Fractional Brownian Vector Fields

POUYA D. TAFTI (JOINT WORK WITH M. UNSER)

BIOMEDICAL IMAGING GROUP ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, SWITZERLAND

Outline

Scalar fractional Brownian motion (fBm)

- Invariances
- Fractional PDE formulation (innovation model)

Fractional Brownian vector fields

- Vector invariances
- Generalized fractional Laplacians
- Characterization of vector fBm
- Some properties
- Parameter estimation with wavelets

SCALAR FRACTIONAL BROWNIAN MOTION

Scalar fBm

Non-stationary random field on \mathbb{R}^d with

- Gaussian statistics;
- zero mean;
- zero boundary conditions $(B_H(0) = 0)$;
- stationary increments with variance

$$\mathbb{E}\{|B_{\mathsf{H}}(\mathbf{x}) - B_{\mathsf{H}}(\mathbf{y})|^2\} \propto |\mathbf{x} - \mathbf{y}|^{2\mathsf{H}}$$

($H \in (0,1)$: Hurst exponent).

Invariance properties

Statistical invariances:

• Scaling:

$$S_{\sigma}$$
 $B_{H} = \sigma^{H} B_{H}$ in law,

$$(S_{\sigma}: f \mapsto f(\sigma^{-1}\cdot), \ \sigma \in \mathbb{R}_+);$$

• Scalar rotation (and reflection):

$$R_{\Omega}^{\text{scalar}} B_{H} = B_{H}$$
 in law,

$$(R_{\Omega}^{scalar}: f \mapsto f(\Omega^T \cdot), \Omega \text{ orthogonal}).$$

Whitening/innovation modelling

• Characterization/generalization by means of a whitening equation:

$$|\mathbf{U}^*|\mathbf{B}_\mathsf{H} = \mathbf{W}|$$

where:

- W is white Gaussian noise;
- U* is the whitening operator.
- \Rightarrow Non-stationary generalization of spectral shaping.

Whitening/innovation modelling: Steps

- 1. Identify U (using invariances);
- 2. Find a continuous linear left inverse $L: S \to \mathcal{L}^2$:

$$LU = identity;$$

3. Define B_H as a particular solution (generalized random field):

$$\langle \mathsf{B}_\mathsf{H}, \mathsf{\Phi} \rangle := \langle \mathsf{W}, \mathsf{L} \mathsf{\Phi} \rangle \tag{*}$$

Justification:

$$(*) \Longrightarrow \langle B_{H}, U\psi \rangle = \langle W, LU\psi \rangle = \langle W, \psi \rangle$$
$$\Longrightarrow \boxed{U^{*}B_{H} = W}.$$

The model (1)

1. The fractional Laplacian $U^{\gamma} \overset{\mathcal{F}}{\longleftrightarrow} \kappa_{\gamma} |\boldsymbol{\omega}|^{2\gamma}$ satisfies

2. Continuous linear left inverse ($S \to \mathcal{L}_2$):

$$L^{\gamma}:f\mapsto \frac{1}{\kappa_{\gamma}(2\pi)^{d}}\int_{\mathbb{R}^{d}}e^{j\langle x,\omega\rangle}\frac{1}{|\omega|^{2\gamma}}\Big(\hat{f}(\omega)-\sum_{|k|\leqslant \lfloor 2\gamma-\frac{d}{2}\rfloor}\frac{\hat{f}^{(k)}(0)\omega^{k}}{k!}\Big)\;d\omega.$$

Invariances: Like U, L is homogeneous and rotation-invariant.

The model (2)

3. Innovation/whitening model:

- Captures the inverse power-law spectrum of B_H;
- Generalizes to H > 1;
- Non-Gaussian $W \Rightarrow$ non-Gaussian models à la Lévy motion (may need to redefine L).

FRACTIONAL BROWNIAN VECTOR FIELDS

Fractional Brownian vector fields

How to define fractional Brownian vector fields?

• Trivial definition: Vector of independent scalar fBms.

No constraints on the interdependency of the components;

- ⇒ Hence no control over directional behaviour.
- Solution: More general definition based on invariances.

Vector invariances

• Vector rotaion: Rotate the domain, but keep directions fixed.

Rotation by $\Omega \in O(n)$:

$$R_{\Omega}^{\text{vector}} : \mathbf{f} \mapsto \Omega \mathbf{f}(\Omega^{T} \cdot).$$

• Desired invariances for vector fBm:

$$S_{\sigma}$$
 $B_{H} = \sigma^{H} B_{H}$ in law,

$$R_{\Omega}^{\text{vector}} B_{H} = B_{H}$$
 in law.

Imposing invariances

Idea: Whitening/innovation model as before:

$$U^* B_H = W,$$

W: vector of white noises; U is:

• Homogeneous:

$$U \mid S_{\sigma} \mid = \sigma^{2\gamma} \mid S_{\sigma} \mid U;$$

• Vector rotation invariant:

$$ext{U} \hspace{.1cm} ext{R}^{ ext{vector}}_{\Omega} \hspace{.1cm} = \hspace{.1cm} ext{R}^{ ext{vector}}_{\Omega} \hspace{.1cm} ext{U}$$

Fractional vector Laplacians (1)

Theorem (Arigovindan & Unser '05, PDT & Unser '10): A vector convolution operator with the said invariances has a Fourier multiplier of the form

$$U_{(\xi_1,\xi_2)}^{\gamma} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad \kappa_{\gamma} \Phi_{\xi}^{\gamma}(\boldsymbol{\omega}) := \kappa_{\gamma} |\boldsymbol{\omega}|^{2\gamma} \left[e^{\xi_1} \frac{\boldsymbol{\omega} \boldsymbol{\omega}^T}{|\boldsymbol{\omega}|^2} + e^{\xi_2} \left(I - \frac{\boldsymbol{\omega} \boldsymbol{\omega}^T}{|\boldsymbol{\omega}|^2} \right) \right].$$

Interpretation:

 $|\omega|^{2\gamma}$: fractional Laplacian

 $\frac{\omega \omega^{\text{T}}}{|\omega|^2}$: projection onto the curl-free component

 $I - \frac{\omega \omega^{\perp}}{|\omega|^2}$: projection onto the div-free component

Fractional vector Laplacians (2)

Properies of Φ_{ξ}^{γ} :

- Homogeneity: $S_{\sigma} \Phi_{\xi}^{\gamma} = \sigma^{2\gamma} \Phi_{\xi}^{\gamma}$;
- Rotation contra-variance: $R_{\Omega}^{\text{vector}} \Phi_{\xi}^{\gamma} = \Phi_{\xi}^{\gamma}(\cdot) \Omega$;
- Inversion: $\Phi_{\xi}^{\gamma}(\boldsymbol{\omega}) \Phi_{-\xi}^{-\gamma}(\boldsymbol{\omega}) = 1, \ \boldsymbol{\omega} \neq 0;$
- Fourier transform: $\mathcal{F}\{\Phi_{\xi}^{\gamma}\} = \Phi_{\hat{\xi}}^{-\gamma-d}$;
- Products: $\Phi_{\xi_1}^{\gamma_1} \Phi_{\xi_1}^{\gamma_1} = \Phi_{\xi_1 + \xi_2}^{\gamma_1 + \gamma_2}$.

Fractional vector Laplacians (3)

• Continuous linear left inverse defined same as before:

$$L_{\xi}^{\gamma}: f \mapsto \frac{1}{\kappa_{\gamma}(2\pi)^{d}} \int_{\mathbb{R}^{d}} e^{j\langle x, \omega \rangle} \underline{\Phi_{-\xi}^{-\gamma}(\omega)} \left(\hat{f}(\omega) - \sum_{|k| \leqslant \lfloor 2\gamma - \frac{d}{2} \rfloor} \frac{\hat{f}^{(k)}(0)\omega^{k}}{k!} \right) d\omega.$$

Key properties:

- Homogeneous;
- Vector rotation invariant;
- Continuous $S^d \to \mathcal{L}_2^d$.

Self-similar and rotation invariant solution of

$$(\mathbf{U}_{(\xi_{1},\xi_{2})}^{\frac{H}{2}+\frac{d}{4}})^{*} \mathbf{B}_{\mathsf{H},\xi} = \mathbf{W};$$

(W is vector of white noise).

- Coordinates are no longer independent (unless $\xi_1 = \xi_2$).
- $\xi_1 \xi_2$ controls vectorial behaviour:

$$\xi_1 - \xi_2 \to +\infty$$
: solenoidal (div-free);

$$\xi_1 - \xi_2 \to -\infty$$
: irrotational (curl-free).

• Interpreted as a generalized random field (Gel'fand & al.).

Generalized random fields (1)

- $\langle \mathbf{B}_{\mathsf{H},\xi}, \mathbf{\phi} \rangle$, $\mathbf{\phi} \in \mathcal{S}^{\mathsf{d}}$, are R.V.s with consistent finite-dimensional prob. measures.
- The stochastic law (prob. measure) of $B_{H,\xi}$ is derived from its characteristic functional:

Theorem (Bochner-Minlos): There is a one-to-one correspondence between positive-definite and continuous characteristic functionals $Z_B(\phi), \phi \in \mathcal{E}$ (a nuclear space), and probability measures P_B on \mathcal{E}' , via the relation

$$Z_B(\varphi) = \mathbb{E}\{e^{j\langle B, \varphi \rangle}\} = \int_{\mathcal{E}'} e^{j\langle \chi, \varphi \rangle} \, P_B(d\chi).$$

Generalized random fields (2)

Example (white Gaussian noise):

$$\mathsf{Z}_{\mathbf{W}}(\mathbf{\Phi}) = \mathsf{e}^{-\frac{1}{2}\|\mathbf{\Phi}\|^2}$$

Properties:

Independent values at every point (whiteness):

$$\langle \mathbf{W}, \mathbf{\phi} \rangle$$
, $\langle \mathbf{W}, \mathbf{\psi} \rangle$ independent if Supp $\mathbf{\phi} \cap \operatorname{Supp} \mathbf{\psi} = \emptyset$;

Jointly Gaussian finite-dim. distributions for all

$$\langle \mathbf{W}, \mathbf{\phi}_i \rangle$$
, $1 \leqslant i \leqslant N$.

Characterization of vector fBm

Reminder: Solution in the sense of distributions

$$\langle B_{\mathsf{H},\xi}, \varphi \rangle \; := \; \langle W, \mathrm{L}_{\xi}^{\frac{\mathsf{H}}{2} + \mathrm{d} 4} \varphi \rangle \quad \Longrightarrow \quad (\mathrm{U}_{\xi}^{\frac{\mathsf{H}}{2} + \frac{\mathrm{d}}{4}})^* \; B_{\mathsf{H},\xi} \; = \; W.$$

Characteristic functional:

$$\begin{split} Z_{B_{H,\xi}}(\varphi) &= \mathbb{E}\{e^{j\langle B_{H,\xi},\varphi\rangle}\} \\ &= \mathbb{E}\{e^{j\langle W, L\varphi\rangle}\} \\ &= Z_W(L_{-\xi}^{-\frac{H}{2}-\frac{d}{4}}\varphi) \end{split}$$

(requires continuity $S^d \to \mathcal{L}_2^d$).

Some properties of vector fBm (1)

Scale and rotation invariance of $L_{\xi}^{\frac{H}{2}+\frac{d}{4}}\quad\Longrightarrow\quad$

• Self-similarity:

$$S_{\sigma}$$
 $B_{H} = \sigma^{H} B_{H}$ in law;

• Rotation invariance:

$$R_{\Omega}^{\text{vector}} B_{\text{H}} = B_{\text{H}}$$
 in law.

Some properties of vector fBm (2)

• Generalization to H > 1

$$B_{\mathsf{H},\xi} \, = \, (\mathrm{L}_{\xi}^{rac{\mathsf{H}}{2} + rac{\mathsf{d}}{4}})^* \, \mathbf{W}$$

also valid for H > 1 (non-integer).

- Stationary nth-order increments for $n \ge |H| + 1$;
- Covariance structure of increments for 0 < H < 1:

$$\mathbb{E}\{\left[B_{\mathsf{H},\xi}(x)-B_{\mathsf{H},\xi}(y)\right]\left[B_{\mathsf{H},\xi}(x)-B_{\mathsf{H},\xi}(y)\right]^{\mathrm{T}}\} \propto \Phi_{(\eta_1,\eta_2)}^{\mathsf{H}}(x-y)$$

- Vectorial behaviour:
 - $\xi_1 \xi_2 \to +\infty$ \Rightarrow div-free;
 - $\bullet \quad \xi_1 \xi_2 \to -\infty \quad \Rightarrow \quad \text{curl-free;}$
 - $\xi_1 = \xi_2$ \Rightarrow independent coordinates.

22

Examples

(a) H = 0.60, $\xi_1 = \xi_2 = 0$ (indep. coordinates)

(b) H = 0.60, $\xi_1 = 0$, $\xi_2 = 100$ (curl-free)

(c) H = 0.60, $\xi_1 = 100$, $\xi_2 = 0$ (div-free)

Wavelet analysis of vector fBm (1)

VECTOR WAVELETS

Let
$$E \stackrel{\mathcal{F}}{\longleftrightarrow} \omega \omega^T/|\omega|^2$$
 (curl-free projection).

Define vector wavelets (matrix-valued):

- Smoothing kernel Φ (matrix-valued, usu. diagonal);
- Wavelets:

Wavelet analysis of vector fBm (2)

PARAMETER ESTIMATION

- log(wavelet energy) varies linearly across scales; slope depends on H.
- \Rightarrow Estimates of H.
- Ratio between Ψ_1 and Ψ_2 energy depends on $\xi_1 \xi_2$.
- \Rightarrow Estimates of vectorial character $(\xi_1 \xi_2)$.

