
Splines: on scale, differential
operators and fast algorithms

Michael Unser

Biomedical Imaging Group
EPFL, Lausanne
Switzerland

Plenary talk, Scale Space 2005, Hofgeismar, April, 2005 2

Getting ideas across takes time ...

! Journal: IEEE Trans. Pattern Analysis and Mach. Intel.

! 1990 submission: “The L2 polynomial spline pyramid:

 a discrete representation of continuous signals

 in scale space”

.... but persevereGive in when necessary

3

OUTLINE

! Introduction

! The basic atoms: B-splines

! Spline-based signal processing
! Interpolation

! Fast multi-scale algorithms

! Applications

! Splines and wavelet theory

4

Continuous domain:! Discrete domain:

At the beginning there was a continuum.
Man made it discrete !

!

f (x), x " R
p

!

f (k), k " Z
p

!

L
2
(R

p
)

!

l
2
(Z

p
)

• real world objects

• signals, images

• sensor input

• measurements

• algorithms

• signal and image processing

MOTIVATION

! Sampling and signal acquisition

! Continuous/discrete algorithm design
! Edge detection, PDEs, image registration, …

! Multi-scale approaches
! Scale space

! Image pyramids, wavelets

! Coarse-to-fine and multigrid algorithms

5

Splines: a unifying framework

Linking the discrete and the continuous …..

Splines

 WaveletsMultiresolution

1 2 3 4 5 6 7

1

2

3

4

2 4 6 8

0.2

0.4

0.6

0.8

1

6

Splines: definition

" Effective degrees of freedom per segment:

 n+1 ! " n = 1
 (polynomial coefficients)# (constraints)

" Cardinal splines = unit spacing and infinite number of knots

 The right framework for signal processing

1 2 3 4 5 6 7

1

2

3

4

Splines: definition

Definition: A function s(x) is a polynomial spline of degree n with knots

· · · < xk < xk+1 < · · · iff it satisfies the following two properties:
Piecewise polynomial:

s(x) is a polynomial of degree n within each interval [xk, xk+1);

Higher-order continuity:

s(x), s(1)(x), · · · , s(n−1)(x) are continuous at the knots xk.

1

7

THE BASIC ATOMS: B-SPLINES

! Polynomial B-splines

! B-spline representation

! Differential properties

! Dilation properties

! Generalization: fractional B-splines

! Gaussian-like windows

8

Polynomial B-splines

" B-spline of degree n

" Key properties

B-spline basis functions

Causal B-spline of degree n

βn
+(x) = β0

+ ∗ β0
+ ∗ · · · ∗ β0

+︸ ︷︷ ︸
(n + 1) times

(x), β0
+(x) =

 1, x ∈ [0, 1)

0, otherwise.

Key properties

Compact support: shortest polynomial spline of degree n

Positivity

Piecewise polynomial

Smoothness: Hölder continuous of order n

Symmetric B-spline of degree n

βn(x) = βn
+

(
x + n+1

2

)
1

" "…

B-spline basis functions

Causal B-spline of degree n

βn
+(x) = β0

+ ∗ β0
+ ∗ · · · ∗ β0

+︸ ︷︷ ︸
(n + 1) times

(x) β0
+(x) =

 1, x ∈ [0, 1)

0, otherwise.

Key properties

Compact support: shortest polynomial spline of degree n

Positivity

Piecewise polynomial

Smoothness: Hölder continuous of order n

Symmetric B-spline of degree n

βn(x) = βn
+

(
x + n+1

2

)
1

B-spline basis functions

Causal B-spline of degree n

βn
+(x) = β0

+ ∗ β0
+ ∗ · · · ∗ β0

+︸ ︷︷ ︸
(n + 1) times

(x) β0
+(x) =

 1, x ∈ [0, 1)

0, otherwise.

Key properties

Compact support: shortest polynomial spline of degree n

Positivity

Piecewise polynomial

Smoothness: Hölder continuous of order n

Symmetric B-spline of degree n

βn(x) = βn
+

(
x + n+1

2

)
1

" Symmetric B-splines

B-spline basis functions

Causal B-spline of degree n

βn
+(x) = β0

+ ∗ β0
+ ∗ · · · ∗ β0

+︸ ︷︷ ︸
(n + 1) times

(x), β0
+(x) =

 1, x ∈ [0, 1)

0, otherwise.

Key properties

Compact support: shortest polynomial spline of degree n

Positivity

Piecewise polynomial

Smoothness: Hölder continuous of order n

Symmetric B-spline of degree n

βn(x) = βn
+

(
x + n+1

2

)
1 !2 !1 1 2

1

1 2 3 4 5

1

analog signal
discrete signal

(B-spline coefficients)

9

B-spline representation

Basis functions

2 4 6 8

0.2

0.4

0.6

0.8

1

Cubic spline (n=3)

1 2 3 4 5 6 7

1

2

3

4

B-spline representation

V =

{
s(x) : Dn+1{s(x)} =

∑
k∈Z

a[k]δ(x− k)

}
∩ L2

Derivative operator: D = d
dx

Theorem: Every cardinal spline, s(x) ∈ V , has a unique and stable

representation in terms of its B-spline expansion

s(x) =
∑
k∈Z

c[k] βn
+(x− k)

Theorem (Schoenberg, 1946)

Every cardinal polynomial spline, s(x), has a unique and stable representation in
terms of its B-spline expansion

s(x) =
∑
k∈Z

c[k] βn
+(x− k)

8

B-spline representation

V =

{
s(x) : Dn+1{s(x)} =

∑
k∈Z

a[k]δ(x− k)

}
∩ L2

Derivative operator: D = d
dx

Theorem: Every cardinal spline, s(x) ∈ V , has a unique and stable

representation in terms of its B-spline expansion

s(x) =
∑
k∈Z

c[k] βn
+(x− k)

In modern terminology: {βn
+(x− k)}k∈Z forms a Riesz basis.

8

Spline-related differential operators

10

!# Continuous operators

Finite differences

Differential operators

D{·} =
d
dx

F←→ jω

Dm{·} F←→ (jω)m

∆+{·} F←→ 1− e−jω = jω + O(|ω|2)
∆m

+{·} F←→ (1− e−jω)m

Green function of Dn+1

Dn+1{ρ(x)} = δ(x) =⇒ ρ(x) = D−(n+1){δ(x)} =
xn

+

n!
(impulse response of (n + 1)-fold integrator)

2

Differential operators

D{·} =
d
dx

F←→ jω

Dm{·} F←→ (jω)m

∆+{·} F←→ 1− e−jω

∆m
+{·} F←→ (1− e−jω)m

Green function of Dn+1

Dn+1{ρ(x)} = δ(x) =⇒ ρ(x) = D−(n+1){δ(x)} =
xn

+

n!
(impulse response of (n + 1)-fold integrator)

2

Derivatives

! " Discrete operators

One-sided power function:

Green function of Dn+1

Dn+1{ρ(x)} = δ(x) =⇒ ρ(x) = D−(n+1){δ(x)} =
xn

+

n!
(impulse response of (n + 1)-fold integrator)

One-sided power function

xn
+ =

 xn, x ≥ 0

0, x < 0

3

Integrators
Green function of Dn+1

Dn+1{ρ(x)} = δ(x) =⇒ ρ(x) = D−(n+1){δ(x)} =
xn

+

n!
(impulse response of (n + 1)-fold integrator)

One-sided power function

xn
+ =

 xn, x ≥ 0

0, x < 0

4

Green function of Dn+1

Dn+1{ρ(x)} = δ(x) =⇒ ρ(x) = D−(n+1){δ(x)} =
xn

+

n!
(impulse response of (n + 1)-fold integrator)

One-sided power function

xn
+ =

 xn, x ≥ 0

0, x < 0

4

Discrete operator (finite difference)

Differentiation operator

B-splines: differential interpretation

11

! " Construction of the B-spline of degree 0

!# Fourier domain formula

x0
+ = D−1{δ(x)} (Step function)

β0
+(x) = ∆1

+D−1{δ(x)} = x0
+ − (x− 1)0+

βn
+(x) = ∆n+1

+ D−(n+1){δ(x)} =
∆n+1

+ xn
+

n!

β̂n
+(ω) =

(
1− e−jω

jω

)n+1

=
(1− e−jω)n+1

(jω)n+1

∀f ∈ S′, ∆m
+f(x) = βm−1

+ ∗Dmf(x)

Dmβn
+(x) = ∆m

+βn−m
+ (x)

4

Step function: x0
+ = D−1{δ(x)}

β0
+(x) = x0

+ − (x− 1)0+ = ∆1
+D−1{δ(x)}

βn
+(x) = ∆n+1

+ D−(n+1){δ(x)} =
∆n+1

+ xn
+

n!

β̂n
+(ω) =

(
1− e−jω

jω

)n+1

=
(1− e−jω)n+1

(jω)n+1

∀f ∈ S′, ∆m
+f(x) = βm−1

+ ∗Dmf(x)

Dmβn
+(x) = ∆m

+βn−m
+ (x)

4

Step function: x0
+ = D−1{δ(x)}

β0
+(x) = x0

+ − (x− 1)0+ = ∆1
+x0

+

βn
+(x) = ∆n+1

+ D−(n+1){δ(x)} =
∆n+1

+ xn
+

n!

β̂n
+(ω) =

(
1− e−jω

jω

)n+1

=
(1− e−jω)n+1

(jω)n+1

∀f ∈ S′, ∆m
+f(x) = βm−1

+ ∗Dmf(x)

Dmβn
+(x) = ∆m

+βn−m
+ (x)

4

!# Generalization

x0
+ = D−1{δ(x)} (Step function)

β0
+(x) = ∆1

+D−1{δ(x)} = x0
+ − (x− 1)0+

βn
+(x) = ∆n+1

+ D−(n+1){δ(x)} =
∆n+1

+ xn
+

n!

β̂n
+(ω) =

(
1− e−jω

jω

)n+1

=
(1− e−jω)n+1

(jω)n+1

∀f ∈ S′, ∆m
+f(x) = βm−1

+ ∗Dmf(x)

Dmβn
+(x) = ∆m

+βn−m
+ (x)

4

1 2 3 4 5

1

finite difference operator
Spline degree reduction

1 2 3

1

!1

Step function: x0
+ = D−1{δ(x)}

β0
+(x) = x0

+ − (x− 1)0+ = ∆1
+x0

+

βn
+(x) = ∆n+1

+ D−(n+1){δ(x)} =
∆n+1

+ xn
+

n!

β̂n
+(ω) =

(
1− e−jω

jω

)n+1

=
(1− e−jω)n+1

(jω)n+1

β2
+(x)

4

Discrete derivatives

Exact derivatives

B-splines: differential properties

12

!# Fourier domain formula

!# Link between “discrete” and exact derivatives

Fourier domain formula β̂n
+(ω) =

(1− e−jω)n+1

(jω)n+1

Linking continuous and discrete differential operators

∀f ∈ S′, ∆m
+f(x) = βm−1

+ ∗Dmf(x)

B-spline differentiation formula

Dmβn
+(x) = ∆m

+βn−m
+ (x)

Sketch of proof: (jω)mβ̂n
+(ω) = (1− e−jω)m ·

(
1− e−jω

jω

)n+1−m

5

Fourier domain formula β̂n
+(ω) =

(1− e−jω)n+1

(jω)n+1

Linking continuous and discrete differential operators

∀f ∈ S′, ∆m
+f(x) = βm−1

+ ∗Dmf(x)

B-spline differentiation formula

Dmβn
+(x) = ∆m

+βn−m
+ (x)

Sketch of proof: (jω)mβ̂n
+(ω) = (1− e−jω)m ·

(
1− e−jω

jω

)n+1−m

5

! " B-spline differentiation formula

Fourier domain formula β̂n
+(ω) =

(1− e−jω)n+1

(jω)n+1

Linking continuous and discrete differential operators

∀f ∈ S′, ∆m
+f(x) = βm−1

+ ∗Dmf(x)

B-spline differentiation formula

Dmβn
+(x) = ∆m

+βn−m
+ (x)

Sketch of proof: (jω)mβ̂n
+(ω) = (1− e−jω)m ·

(
1− e−jω

jω

)n+1−m

5

Fourier domain formula β̂n
+(ω) =

(1− e−jω)n+1

(jω)n+1

Linking continuous and discrete differential operators

∀f ∈ S′, ∆m
+f(x) = βm−1

+ ∗Dmf(x)

B-spline differentiation formula

Dmβn
+(x) = ∆m

+βn−m
+ (x)

Sketch of proof: (jω)mβ̂n
+(ω) = (1− e−jω)m ·

(
1− e−jω

jω

)n+1−m

5

B-splines: dilation properties

13

m-scale relation

Dilation by a factorm

βn
+(x/m) =

∑
k∈Z

hn
m[k]βn(x− k) with Hn

m(z) =
1

mn

(
m−1∑
k=0

z−k

)n+1

Piecewise constant case (n = 0)

H0
m(z) = 1 + z−1 + · · · z−(m−1)

(Moving sum filter)

Dyadic case (m = 2)

Hn
2 (z) = 2

(
1 + z−1

2

)n+1

=
1
2n

n+1∑
k=0

(
n + 1

k

)
z−k

(Binomial filter)

5

m-scale relation

Dilation by a factorm

βn
+(x/m) =

∑
k∈Z

hn
m[k]βn(x− k) with Hn

m(z) =
1

mn

(
m−1∑
k=0

z−k

)n+1

Piecewise constant case (n = 0)

H0
m(z) = 1 + z−1 + · · · z−(m−1)

(Moving sum filter)

Dyadic case (m = 2)

Hn
2 (z) = 2

(
1 + z−1

2

)n+1

=
1
2n

n+1∑
k=0

(
n + 1

k

)
z−k

(Binomial filter)

5

1 1 1 1 1

m-scale relation

Dilation by a factorm

βn
+(x/m) =

∑
k∈Z

hn
m[k]βn

+(x− k) with

Hn
m(z) =

1
mn

(
m−1∑
k=0

z−k

)n+1

Piecewise constant case (n = 0)

H0
m(z) = 1 + z−1 + · · · z−(m−1)

(Moving sum filter)

Applications: fast spline-based algorithms

Zooming

Smoothing

Multi-scale processing

Wavelet transform

5

Dyadic case: wavelets

14

Dyadic case: wavelets

Dilation by a factor of 2

βn
+(x/2) =

∑
k∈Z

hn
2 [k]βn

+(x− k)

Binomial filter

Hn
2 (z) = 2

(
1 + z−1

2

)n+1

=
1
2n

n+1∑
k=0

(
n + 1

k

)
z−k

6

1 1

2

Dyadic case: wavelets

Dilation by a factor of 2

βn
+(x/2) =

∑
k∈Z

hn
2 [k]βn

+(x− k)

Binomial filter

Hn
2 (z) = 2

(
1 + z−1

2

)n+1

=
1
2n

n+1∑
k=0

(
n + 1

k

)
z−k

Example: piecewise linear splines

6

15

Generalization: fractional B-splines

One-sided power function:

 M

Fractional B-splines

β0
+(x) = ∆+x0

+
F←→ 1− e−jω

jω

βα
+(x) =

∆α+1
+ xα

+

Γ(α + 1)
F←→

(
1− e−jω

jω

)α+1

One-sided power function: xα
+ =

 xα, x ≥ 0

0, x < 0

Properties{
βα

+(x− k)
}

k∈Z is a valid Riez basis for α < − 1
2

Convolution property: βα1
+ ∗ βα2

+ = βα1+α2
+

6

Fractional B-splines

β0
+(x) = ∆+x0

+
F←→ 1− e−jω

jω

βα
+(x) =

∆α+1
+ xα

+

Γ(α + 1)
F←→

(
1− e−jω

jω

)α+1

One-sided power function: xα
+ =

 xα, x ≥ 0

0, x < 0

Properties{
βα

+(x− k)
}

k∈Z is a valid Riez basis for α < − 1
2

Convolution property: βα1
+ ∗ βα2

+ = βα1+α2
+

6

 M

!" Properties

(Unser & Blu, SIAM Rev, 2000)

Fractional B-splines

β0
+(x) = ∆+x0

+
F←→ 1− e−jω

jω

βα
+(x) =

∆α+1
+ xα

+

Γ(α + 1)
F←→

(
1− e−jω

jω

)α+1

One-sided power function: xα
+ =

 xα, x ≥ 0

0, x < 0

Properties{
βα

+(x− k)
}

k∈Z is a valid Riesz basis for α < − 1
2

Convolution property: βα1
+ ∗ βα2

+ = βα1+α2+1
+

7

Gaussian-like windows

16

Theorem: The (fractional) B-splines converge (in Lp-norm) to a Gaussian as the

degree goes to infinity:

lim
α→∞

{
βα

+(x)
}

=
1√

2π · σα

exp
(−(x− xα)2

2σ2
α

)
with σα =

√
α+1
12

Polynomial B-splines: α = n (integer)
Compact support: [0, n + 1]
Fast convolution algorithms: recursive or multi-scale

14

17

SPLINE-BASED SIGNAL PROCESSING

! Spline fitting: overview

! B-spline interpolation

! Fast multi-scale algorithms

! Applications

Spline fitting: overview

!# B-spline representation:

!# Interpolation (exact, reversible)

Spline fitting

s(x) =
∑
k∈Z

c[k]βn(x− k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] such that min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{∑
k∈Z

|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

13

Interpolation

algorithm

Spline fitting

s(x) =
∑
k∈Z

c[k]βn(x− k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] such that min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{∑
k∈Z

|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

13

Spline fitting

s(x) =
∑
k∈Z

c[k]βn(x− k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] such that min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{∑
k∈Z

|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

13

Spline fitting

s(x) =
∑
k∈Z

c[k]βn(x− k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] such that min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{∑
k∈Z

|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

13

Spline fitting

s(x) =
∑
k∈Z

c[k]βn(x− k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] such that min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{∑
k∈Z

|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

13

!# Spline approximation (at scale a)

Sampling

algorithm

Spline fitting

s(x) =
∑
k∈Z

c[k]βn(x− k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] such that min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{∑
k∈Z

|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

13

Spline fitting

s(x) =
∑
k∈Z

c[k]βn(x− k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] such that min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{∑
k∈Z

|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

13

Spline fitting

s(x) =
∑
k∈Z

c[k]βn(x − k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] = 〈f, ϕ̃(·/a − k)〉 such that

min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{∑
k∈Z

|f [k] − s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

13

Spline fitting (Cont’d)

19

!# B-spline representation:

!# Smoothing splines

Smoothing

algorithm

Spline fitting

s(x) =
∑
k∈Z

c[k]βn(x− k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] such that min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{∑
k∈Z

|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

13

Spline fitting

s(x) =
∑
k∈Z

c[k]βn(x− k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] such that min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{∑
k∈Z

|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

13

Discrete, noisy input:

Spline fitting

s(x) =
∑
k∈Z

c[k]βn(x − k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] = 〈f, ϕ̃(·/a − k)〉 such that

min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{∑
k∈Z

|f [k] − s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

13

Theorem: The solution (among all functions) of the smoothing spline problem

min
s∈W m

2

{∑
k∈Z

|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}
is a cardinal spline of degree 2m− 1. Its coefficients c[k] = hλ ∗ f [k] can be
obtained by suitable digital filtering of the input samples f [k].

Special case: the draftman’s spline

The minimum curvature interpolant is obtained by settingm = 2 and λ → 0.
It is a cubic spline !

14

!# Special case: the draftman’s spline

Theorem: The solution (among all functions) of the smoothing spline problem

min
s∈W m

2

{∑
k∈Z

|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}
is a cardinal spline of degree 2m− 1. Its coefficients c[k] = hλ ∗ f [k] can be
obtained by suitable digital filtering of the input samples f [k].

Special case: the draftman’s spline

The minimum curvature interpolant is obtained by settingm = 2 and λ → 0.
It is a cubic spline !

14

B-spline interpolation

20

" Discrete B-spline kernels
B-spline interpolation

bn
1 [k] = βn(x)|x=k

z←→ Bn
1 (z) =

!n/2"∑
k=−!n/2"

βn(k)z−k

f(x)|x=k =
∑
k∈Z

c[l]βn(k − l) = (bn
1 ∗ c) [k] ⇒ c[k] =

(
(bn

1)−1 ∗ f
)

[k]

(bn
1)−1 [k] z←→ 6

z + 4 + z−1
=

(1− α)2

(1− αz)(1− αz−1)
1

1− αz−1

1
1− αz

7

" B-spline interpolation: inverse filter solution

B-spline interpolation

bn
1 [k] = βn(x)|x=k

z←→ Bn
1 (z) =

!n/2"∑
k=−!n/2"

βn(k)z−k

f [k] =
∑
k∈Z

c[l] βn(x− l)|x=k = (bn
1 ∗ c) [k] ⇒ c[k] = (bn

1)−1 ∗ f [k]

(bn
1)−1 [k] z←→ 6

z + 4 + z−1
=

(1− α)2

(1− αz)(1− αz−1)
1

1− αz−1

1
1− αz

7

" Efficient recursive implementation

B-spline interpolation

bn
1 [k] = βn(x)|x=k

z←→ Bn
1 (z) =

!n/2"∑
k=−!n/2"

βn(k)z−k

f [k] =
∑
k∈Z

c[l] βn(x− l)|x=k = (bn
1 ∗ c) [k] ⇒ c[k] = (bn

1)−1 ∗ f [k]

(bn
1)−1 [k] z←→ 6

z + 4 + z−1
=

(1− α)2

(1− αz)(1− αz−1)
1

1− αz−1

1
1− αz

7

(symmetric exponential)

B-spline interpolation

bn
1 [k] = βn(x)|x=k

z←→ Bn
1 (z) =

!n/2"∑
k=−!n/2"

βn(k)z−k

f [k] =
∑
k∈Z

c[l] βn(x− l)|x=k = (bn
1 ∗ c) [k] ⇒ c[k] = (bn

1)−1 ∗ f [k]

(bn
1)−1 [k] z←→ 6

z + 4 + z−1
=

(1− α)2

(1− αz)(1− αz−1)
1

1− αz−1

1
1− αz

7

B-spline interpolation

bn
1 [k] = βn(x)|x=k

z←→ Bn
1 (z) =

!n/2"∑
k=−!n/2"

βn(k)z−k

f [k] =
∑
k∈Z

c[l] βn(x− l)|x=k = (bn
1 ∗ c) [k] ⇒ c[k] = (bn

1)−1 ∗ f [k]

(bn
1)−1 [k] z←→ 6

z + 4 + z−1
=

(1− α)2

(1− αz)(1− αz−1)
1

1− αz−1

1
1− αz

7

Cascade of first order recursive filters

causal anti-causal

1/6 1/6

4/6

21

Generic C-code (splines of any degree n)

void ConvertToInterpolationCoefficients (
 double c[], long DataLength, double z[], long NbPoles, double Tolerance)
 {double Lambda = 1.0; long n, k;
 if (DataLength == 1L) return;
 for (k = 0L; k < NbPoles; k++) Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[k]);
 for (n = 0L; n < DataLength; n++) c[n] *= Lambda;
 for (k = 0L; k < NbPoles; k++) {
 c[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance);
 for (n = 1L; n < DataLength; n++) c[n] += z[k] * c[n - 1L];
 c[DataLength - 1L] = (z[k] / (z[k] * z[k] - 1.0))
 # * (z[k] * c[DataLength - 2L] + c[DataLength - 1L]);
 for (n = DataLength - 2L; 0 <= n; n--) c[n] = z[k] * (c[n + 1L]- c[n]); }
}

double InitialCausalCoefficient (
 double c[], long DataLength, double z, double Tolerance)
{ double Sum, zn, z2n, iz; long n, Horizon;
 Horizon = (long)ceil(log(Tolerance) / log(fabs(z)));
 if (DataLength < Horizon) Horizon = DataLength;
 zn = z; Sum = c[0];
 for (n = 1L; n < Horizon; n++) {Sum += zn * c[n]; zn *= z;}
 return(Sum);
}

" Main recursion

" Initialization

22

Spline interpolation

" Equivalent forms of spline representation

" Cardinal (or fundamental) spline

Finite cost implementation of an infinite impulse response

interpolator !

-5 -4 -3 -2 -1 1 2 3 4 5

1

s(x) =
∑
k∈Z

c[k]βn(x− k) =
∑
k∈Z

(
s(k) ∗ (bn

1)−1[k]
)
βn(x− k)

=
∑
k∈Z

s(k)ϕn
int(x− k)

ϕn
int(x) =

∑
k∈Z

(bn
1)−1[k] βn(x− k)

7

s(x) =
∑
k∈Z

c[k]βn(x− k) =
∑
k∈Z

(
s(k) ∗ (bn

1)−1[k]
)
βn(x− k)

=
∑
k∈Z

s(k)ϕn
int(x− k)

ϕn
int(x) =

∑
k∈Z

(bn
1)−1[k] βn(x− k)

7

23

Limiting behavior

" Spline interpolator

Impulse response Frequency response

+!

1

2

ϕn
int(x) F←→ Hn(ω) =

(
sin(ω/2)

ω/2

)n+1 1
Bn

1 (ejω)

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the

degree goes to infinity:

lim
n→∞ϕn

int(x) = sinc(x), lim
n→∞Hn(ω) = rect

(ω

2π

)
(in all Lp-norms)

7

0.5 1 1.5 2

1

0.5

(in all Lp-norms)

" Asymptotic property

Includes Shannon’s theory as a particular case !

ϕn
int(x) F←→ Hn(ω) =

(
sin(ω/2)

ω/2

)n+1 1
Bn

1 (ejω)

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the

degree goes to infinity:

lim
n→∞ϕn

int(x) = sinc(x), lim
n→∞Hn(ω) = rect

(ω

2π

)
(in all Lp-norms)

7

(Aldroubi et al., Sig. Proc., 1992)

24

Geometric transformation of images

" 2D separable model

2D re-sampling2D filtering

(separable)

" Applications

zooming, rotation, re-sizing, re-formatting, warping

Geometric transformation

f(x, y) =
k1+n+1∑

k=k1

l1+n+1∑
l=l1

c[k, l] βn(x− l) βn(y − l)

f [k, l] c[k, l] (x, y)

5

Geometric transformation

f(x, y) =
k1+n+1∑

k=k1

l1+n+1∑
l=l1

c[k, l] βn(x− l) βn(y − l)

f [k, l] c[k, l] (x, y)

5

Geometric transformation

f(x, y) =
k1+n+1∑

k=k1

l1+n+1∑
l=l1

c[k, l] βn(x− l) βn(y − l)

f [k, l] c[k, l] (x, y)

5

25

Cubic spline coefficients in 2D

Digital filter
(recursive,

 separable)

Geometric transformation

f(x, y) =
k1+n+1∑

k=k1

l1+n+1∑
l=l1

c[k, l] βn(x− l) βn(y − l)

f [k, l] c[k, l] (x, y)

Pixel values f [k, l]

B-spline coefficients c[k, l]

5

Geometric transformation

f(x, y) =
k1+n+1∑

k=k1

l1+n+1∑
l=l1

c[k, l] βn(x− l) βn(y − l)

f [k, l] c[k, l] (x, y)

Pixel values f [k, l]

B-spline coefficients c[k, l]

5 26

High-quality image interpolation

Thévenaz et al., Handbook of Medical Image Processing, 2000

35

30

25

20

15

L
en

a
2

5
6

 x
 2

5
6

,
ro

ta
ti

o
n

 1
5

 x
 2

4
°,

 c
en

tr
al

 1
2

8
 x

 1
2

8
 S

N
R

 (
d

B
)

1.41.21.00.80.60.40.20.0

Execution time (s rot
-1
)

Bspline(2)

Bspline(4)

Bspline(5)

Bspline(3)

Bspline(6)

German [1997]

Meijering(5) [1999]

Schaum(3) [1993]

Dodgson [1997]

Nearest-neighbor

Schaum(2) [1993] Meijering(7) [1999]

Sinc Hamming(4)

Keys [1981]

Linear

Demo

! Splines: best cost-performance tradeoff

27

Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins !

Truncated sinc Cubic splineTruncated sinc Cubic spline

Bilinear Windowed-sinc Cubic spline

Fast multi-scale filtering

28

1) Pyramid or tree algorithms

Three alternative methods for the fast evaluation ofThree alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

Binomial filter

1 11 1 1 1 1 1

2) Recursive filtering (iterated moving average)

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

1 1 1 1 1

1 1 1 1 1

(Unser et al., IEEE Trans. PAMI, 1993)

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

(Unser et al., IEEE Trans. Sig. Proc, 1994)

Fast multi-scale filtering (Cont’d)

29

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

Challenge: O(N) evaluation of

3) Differential approach

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

multiple
integration

weighted
differences

Running sums Interpolation + filtering
f(x) ∗ βn

+(x/a) = 1
an ∆n+1

a D−(n+1){f(x)}
Principle: The integral of a spline of degree n is a spline of degree n + 1.

18

! " Generalization

f(x) ∗ βn
+(x/a) = 1

an ∆n+1
a D−(n+1){f(x)}

Principle: The integral of a spline of degree n is a spline of degree n + 1.

18

(Munoz et al., IEEE Trans. Imag. Proc, 2001)

30

Splines: more applications

! Sampling and interpolation
! Interpolation, re-sampling, grid conversion
! Image reconstruction
! Geometric correction

! Feature extraction
! Contours, ridges
! Differential geometry
! Image pyramids
! Shape and active contour models

! Image matching
! Stereo
! Image registration (multi-modal, rigid body or elastic)

! Motion analysis
! Optical flow

31

SPLINES AND WAVELET THEORY

! Scaling functions

! Order of approximation

! B-spline factorization theorem

! Splines: the key to wavelet theory

! Fractional B-spline wavelets

32

Scaling function

! Riesz basis condition

Scaling function

Definition: ϕ(x) is an admissible scaling function of L2 iif:

∀c ∈ "2, A · ‖c‖!2 ≤
∥∥∥∥∥∑

k∈Z
c[k]ϕ(x− k)

∥∥∥∥∥
L2

≤ B · ‖c‖!2

ϕ(x/2) =
∑
k∈Z

h[k]ϕ(x− k)

∑
k∈Z

ϕ(x− k) = 1

1

! Two-scale relation
1 1

Scaling function

Definition: ϕ(x) is an admissible scaling function of L2 iif:

∀c ∈ "2, A · ‖c‖!2 ≤
∥∥∥∥∥∑

k∈Z
c[k]ϕ(x− k)

∥∥∥∥∥
L2

≤ B · ‖c‖!2

ϕ(x/2) =
∑
k∈Z

h[k]ϕ(x− k)

∑
k∈Z

ϕ(x− k) = 1

1

! Partition of unity

Scaling function

Definition: ϕ(x) is an admissible scaling function of L2 iif:

∀c ∈ "2, A · ‖c‖!2 ≤
∥∥∥∥∥∑

k∈Z
c[k]ϕ(x− k)

∥∥∥∥∥
L2

≤ B · ‖c‖!2

ϕ(x/2) =
∑
k∈Z

h[k]ϕ(x− k)

∑
k∈Z

ϕ(x− k) = 1

1

Scaling function

Definition: ϕ(x) is an admissible scaling function of L2 iff:

∀c ∈ "2, A · ‖c‖!2 ≤
∥∥∥∥∥∑

k∈Z
c[k]ϕ(x− k)

∥∥∥∥∥
L2

≤ B · ‖c‖!2

ϕ(x/2) =
∑
k∈Z

h[k]ϕ(x− k)

∑
k∈Z

ϕ(x− k) = 1

1

33

From scaling functions to wavelets

! Wavelet bases of L2 [Mallat-Meyer, 1989]

1 -1

From scaling functions to wavelets

Theorem: For any given admissible scaling function of L2, ϕ(x),

there exists a wavelet ψ(x/2) =
∑

k∈Z g[k]ϕ(x− k) such that the

family of functions{
2−i/2ψ

(
x−2ik

2i

)}
i∈Z,k∈Z

forms a Riesz basis of L2.

2

! 2

! 2! 2
s
i
(k)

s
i+1 (k)

d
i+1(k)

! 2

s
i
(k)

!

2 ˜ H (z
"1

)

!

2 ˜ G (z
"1

) !

2H(z)

!

2G(z)

! Constructive approach: perfect reconstruction filterbank

34

Order of approximation

! General “shift-invariant” space at scale a

! Projection operator

1 2 3 4 5

2 4

a = 1

a = 2

Order of approximation

Va(ϕ) =

{
sa(x) =

∑
k∈Z

c[k]ϕ(t− k) : c ∈ "2

}

∀f ∈ L2, Paf = arg min
sa∈Va

‖f − sa‖L2 ∈ V2

Definition

A scaling/generating function ϕ has order of approximation L iff

∀f ∈ WL
2 , ‖f − Paf‖L2 ≤ C · aL · ‖f (L)‖L2

3

B-splines of degree # have order of approximation $=#+1

! Order of approximation

Order of approximation

Va(ϕ) =
{
sa(x) =

∑
k∈Z c[k]ϕ

(
t
a − k

)
: c ∈ "2

}
∀f ∈ L2, Paf = arg min

sa∈Va

‖f − sa‖L2 ∈ V2

Definition

A scaling/generating function ϕ has order of approximation γ iff

∀f ∈ W γ
2 , ‖f − Paf‖L2 ≤ C · aγ · ‖f (γ)‖L2

B-splines of degree α have order of approximation γ = α + 1

16

Order of approximation

Va(ϕ) =

{
sa(x) =

∑
k∈Z

c[k]ϕ
(x

a
− k

)
: c ∈ "2

}

∀f ∈ L2, Paf = arg min
sa∈Va

‖f − sa‖L2 ∈ V2

Definition

A scaling/generating function ϕ has order of approximation γ iff

∀f ∈ W γ
2 , ‖f − Paf‖L2 ≤ C · aγ · ‖f (γ)‖L2

B-splines of degree α have order of approximation γ = α + 1

16

35

Spline reconstruction of a CAT-scan

Piecewise constant

Cubic spline

f(x) ∗ βn
+(x/a) = 1

an ∆n+1
a D−(n+1){f(x)}

Principle: The integral of a spline of degree n is a spline of degree n + 1.

γ = 1

γ = 4

21

f(x) ∗ βn
+(x/a) = 1

an ∆n+1
a D−(n+1){f(x)}

Principle: The integral of a spline of degree n is a spline of degree n + 1.

γ = 1

γ = 4

21
36

B-spline factorization

!" Factorization theorem

!" Refinement filter: general case

!

"=

A valid scaling function ϕ(x) has order of approximation γ iff

ϕ(x) =
(
βα

+ ∗ ϕ0

)
(x)

where βα
+ with α = γ − 1: regular, B-spline part

ϕ0 ∈ S′: irregular. distributional part

21

spline part
distributional part

A valid scaling function ϕ(x) has order of approximation γ iff

ϕ(x) =
(
βα

+ ∗ ϕ0

)
(x)

where βα
+ with α = γ − 1: regular, B-spline part

ϕ0 ∈ S′: irregular. distributional part

H(z) =
(

1 + z−1

2

)γ

︸ ︷︷ ︸ · Q(z)︸ ︷︷ ︸

21

37

general case:

compact support:

n < ! " n +1

! = n +1

Splines: the key to wavelet theory

(Unser and Blu, IEEE-SP, 2003)

Sobolev smoothness

B-spline factorization:

Approximation order:

Polynomial reproduction

degree:

 Vanishing moments:

!

 c

! !

!
! " s

Multi-scale differentiator

!
s

" #L
2

! = "+
$1
% !

0 f ! Pa f L2
=O(a

"
) ˜ ̂ ! (") # ($ j")

%
, "& 0

n = ! "1# $

x
p

! ˜ " (x)dx = 0, p = 0,…,n

!

(Strang-Fix, 1971)

38

CONCLUSION

! Distinctive features of splines
! Simple to manipulate

! Smooth and well-behaved

! Excellent approximation properties

! Multiresolution properties

! Fundamental nature (Green functions of derivative operator)

! Splines and image processing
! A story of avoidance and, more recently, love….

! Best cost/performance tradeoff

! Many applications …..

! Unifying signal processing formulation

! Tools: digital filters, convolution operators

! Efficient recursive filtering solutions

! Flexibility: piecewise constant to bandlimited

39

 Scale space vs. splines

! " Linear scale space
(redundant)

!# Smoothing splines

!# Multi-resolution analysis
(non-redundant)

!# Non-linear diffusion !# Non-linear smoothing splines

!# Wavelet denoising

!# Finite difference methods ! " Hilbert space methods

No need to be dogmatic: you can also use splines to
improve “scale-space” algorithms

" ! Hilbert space framework: Think analog, act discrete !

" ! “Optimal” discretization of differential operators

" ! Fast multi-scale, multi-grid algorithms

" ! ... 40

Acknowledgments

Many thanks to

" Dr. Thierry Blu

" Prof. Akram Aldroubi

" Prof. Murray Eden

" Dr. Philippe Thévenaz

" Annette Unser, Artist

+ many other researchers,

 and graduate students

41

The end: Thank you!

! Spline tutorial
! M. Unser, "Splines: A Perfect Fit for Signal and Image

Processing," IEEE Signal Processing Magazine, vol. 16, no. 6, pp.
22-38, 1999.

! Spline and wavelets
! M. Unser, T. Blu, "Wavelet Theory Demystified," IEEE Trans. on

Signal Processing, vol. 51, no. 2, pp. 470-483, 2003.

! Smoothing splines and stochastic formulation
! M. Unser, T. Blu, "Generalized Smoothing Splines and the Optimal

Discretization of the Wiener Filter," IEEE Trans. Signal
Processing, in press.

! Preprints and demos: http://bigwww.epfl.ch/

