Fractional Brownian Vector Fields

Pouya D. Tafti
(Joint work with M. Unser)

Biomedical Imaging Group
École Polytechnique Fédérale de Lausanne, Switzerland

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Outline

Scalar fractional Brownian motion (fBm)

- Invariances
- Fractional PDE formulation (innovation model)

Fractional Brownian vector fields

- Vector invariances
- Generalized fractional Laplacians
- Characterization of vector fBm
- Some properties
- Parameter estimation with wavelets

Scalar Fractional Brownian Motion

Scalar fBm

Non-stationary random field on \mathbb{R}^{d} with

- Gaussian statistics;
- zero mean;
- zero boundary conditions $\left(\mathrm{B}_{\mathrm{H}}(0)=0\right)$;
- stationary increments with variance

$$
\mathbb{E}\left\{\left|\mathrm{B}_{\mathrm{H}}(\boldsymbol{x})-\mathrm{B}_{\mathrm{H}}(\mathbf{y})\right|^{2}\right\} \propto|\boldsymbol{x}-\mathbf{y}|^{2 \mathrm{H}}
$$

($H \in(0,1)$: Hurst exponent).

Invariance properties

Statistical invariances:

- Scaling:

$$
S_{\sigma} \quad B_{H}=\sigma^{H} B_{H} \quad \text { in law, }
$$

$$
\left(\mathrm{S}_{\sigma}: \mathrm{f} \mapsto \mathrm{f}\left(\sigma^{-1} \cdot\right), \sigma \in \mathbb{R}_{+}\right) ;
$$

- Scalar rotation (and reflection):

$$
\begin{aligned}
& \mathrm{R}_{\Omega}^{\text {scalar }} \mathrm{B}_{\mathrm{H}}=\mathrm{B}_{\mathrm{H}} \\
&), \Omega \text { orthogonal). }
\end{aligned}
$$

$\left(R_{\Omega}^{\text {scalar }}: f \mapsto f\left(\Omega^{T} \cdot\right), \Omega\right.$ orthogonal).

Whitening/innovation modelling

- Characterization/generalization by means of a whitening equation:

$$
\mathrm{U}^{*} \mathrm{~B}_{\mathrm{H}}=\mathrm{W}
$$

where:

- W is white Gaussian noise;
- U^{*} is the whitening operator.
\Rightarrow Non-stationary generalization of spectral shaping.

Whitening/innovation modelling: Steps

1. Identify U (using invariances);
2. Find a continuous linear left inverse $\mathrm{L}: \mathcal{S} \rightarrow \mathcal{L}^{2}$:

$$
\mathrm{LU}=\text { identity; }
$$

3. Define B_{H} as a particular solution (generalized random field):

$$
\begin{equation*}
\left\langle\mathrm{B}_{\mathrm{H}}, \phi\right\rangle:=\langle\mathrm{W}, \mathrm{~L} \phi\rangle \tag{}
\end{equation*}
$$

Justification:

$$
\begin{aligned}
\left(^{*}\right) & \Longrightarrow\left\langle\mathrm{B}_{\mathrm{H}}, \mathrm{U} \psi\right\rangle=\langle\mathrm{W}, \mathrm{LU} \psi\rangle=\langle W, \psi\rangle \\
& \Longrightarrow \mathrm{U}^{*} \mathrm{~B}_{\mathrm{H}}=\mathrm{W} .
\end{aligned}
$$

The model (1)

1. The fractional Laplacian $U^{\gamma} \stackrel{\mathcal{F}}{\longleftrightarrow} K_{\gamma}|\boldsymbol{\omega}|^{2 \gamma}$ satisfies

$$
\begin{aligned}
& \mathrm{U}^{\gamma} \quad \mathrm{S}_{\sigma}=\sigma^{2 \gamma} \quad \mathrm{~S}_{\sigma} \quad \mathrm{U}^{\gamma} ; \\
& \mathrm{U}^{\gamma} \mathrm{R}_{\Omega}^{\text {scalar }}= \\
& \mathrm{R}_{\Omega}^{\text {scalar }} \mathrm{U}^{\gamma} .
\end{aligned}
$$

2. Continuous linear left inverse $\left(\mathcal{S} \rightarrow \mathcal{L}_{2}\right)$:

$$
L^{\gamma}: f \mapsto \frac{1}{k_{\gamma}(2 \pi)^{\mathrm{d}}} \int_{\mathbb{R}^{\mathrm{d}}} \mathrm{e}^{\mathrm{j}(x, \boldsymbol{\omega}\rangle} \frac{1}{|\boldsymbol{\omega}|^{2 \gamma}}\left(\hat{\mathrm{f}}(\boldsymbol{\omega})-\sum_{|\mathbf{k}| \leqslant\left\lfloor 2 \gamma-\frac{d}{2}\right\rfloor} \frac{\hat{\mathrm{f}}^{(\mathrm{k})}(0) \boldsymbol{\omega}^{\mathrm{k}}}{\mathrm{k}!}\right) \mathrm{d} \boldsymbol{\omega} .
$$

Invariances: Like U, L is homogeneous and rotation-invariant.

The model (2)

3. Innovation/whitening model:

- Captures the inverse power-law spectrum of B_{H};
- Generalizes to $\mathrm{H}>1$;
- Non-Gaussian $W \Rightarrow$ non-Gaussian models à la Lévy motion (may need to redefine L).

Fractional Brownian Vector Fields

Fractional Brownian vector fields

How to define fractional Brownian vector fields?

- Trivial definition: Vector of independent scalar $f B m s$.

No constraints on the interdependency of the components;
\Rightarrow Hence no control over directional behaviour.

- Solution: More general definition based on invariances.

Vector invariances

- Vector rotaion: Rotate the domain, but keep directions fixed.

Rotation by $\Omega \in \mathrm{O}(\mathrm{n})$:

$$
R_{\Omega}^{\text {vector }}: \mathbf{f} \mapsto \Omega \mathbf{f}\left(\Omega^{\mathrm{T}} \cdot\right) .
$$

- Desired invariances for vector fBm :

$$
\begin{aligned}
S_{\sigma} B_{H} & =\sigma^{H} B_{H} \quad \text { in law, } \\
R_{\Omega}^{\text {vector }} B_{H}=B_{H} & \text { in law. }
\end{aligned}
$$

Imposing invariances

Idea: Whitening/innovation model as before:

$$
\mathrm{U}^{*} \mathbf{B}_{\mathrm{H}}=\mathrm{W},
$$

W: vector of white noises; U is:

- Homogeneous:

$$
\mathrm{U} \quad \mathrm{~S}_{\sigma}=\sigma^{2 \gamma} \quad \mathrm{~S}_{\sigma} \quad \mathrm{U} ;
$$

- Vector rotation invariant:

$$
\mathrm{U} \mathrm{R}_{\Omega}^{\text {vector }}=\mathrm{R}_{\Omega}^{\text {vector }} \mathrm{U} .
$$

Fractional vector Laplacians (1)

Theorem (Arigovindan \& Unser '05, PDT \& Unser '10): A vector convolution operator with the said invariances has a Fourier multiplier of the form

$$
\mathrm{U}_{\left(\xi_{1}, \xi_{2}\right)}^{\gamma} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad \kappa_{\gamma} \Phi_{\xi}^{\gamma}(\boldsymbol{\omega}):=\kappa_{\gamma}|\boldsymbol{\omega}|^{2 \gamma}\left[\mathrm{e}^{\xi_{1}} \frac{\boldsymbol{\omega} \boldsymbol{\omega}^{\mathrm{T}}}{|\boldsymbol{\omega}|^{2}}+\mathrm{e}^{\xi_{2}}\left(\mathrm{I}-\frac{\boldsymbol{\omega} \boldsymbol{\omega}^{\mathrm{T}}}{|\boldsymbol{\omega}|^{2}}\right)\right] .
$$

Interpretation:
$|\boldsymbol{\omega}|^{2 \gamma}:$ fractional Laplacian
$\frac{\omega \boldsymbol{\omega}^{\mathrm{T}}}{|\boldsymbol{\omega}|^{2}}$
$I-\frac{\omega \boldsymbol{\omega}^{T}}{|\boldsymbol{\omega}|^{2}}$
: projection onto the div-free component

Fractional vector Laplacians (2)

Properies of Φ_{ξ}^{γ} :

- Homogeneity: $\mathrm{S}_{\sigma} \Phi_{\dot{\xi}}^{\gamma}=\sigma^{2 \gamma} \Phi_{\dot{\xi}}^{\gamma}$;
- Rotation contra-variance: $\mathrm{R}_{\Omega}^{\text {vector }} \Phi_{\xi}^{\gamma}=\Phi_{\xi}^{\gamma}(\cdot) \Omega$;
- Inversion: $\Phi_{\xi}^{\gamma}(\boldsymbol{\omega}) \Phi_{-\varepsilon}^{-\gamma}(\boldsymbol{\omega})=1, \boldsymbol{\omega} \neq 0$;
- Fourier transform: $\mathcal{F}\left\{\Phi_{\hat{\xi}}^{\gamma}\right\}=\Phi_{\hat{\tilde{\xi}}}^{-\gamma-\mathrm{d}}$;
- Products: $\Phi_{\varepsilon_{1}}^{\gamma_{1}} \Phi_{\varepsilon_{1}}^{\gamma_{1}}=\Phi_{\varepsilon_{1}+\xi_{2}}^{\gamma_{1}+\gamma_{2}}$.

Fractional vector Laplacians (3)

- Continuous linear left inverse defined same as before:

$$
L_{\xi}^{\gamma}: \mathbf{f} \mapsto \frac{1}{\kappa_{\gamma}(2 \pi)^{\mathrm{d}}} \int_{\mathbb{R}^{\mathrm{d}}} \mathrm{e}^{\mathrm{j}\langle x, \boldsymbol{\omega}\rangle} \Phi_{-\xi}^{-\gamma}(\boldsymbol{\omega})\left(\hat{\mathbf{f}}(\boldsymbol{\omega})-\sum_{|\mathrm{k}| \leqslant\left\lfloor 2 \gamma-\frac{d}{2}\right\rfloor} \frac{\hat{\mathbf{f}}^{(\mathrm{k})}(0) \boldsymbol{\omega}^{\mathrm{k}}}{\mathrm{k}!}\right) \mathrm{d} \boldsymbol{\omega} .
$$

Key properties:

- Homogeneous;
- Vector rotation invariant;
- Continuous $\mathcal{S}^{\mathrm{d}} \rightarrow \mathcal{L}_{2}^{\mathrm{d}}$.

Innovation model

Self-similar and rotation invariant solution of

$$
\left(\mathrm{U}_{\left(\varepsilon_{1}, \xi_{2}\right)}^{\frac{H}{2}+\frac{d}{4}}\right)^{*} \mathbf{B}_{H, \xi}=\mathbf{W} ;
$$

(\mathbf{W} is vector of white noise).

- Coordinates are no longer independent (unless $\xi_{1}=\xi_{2}$).
- $\xi_{1}-\xi_{2}$ controls vectorial behaviour:
$\xi_{1}-\xi_{2} \rightarrow+\infty$: solenoidal (div-free);
$\xi_{1}-\xi_{2} \rightarrow-\infty$: irrotational (curl-free).
- Interpreted as a generalized random field (Gel'fand \mathcal{E} al.).

Generalized random fields (1)

- $\left\langle\mathbf{B}_{H, \xi}, \boldsymbol{\phi}\right\rangle, \boldsymbol{\phi} \in \mathcal{S}^{\mathrm{d}}$, are R.V.s with consistent finite-dimensional prob. measures.
- The stochastic law (prob. measure) of $\mathbf{B}_{\mathrm{H}, \Sigma}$ is derived from its characteristic functional:

Theorem (Bochner-Minlos): There is a one-to-one correspondence between positive-definite and continuous characteristic functionals $Z_{B}(\phi), \phi \in \mathcal{E}$ (a nuclear space), and probability measures P_{B} on \mathcal{E}^{\prime}, via the relation

$$
Z_{B}(\phi)=\mathbb{E}\left\{\mathrm{e}^{\mathrm{j}\langle\mathrm{~B}, \phi\rangle}\right\}=\int_{\mathcal{E}^{\prime}} \mathrm{e}^{\mathrm{j}\langle\chi, \phi\rangle} \mathrm{P}_{\mathrm{B}}(\mathrm{~d} \chi)
$$

Generalized random fields (2)

Example (white Gaussian noise):

$$
\mathrm{Z}_{w}(\boldsymbol{\phi})=\mathrm{e}^{-\frac{1}{2}\|\boldsymbol{\phi}\|^{2}}
$$

Properties:

- Independent values at every point (whiteness):

$$
\langle\mathbf{W}, \boldsymbol{\phi}\rangle,\langle\mathbf{W}, \boldsymbol{\psi}\rangle \text { independent if Supp } \boldsymbol{\phi} \cap \operatorname{Supp} \psi=\varnothing \text {; }
$$

- Jointly Gaussian finite-dim. distributions for all

$$
\left\langle\mathbf{W}, \boldsymbol{\phi}_{i}\right\rangle, \quad 1 \leqslant \mathfrak{i} \leqslant \mathrm{~N} .
$$

Characterization of vector fBm

Reminder: Solution in the sense of distributions

$$
\left\langle\mathbf{B}_{H, \xi}, \boldsymbol{\phi}\right\rangle:=\left\langle\mathbf{W}, \mathrm{L}_{\dot{\xi}}^{\frac{H}{2}+\mathrm{d} 4} \boldsymbol{\phi}\right\rangle \quad \Longrightarrow \quad\left(\mathrm{U}_{\dot{\xi}}^{\frac{\mathrm{H}}{2}+\frac{\mathrm{d}}{4}}\right)^{*} \mathbf{B}_{H, \xi}=\mathbf{W} .
$$

Characteristic functional:

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{B}_{\mathrm{H}, \mathrm{~L}}}(\boldsymbol{\phi}) & =\mathbb{E}\left\{\mathrm{e}^{\left.\mathrm{j} / \boldsymbol{B}_{H}, \boldsymbol{\xi}, \boldsymbol{\phi}\right\rangle}\right\} \\
& =\mathbb{E}\left\{\mathrm{e}^{\mathrm{j} / W, \mathrm{~L} \boldsymbol{\phi}\rangle}\right\} \\
& =\mathrm{Z}_{W}\left(\mathrm{~L}_{-\dot{\xi}}^{-\frac{-}{2}-\frac{d}{4}} \boldsymbol{\phi}\right)
\end{aligned}
$$

(requires continuity $\mathcal{S}^{\mathrm{d}} \rightarrow \mathcal{L}_{2}^{\mathrm{d}}$).

Some properties of vector fBm (1)

Scale and rotation invariance of $L_{\tilde{E}}^{\frac{H}{2}+\frac{d}{4}} \Longrightarrow$

- Self-similarity:

$$
\mathrm{S}_{\sigma} \quad \mathbf{B}_{\mathrm{H}}=\sigma^{\mathrm{H}} \mathbf{B}_{\mathrm{H}} \quad \text { in law; }
$$

- Rotation invariance:

$$
\mathrm{R}_{\Omega}^{\text {vector }} \mathbf{B}_{\mathrm{H}}=\mathbf{B}_{\mathrm{H}} \quad \text { in law. }
$$

Some properties of vector fBm (2)

- Generalization to $\mathrm{H}>1$

$$
\mathbf{B}_{H, \xi}=\left(L_{\tilde{\xi}}^{\frac{H}{2}+\frac{d}{4}}\right)^{*} \mathbf{W}
$$

also valid for $\mathrm{H}>1$ (non-integer).

- Stationary n th-order increments for $n \geqslant\lfloor H\rfloor+1$;
- Covariance structure of increments for $0<\mathrm{H}<1$:

$$
\mathbb{E}\left\{\left[\mathbf{B}_{H, \xi}(\boldsymbol{x})-\mathbf{B}_{H, \xi}(\mathbf{y})\right]\left[\mathbf{B}_{H, \xi}(\boldsymbol{x})-\mathbf{B}_{H, \xi}(\mathbf{y})\right]^{\mathrm{T}}\right\} \propto \Phi_{\left(\eta_{1}, \eta_{2}\right)}^{\mathrm{H}}(\boldsymbol{x}-\mathbf{y})
$$

- Vectorial behaviour:
- $\xi_{1}-\xi_{2} \rightarrow+\infty \Rightarrow$ div-free;
- $\xi_{1}-\xi_{2} \rightarrow-\infty \Rightarrow$ curl-free;
- $\xi_{1}=\xi_{2} \quad \Rightarrow \quad$ independent coordinates.

Examples

(a) $\mathrm{H}=0.60, \xi_{1}=\xi_{2}=0$ (indep. coordinates)

(b) $\mathrm{H}=0.60, \xi_{1}=0, \xi_{2}=100$ (curl-free)

(c) $\mathrm{H}=0.60, \xi_{1}=100, \xi_{2}=0$ (div-free)

Wavelet analysis of vector fBm (1)

Vector Wavelets

Let $\mathrm{E} \stackrel{\mathcal{F}}{\longleftrightarrow} \boldsymbol{\omega} \boldsymbol{\omega}^{\mathrm{T}} /|\boldsymbol{\omega}|^{2}$ (curl-free projection).
Define vector wavelets (matrix-valued):

- Smoothing kernel Φ (matrix-valued, usu. diagonal);
- Wavelets:

$$
\begin{aligned}
\Psi=\mathrm{U}^{\gamma} \Phi & =\mathrm{U}^{\gamma}[\mathrm{E}+(\mathrm{Id}-\mathrm{E})] \Phi \\
& =\underbrace{\mathrm{U}^{\gamma} \mathrm{E} \Phi}_{\Psi_{1}: \text { captues curl-free comp. }}+\underbrace{\mathrm{U}^{\gamma}(\mathrm{Id}-\mathrm{E}) \Phi}_{\Psi_{2} \text { : captues div-free comp. }} .
\end{aligned}
$$

Wavelet analysis of vector $\mathrm{fBm}(2)$

Parameter Estimation

- $\log ($ wavelet energy) varies linearly across scales; slope depends on H .
\Rightarrow Estimates of H .
- Ratio between Ψ_{1} and Ψ_{2} energy depends on $\xi_{1}-\xi_{2}$.
\Rightarrow Estimates of vectorial character $\left(\xi_{1}-\xi_{2}\right)$.

Thank you.

