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OUTLINE

= |ntroduction
= The basic atoms: B-splines

= Spline-based signal processing
Interpolation
Fast multi-scale algorithms
Applications

= Splines and wavelet theory

Sponsored by the German Pattern Recognition Society (DAGM)
Give in when necessary .... but persevere
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M OTIVATION At the beginning there was a continuum.
Man made it discrete !
Continuous domain: L,(R") Discrete domain: ¢,(Z")
f(x), xXER? ::: f(k), ke 7P
« real world objects * measurements
« signals, images « algorithms
« sensor input « signal and image processing

= Sampling and signal acquisition

= Continuous/discrete algorithm design
Edge detection, PDEs, image registration, ...

= Multi-scale approaches
Scale space
Image pyramids, wavelets
Coarse-to-fine and multigrid algorithms




Splines: a unifying framework

Linking the discrete and the continuous .....

Splines: definition

Definition: A function s(m) is a polynomial spline of degree 1 with knots
e < xy < Ty < - - - iffit satisfies the following two properties:

= Piecewise polynomial:
s(x) is a polynomial of degree n within each interval [z, Tx+1);

= Higher-order continuity:

s(z),sM(x),---, s (z) are continuous at the knots .
4
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= Effective degrees of freedom per segment: 2
n+1 - n = 1 1
(polynomial coefficients) (constraints)

= Cardinal splines = unit spacing and infinite number of knots

I:> The right framework for signal processing

THE BASIC ATOMS: B-SPLINES

Polynomial B-splines

B-spline representation {

Differential properties

Dilation properties

Generalization: fractional B-splines

Gaussian-like windows

£
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Polynomial B-splines
= B-spline of degree n 'l
(@) = Y * BY % x B ()
—_— —
(n+ 1) times
b £ 1 2 3 4 5
53(@:{ 1 zE[O.:l)
0, otherwise.

= Key properties
= Compact support: shortest polynomial spline of degree n
= Positivity
= Piecewise polynomial
= Smoothness: Holder continuous of order n

= Symmetric B-splines

5(a) = 3 (a-+ 252)




B-spline representation

Theorem (Schoenberg, 1946)

Every cardinal polynomial spline, s(x), has a unique and stable representation in
terms of its B-spline expansion

1 . _
s(x) = Z-ﬁi (:17 — k;) , Basis functions
keZ -, -, P

N\

analog signal discrete signal
9 Si9 (B-spline coefficients)

4 Cubic spline (n=3)

In modern terminology: {3} (x — k) } ez forms a Riesz basis.
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Spline-related differential operators

Continuous operators Discrete operators
Derivatives Finite differences
d .
D{} =+ T jw ALY L 1
S N
Integrators
One-sided power function:
D*("?Ll){é(a;)} = xi w20
nl "= 0, x<0
(impulse response of (n + 1)-fold integrator)

B-splines: differential interpretation

m Construction of the B-spline of degree 0

Step function: 9. = D~ 1{é(x)}

ﬁg_(z) = xﬂ_ —(z— 1)3_ =Al
t

m Generalization
_ A
B n!

Bt () = ALFIDT V{5 ()}

m Fourier domain formula

4T

B-splines: differential properties

m Fourier domain formula

(1 _ eij“’)"ﬂ Discrete derivatives

) = S

Exact derivatives
= Link between “discrete” and exact derivatives

VfeS, Amf(z)=p7""«D"f(z)

Discrete operator (finite difference)

jw ()t

Differentiation operator

"

m B-spline differentiation formula
D™ B} (z) = AT BE(x)

finite difference operator

Spline degree reduction

’ B3 (x)

’ 1 2 3
-1

A . 1 — e—iw n+l-m
Sketch of proof:  (jw)™ B (w) = (1 —e 7)™ - ( h )
Jw




B-splines: dilation properties

m Dilation by a factor m

m—1 ntl
G /m) = SO WG~ k) win HpL(2) = (Z k)

keZ

m Piecewise constant case (n = 0)

HY()=1+z1+.- 2~ (™=1) (Moving sum filter)

m Applications: fast spline-based algorithms
= Zooming
= Smoothing
= Multi-scale processing

= Wavelet transform

Dyadic case: wavelets

m Dilation by a factor of 2
Bi(e/2) =) h3 k|G (@ — k)
kez
m Binomial filter

T+0\"" 1 & n+1) _
H;(z)=2< 5 ) = . P
k=0

m Example: piecewise linear splines

Generalization: fractional B-splines

A TP

ASH g F 1—edv
o _ + +
@ =tary T (

¢ x>0
One-sided power function: ~ z =
0, <0

m Properties

2 {B%(x - k)}kez is a valid Riesz basis for v < —3

= Convolution property: 3" * 32 = ﬁi”’”‘ﬁ'l

(Unser & Blu, SIAM Rev, 2000)
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Gaussian-like windows
Theorem: The (fractional) B-splines converge (in L,,-norm) to a Gaussian as the
degree goes to infinity:
1 —(z — xa)2>
lim {6%(x)} = ex
a—00 {/8+( )} \/%'Ua p < 20’2
with o, = %
m Polynomial B-splines: & = n (integer)
= Compact support: [0, n + 1]
= Fast convolution algorithms: recursive or multi-scale
16




SPLINE-BASED SIGNAL PROCESSING

Spline fitting: overview

B-spline interpolation

Fast multi-scale algorithms

Applications

Spline fitting: overview

B-spline representation: s(z) = c[k]3"(x — k)
ke
Goal: Determine c[k] such that s(x) is a "good” representation of our signal

m Interpolation (exact, reversible)

Discrete input f[k] clk] such that $(z)|z=x = f[k]

Interpolation
algorithm

m Spline approximation (at scale a)

Analog input f(z)

_

c[k] = {f,¢(-/a—k))

h that mi —s|?
suc agelgiﬂf sllz,

Sampling
algorithm

Spline fitting (Cont’d)

B-spline representation: s(z) = Z c[k)p™ (z — k)
keZ
= Smoothing splines
Discrete, noisy input: Smoothing c[k]
flk] = s(k) + n[k] algorithm

Theorem: The solution (among all functions) of the smoothing spline problem

+o00
min, {Z 1706 = s + 2 [ |Dms<x)|2dz}
2 \kez &

is a cardinal spline of degree 2m — 1. Its coefficients ¢[k] = h * f[k] can be
obtained by suitable digital filtering of the input samples f[k].

m Special case: the draftman’s spline

The minimum curvature interpolant is obtained by setting m = 2 and A — 0.
It is a cubic spline !

B-spline interpolation

= Discrete B-spline kernels ) ~‘Y6
n/2
W =" @l < Bi)= Y (k)" g s
k=—|n/2] +

= B-spline interpolation: inverse filter solution

flk] = ZC[Z] Bz =],y =0T xc)[k] = ck]= (b?)71 * flk]

kEZ

= Efficient recursive implementation
ny—1 7, z 6 _ (1 - a)Z
ek = 2444271 (1-az)(1—az?)

Cascade of first order recursive filters

1 1
1—az? 1—az
causal anti-causal

(symmetric exponential)

20




Generic C-code (splines of any degree n)

= Main recursion

void ConvertTolnterpolationCoefficients (
double c[], long DataLength, double z[], long NbPoles, double Tolerance)
{double Lambda = 1.0; long n, k;
if (DataLength == 1L) return;
for (k = OL; k < NbPoles; k++) Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[K]);
for (n = OL; n < DataLength; n++) c[n] *= Lambda;
for (k = OL; k < NbPoles; k++) {
¢[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance);
for (n = 1L; n < DataLength; n++) c[n] += z[k] * c[n - 1L];
c[Datalength - 1L] = (z[k] / (z[K] * z[K] - 1.0))
* (z[K] * c[DataLength - 2L] + c[DataLength - 1L]);
for (n = DatalLength - 2L; 0 <= n; n--) ¢[n] = z[k] * (c[n + 1L]- c[n]); }

® |nitialization

double InitialCausalCoefficient (
double c[], long DatalLength, double z, double Tolerance)
{ double Sum, zn, z2n, iz; long n, Horizon;
Horizon = (long)ceil(log(Tolerance) / log(fabs(z)));
if (DataLength < Horizon) Horizon = Datalength;
zn = z; Sum = c[0];
for (n = 1L; n < Horizon; n++) {Sum += zn * ¢[n]; zn *=z;}

Spline interpolation

= Equivalent forms of spline representation

s(@) = kB (@ —k) = D (s(k)* () [k]) B"(x — k)

k€L kezZ

= Y sk)elle— )

kez

= Cardinal (or fundamental) spline

Ohe() =Y (1) K] B (@ — k)

kEZ

-5 -4 -3 -

Finite cost implementation of an infinite impulse response
interpolator !
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Geometric transformation of images

return(Sum);
}
21
Limiting behavior
= Spline interpolator 1 e
2

Impulse response Frequency response 1

T F no oy [sin(w/2) i 1 0.5

dule) Do )= (M)

05 1 1.5

= Asymptotic property

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the

degree goes to infinity:

w
lim ¢l (z) =sinc(z), lim H"(w) = rect <—) (in all L -norms )
n—oo n—oo 271'
(Aldroubi et al., Sig. Proc., 1992)
Includes Shannon’s theory as a particular case !
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= 2D separable model

ki4+n+1l1+n+1

flay)y = > > dk B @—1)p"y-1)

k=k1  I=l
(z,y)
fIk:0) e[k, 1]
| 2Dfiltering | | 2D re-sampling
(separable)

= Applications

zooming, rotation, re-sizing, re-formatting, warping

24




Cubic spline coefficients in 2D

Digital filter
B (recursive, o
separable)

Pixel values f[k, [] B-spline coefficients c[, ]

High-quality image interpolation

= Splines: best cost-performance tradeoff

35—

g Bepline(6)
=
Z 30 Bspline(s)
2 Bepline(4)
8 Bspline(3)
E
8 Bepline(2)
& 254 Schaum(2) [1993] Meijering(7) [1999]
2 Keys [1981] Meijering(5) [1999]
g Schaum(3) [1993]
H
< Dodgson (1997
&
& 20+
& Linear
ki
Sinc Hamming(4)
Nearest-ncighbor
German [1997]
154
00 02 04 06 08 10 12 14

Thévenaz et al., Handbook of Medical Image Processing, 2000
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Interpolation benchmark
Cumulative rotation experiment: the best algorithm wins !
Bilinear :‘ Windowed-sin(::‘ Cubic spline »
27

Fast multi-scale filtering

Three alternative methods for the fast evaluation of f(z) * ™ (x/a)

1) Pyramid or tree algorithms

L 1

— () —(1 )~ Bp(x) (1D~

Binomial filter (Unser et al., IEEE Trans. PAMI, 1993)

2) Recursive filtering (iterated moving average)

a=ment KRN
Smll] = sl = 1] +18] - 7l = m] MMEGIE

(Unser et al., IEEE Trans. Sig. Proc, 1994)
28




Fast multi-scale filtering (Cont’d)

Challenge: O(N) evaluation of f(x) * "(z/a)

3) Differential approach  a e Rt
f@)« B (x/a) = F(x) - F(z — a) = A;D™H{f(2)}

Integral (or primitive): F(z) = [*_ f(t)dt =D {f(x)}

Finite difference with step a: Ay{f(z} = f(z) — f(z — a)

Generalization —_, muiple __ weighted __
integration differences
Running sums Interpolation + filtering

flz)* B (z/a) = G AGH DD {f ()}

(Munoz et al., IEEE Trans. Imag. Proc, 2001)

Principle: The integral of a spline of degree n is a spline of degree n + 1. 29

Splines: more applications

= Sampling and interpolation
Interpolation, re-sampling, grid conversion
Image reconstruction
Geometric correction

= Feature extraction

Contours, ridges

Differential geometry

Image pyramids

Shape and active contour models

= |Image matching

Stereo
Image registration (multi-modal, rigid body or elastic)

= Motion analysis
Optical flow

30

SPLINES AND WAVELET THEORY

Scaling functions

Order of approximation

B-spline factorization theorem

Splines: the key to wavelet theory

Fractional B-spline wavelets

31

Scaling function

Definition: () is an admissible scaling function of L iff:

m Riesz basis condition

Veely, Al <

> clklp(a - k)

kezZ

<B-: H("le

Lo

= Two-scale relation
1 1

p(@/2) = > hlkle(z — k) [ T]

= Partition of unity

D ele—k)=1

keZ

32




From scaling functions to wavelets

m Wavelet bases of L, [Mallat-Meyer, 1989]

Theorem: For any given admissible scaling function of Lo, go(x)
there exists a wavelet 1) (2/2) = >, ., g[k]e(z — k) such that the

family of functions A

—i =2k
{2 /2¢( 2 )}iGZ,kEZ

forms a Riesz basis of Ls.

1 -1

v

m Constructive approach: perfect reconstruction filterbank

33

Order of approximation

m General “shift-invariant” space at scale a a=1
Valp) = {Sa(ff) = Zc[k]ip (E — k) ice fz}
kez a T % % 4 %
a=?2
m Projection operator
I 2 4

Vf €Lz, Puf = arg min If=salle,  €Va

m Order of approximation
Definition
A scaling/generating function ¢ has order of approximation -y iff

VfEW;7 HffpdeLz <C‘a7'\|f(7)|\[,2

B-splines of degree o have order of approximation y=0.+1
34

Piecewise constant
y=1

Cubic spline
y=4

35

B-spline factorization

= Factorization theorem
A valid scaling function ((z) has order of approximation -y iff
p(x) = (B * wo) ()
where 3 with & = v — 1: regular, B-spline part
@Yo € S’ irregular. distributional part
/\\

/’/“‘
/A /N
/ \\l =/ N

1l

= Refinement filter: general case

Hs) = (1 +2z*1)7. 9\@

~———~——"distributional part
spline part

36




Splines: the key to wavelet theory

Sobolev smoothness
IPEL
U y=s
B-spline factorization: Approximation order: Multi-scale differentiator
—gr! 2 ,
@ =B * @ < | Ir-2Al, =owH = | Yo *(—jw), @ =0

generalcase: n<ys=sn+l
U’ ﬂ compact support: Y =n+1 (Strang-Fix, 1971)

Polynomial reproduction
degree: n=[y -1]

0

Vanishing moments:
f x"p(x)dx =0, p=0,...,n (Unser and Blu, IEEE-SP, 2003)
37

CONCLUSION

= Distinctive features of splines
Simple to manipulate
Smooth and well-behaved
Excellent approximation properties
Multiresolution properties
Fundamental nature (Green functions of derivative operator)

= Splines and image processing
A story of avoidance and, more recently, love....
Best cost/performance tradeoff
Many applications .....

= Unifying signal processing formulation

Tools: digital filters, convolution operators
Efficient recursive filtering solutions

Flexibility: piecewise constant to bandlimited
38

Scale space vs. splines

m Linear scale space Smoothing splines

(redundant) Multi-resolution analysis
(non-redundant)
m Finite difference methods = Hilbert space methods

m Non-linear diffusion Non-linear smoothing splines

Wavelet denoising

No need to be dogmatic: you can also use splines to
improve “scale-space” algorithms
Hilbert space framework: Think analog, act discrete !
“Optimal” discretization of differential operators
Fast multi-scale, multi-grid algorithms
39
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The end: Thank you!
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= Preprints and demos: http:/bigwww.epfl.ch/
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