(r1,12)

hence, again, stationary
(higher-order) increments
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Vector FBM, FSM (and Extensions)

Gaussian, a-stable

VEC. INNOVALIONS ey
W

—S,a

Vector
FBM, FSM

—H—d+%x
H(TDTZ):LHJ

subspace a-stable parameters

f p
/ Ws.a, .

I

y

independent
—H,(r1,75)

' i 5
\ W " I]' a S \

_S’az — —(O,Tz),LHJ

o L(apaz)

controls div.
Hurst exponent

> 0, non-integer controls curl

21
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Properties

O Self-similarity and rotation-invariance (3.0)
O Stationary | H | 4 1st-order incerements (3.p)

O Helmholtz decomposition (3.t):  independent

L(alaaZ) — Lal/ _I_ L{
_Hn(rlﬂrZ) _Ha(rlao) _H9(09r2)

) )

curl-free div.-free

O Variogram (Gaussian, 0 < H < 1):
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Realizations

Gaussian, H =0.6, ry =1y

balanced

Gaussian, H =0.9, r; =1y
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Gaussian, H =0.6, r; =0

ealizations

div.-free Gaussian, H =0.9, r; =0
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Realizations

Gaussian, H =0.6, r, =0

curl-free

Gaussian, H=0.9, r, =0
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Vec. Field Reconstruction (1)

O Problem:

O Given imperfect, possibly indirect observations:

Y =& f,, T+ noise

O To reconstruct an approximation of fe



Vec. Field Reconstruction (2)

typically quadratic distance
(i.e. sample variance)

O Solution:
O Initial solution set: (

f st dist(®f;Y) = u
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Vec. Field Reconstruction (2)

typically quadratic distance
(i.e. sample variance)

O Solution:

parameter for
exploration

O Initial solution set; J
f st dist(®f;Y) < u

O Parametric regularity energy/criterion:
min 9, (f)
decoupling (inverse-  Energy: total potential of independent contributions
mixing) operator
==2(R f)= R d
potential functional ~_ %ﬁ( f) fQ&:( f(u)) M( u)
O Invariance (lack of preference):

da’ st R(Tf) =R, (f)

29
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Vec. Field Reconstruction (3)

O Scale-, rot.-invariant regularity criterion (4.r):

Ro(f) = al|Curlf |12 + ay[IDivf (B¢ + 3, e [UX £ |12

O Important special cases: Curl-Div. reg.

Ry(f) = alICurlf [IE +aglIDivf 2, p=1,2
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Algorithm

minifmize dist(®f;Y) + aC||Cur1f||§ + ad||Din||11§, p=1,2

O Discretization (finite diffs, more sophisticated)

O Non-quadratic optimization:

O Sequence of tight quadratic upper bounds (4.2

O Each local bound optimized using an iterative
linear solver

O Algorithm parameters adjusted for best

performance (empirical, theoretical for specific
noise models)
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ome Results (2)

Noisy (0 dB SNR) Denoised (9.0 dB SNR)
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Some Results (3)

(a) Original (b) Noisy (0 dB (c) Li denoised (d) Lo denoised
SNR) (11.70 dB im- (11.04 dB im-
provement) provement)

(a) Original (b) Noisy (10 dB (c) L; denoised (d) Lz denoised
SNR) (7.96 dB improve- (2.55 dB improve-
ment) ment)
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Some Results (4)
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Summary

O Innovation modelling framework
O Self-similar random vector field models

O Invariance-based vector field reconstruction
algorithms
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O

Outlook

Other innovation models (may involve other spaces
beside L)

Other operators (e.g. with local parameters)

General formulation of invariance for tensors of any
order

Statistical interpretation of algorithm
Other algorithms (primal-dual, etc.)

Other modelling and reconstruction applications



