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Splines: A unifying framework

Linking the discrete and the continuous

B Sampling and acquisition

m Algorithm design
“Think analog, act digital”

Geometric processing
Feature extraction
PDEs ....

m Multi-scale approaches
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OUTLINE

= The basic atoms: B-splines

= Spline-based image processing
Interpolation vs. approximation
Fast algorithms
Applications

= Further perspectives
Splines and wavelet theory
Splines and fractals



Splines: definition

Definition: A function s(x) is a polynomial spline of degree n with knots

e T < Tp41 < - - - dff it satisfies the following two properties:

Piecewise polynomial: 3

s(x) is a polynomial of degree n within each interval [z, Tg11); °

Higher-order continuity:

s(z), sV (x),- -, s("=1)(z) are continuous at the knots .

= Effective degrees of freedom per segment:

n+1 - n = 1
(polynomial coefficients) (constraints)

= Cardinal splines = unit spacing and infinite number of knots

:'> The right framework for signal processing




THE BASIC ATOMS: B-SPLINES

= Polynomial B-splines n
= B-spline representation { B

= Differential properties

= Dilation properties

= Multidimensional B-splines



Polynomial B-splines

= B-spline of degree n

() = G - L)

J/

(n + 1) times

x % 1
ﬁi(x) _ 1, z€][0,1)

= Key properties 0, otherwise.

= Compact support: shortest polynomial spline of degree n
= Positivity
= Piecewise polynomial

= Smoothness: Holder continuous of order n 1

= Symmetric B-splines

B7(w) = B + 5




B-spline representation

—

Theorem (Schoenberg, 1946)
Every cardinal polynomial spline, s(m) has a unique and stable representation in

terms of its B-spline expansion
(z) = 8" (z — k) ~ Basis functions
S\ + & 0.8 |
keZ \ 06

discrete signal

analog signal (B-spline coefficients) 0.2

Cubic spline (n=3)

In modern terminology: { 3% (z — k) } kez forms a Riesz basis.
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The lego revisited

Continous operator Discrete operator

m Construction of the B-spline of degree O

Step function: 25 = D~*{d(z)} Bl(z) =2 — (z—1)§ = ALl
T A

m Fourier domain formula

Discrete operator (finite difference)
_ oW
’\O ]. 6

Jw

Continuous operator (derivative)



B-splines: differential interpretation

Continuous operators Discrete operators
Derivatives Finite differences
priy L () APLY T (1 edem
m B-spline construction :

n —(n An-l-lx.n

m Fourier domain formula One-sided power function:

. 41 ", x>0
A 1 — Jw\ " no_
) = (=) S

Jw
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B-splines: Dilation properties
= Dilation by a factor m

m—1 n+l
B (x/m) = Zh” k|6"(x — k) with H(z)= % (Z zk)

keZ

m Piecewise constant case (n = 0)

HO (2) =14z 4+ - 27 ™= (Moving sum filter)

m Applications: fast spline-based algorithms

= Zooming
= Smoothing
= Multi-scale processing

= Wavelet transform
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Dyadic case: Wavelets

m Dilation by a factor of 2

B (x/2) = Zh” |8 (x — k)

keZ
m Binomial filter
n+1
n 1 1 n+1 1 n —I— 1
H2(Z):2_n(1+z ) _Q_nko( I

m Example: piecewise linear splines

2

o5

)

12



B-spline representation of images

® Symmetric, tensor-product B-splines

6n(x17 T 7$d) — ﬁn(ml) X X ﬂn(gpd)

= Multidimensional spline function

8($1,"',$d): Z C[k17”'7kd] ﬁn(xl_kla”'axd_kd)
(k1,---kq)€EZA

continuous-space image image array Compactly supported

(B-spline coefficients) basis functions
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SPLINE-BASED IMAGE PROCESSING

= Spline fitting: overview
interpolation
approximation

= Designing simple, efficient algorithms
B-spline interpolation
Fast multi-scale processing

= Applications
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Spline fitting: Overview

B-spline representation: s(z) =) c[k]3"(z — k)
kez
Goal: Determine c|k| such that s(x) is a "good” representation of our signal

= Exact fit: interpolation (reversible)

Discrete input f |k h th =
iscrete input f k] ' Interpolatior clk] such that s(x)|,—r = f|K]

algorithm

m Regqularized fit: smoothing splines

m Least squares approximation: spline projectors
Generalized sampling theory

Multi-scale approximation (resizing, pyramids, wavelets)



Regularized fit: Smoothing splines

B-spline representation: s(z) =) c[k]3"(z — k)

keZ
® Smoothing splines
Discrete, noisy input: Smoothing C[k]
fIk] = s(k) + nlk] " algorithm "

Theorem: The solution (among all functions) of the smoothing spline problem

\

+00
min 4 Z | f[k] — s(k)|* + )\/ D™s(x)|?dx p

s(x) = 50 )

is a cardinal spline of degree 2m — 1. In addition, its coefficients c|k| = h) * f|k]

can be obtained by suitable digital filtering of the input samples f|k].

m Special case: the draftman’s spline

The minimum curvature interpolant is obtained by setting m = 2 and A — 0.

It is a cubic spline ! 6



Smoothing splines: Example

Smoothing with increasing values of \

m Efficient implementation: separable, recursive filtering
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Least squares fit: Multi-scale approximation

m Spline space at scale a

Ta:1
Vo =< s(x) = Zc[k]ﬁg‘(x —ak) : clk] € £y ¢ /P<1><2><3><4><5\ >
\ keZ y A
a =2
>IN

2 4

= Rescaled basis function: 5" (x) := (" (%)

B Minimum error approximation at scale a

Continuous-space input f () c[k] = (f, B7(- — ak))
- . Sampling *

algorithm

>

h that mi — 5|5
such that min || f — s||Z,



Spline approximation: LS resizing

Orthogonal projection onto V, (cubic spline)

a=1— 10
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Even though splines are quite
sophisticated mathematically,

... they can be implemented
simply and efficiently !



B-spline interpolation made simple

= Discrete B-spline kernels o) ,,—M/(S
n/2 s~ \\\
K =@k S BiE) = Y gkt 1R N
k:—|_n/2j e T o =
= B-spline interpolation: inverse filter solution
[l =D el Bz =Dl = O ) [K] = c[k] = (bF) = f[A]
keZ
= Efficient recursive implementation
(b{")_l K] PN 6 _ (1— ) (symmetric exponential)

z+44+2z71 (1—az)(1l—az 1)

Cascade of first order recursive filters

1 1

_> >
1 —az ! 1 — oz

—_—

causal anti-causal o1



Generic C-code (splines of any degree n)

= Main recursion

void ConvertTolnterpolationCoefficients (
double c[], long DataLength, double z[], long NbPoles, double Tolerance)
{double Lambda = 1.0; long n, k;
if (DataLength == 1L) return;
for (k = OL; k < NbPoles; k++) Lambda = Lambda * (1.0 - z[K]) * (1.0 - 1.0 / z[K]);
for (n = OL; n < DataLength; n++) c[n] *= Lambda;
for (k = OL; k < NbPoles; k++) {
c[0] = InitialCausalCoefficient(c, DatalLength, z[k], Tolerance);
for (n = 1L; n < DataLength; n++) c[n] += z[k] * c[n - 1L];
c[DataLength - 1L] = (z[K] / (z[K] * z[Kk] - 1.0))
* (z[k] * c[DataLength - 2L] + c[DatalLength - 1L]);
for (n = DataLength - 2L; 0 <= n; n--) c[n] = z[k] * (c[n + 1L]- c[n]); }

= |nitialization

double InitialCausalCoefficient (
double c[], long DatalLength, double z, double Tolerance)

{ double Sum, zn, z2n, iz; long n, Horizon;
Horizon = (long)ceil(log(Tolerance) / log(fabs(z)));
if (DatalLength < Horizon) Horizon = Datal ength;
zn = z; Sum = ¢[0];
for (n = 1L; n < Horizon; n++) {Sum += zn * ¢[n]; zn *= z;}
return(Sum);
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Spline interpolation

= Equivalent forms of spline representation

s(@) =) kB x—k) = Y (s(k)*(O")7'K]) Bz — k)

keZ keZ

= Y s(k)pp(z— k)

keZ

= Cardinal (or fundamental) spline

op(x) =Y (07) 7 [k] B"(x — k)

kez

-5 -4 -3 -

Finite-cost implementation of an infinite impulse response
interpolator !

/
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Limiting behavior

= Spline interpolator 1 +oo
2
Impulse response Frequency response ’
. n+1
F Sm(w/2) 1 05 |
n PN H" _ '
Pint (ZE) (w) ( w/2 > B{b(ejw)
0.5 1 15

= Asymptotic property

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the

degree goes to infinity:

lim ¢ (z) =sinc(x), lim H"(w) = rect (;) (in all L -norms )
n— 00 n— 00 T

(Aldroubi et al., Sig. Proc., 1992)

Includes Shannon’s theory as a particular case !



Geometric transformation of images

= 2D separable model
ki+n+11l1+n-+1

fla,y)= > > k"= —1) " (y—1)

k=k,  I=l
(%, y)
k1 clk, I
| 2Dfiltering | | 2D re-sampling |
(separable)

= Applications

zooming, rotation, re-sizing, re-formatting, warping
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Cubic spline coefficients in 2D

Pixel values f |k, (]

Digital filter
(recursive,
separable)

B-spline coefficients c|k, []
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Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins !

Bilinear Windowed-sinc Cubic spline
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High-quality image interpolation

Lena 256 x 256, rotation 15 x 24°, central 128 x 128 SNR (dB)

Splines: best cost-performance tradeoft

35 —

Bspline(6)
Bspline(5)
Bspline(4)
Bspline(3)
Bspline(2)

Schaum(2) [1993] Meijering(7) [1999]
Keys [1981] Meijering(5) [1999]
Schaum(3) [1993]

Dodgson [1997]
Linear
Sinc Hamming(4)

Nearest-neighbor
German [1997]

0.0

I I I I I I I
0.2 0.4 0.6 0.8 1.0 1.2 1.4

Execution time (s rot 1)

Thévenaz et al., Handbook of Medical Image Processing, 2000
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Fast multi-scale filtering

Three alternative methods for the fast evaluation of f(z) x 5™ (x/a)

1) Pyramid or tree algorithms

a — 27; 1 1 1 1 1 1 1 1
I ]
I I
mn mn
—— Hy(x) —{(1 2~ Hy(z) —(12—
Binomial filter (Unser et al., IEEE Trans. PAMI, 1993)

2) Recursive filtering (iterated moving average)

a=m € LT

1 1 1 1 1

$ralk] = syalk — 1]+ f K] — £k — m] NaiEiE

(Unser et al., IEEE Trans. Sig. Proc, 1994)
29



Fast multi-scale filtering (Cont’d)
Challenge: O(N) evaluation of f(x) * 6™ (x/a)

3) Differential approach a cR™
f(x) x By (x/a) = F(z) — F(z — a) = A D7 H{f(2)}

Integral (or primitive): F(z) = [*__ f(¢t)dt = D™ {f(x)}

Finite-difference with step a: A {f(x)} = f(x) — f(z — a)

GGeneralization __, muliple ____ weighted __

Integration differences

Running sums Interpolation + filtering

flaz)* B (z/a) = ZAHD (DL f(2)}

Principle: The integral of a spline of degree n is a spline of degree n + 1.
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Application: Image resizing

m Resizing algorithm
Interpolation
n=1

scaling= 70%

SNR=22.94 dB




Application: Image resizing (LS)

m Resizing algorithm
Orthogonal projector
n=1

scaling= 70%

SNR=28.359 dB

+ 5.419 dB

(Munoz et al., IEEE Trans. Imag. Proc, 2001)



Splines: More applications

= Sampling and interpolation
Interpolation, re-sampling, grid conversion

Image reconstruction
Geometric correction

» Feature extraction

Contours, ridges
Differential geometry
Image pyramids
Shape and active contour models

= |mage matching

Stereo
Image registration
(multi-modal, rigid body or elastic)

= Motion analysis
Optical flow
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SPLINES: FURTHER PERSPECTIVES

= Fractional B-splines

0 0 F 1 —e™ ¥
)= A.x — .
ﬂ+( ) ++ jw
AOH_liba 1 — e_jw a+1
By(z) = ==& .
['(a+1) Jjw
(
%, x>0
One-sided power function: z% = <
0, x <0
\

(Unser & Blu, SIAM Rev, 2000)
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FURTHER PERSPECTIVES

= Splines and wavelet theory (Unser and Blu, IEEE-SP, 2003)

Factorization of any scaling function (or wavelet) of order ~:

o(x) = (6{1 . @o) ()

distribution //l‘g ‘ |
\
B-spline: explains all [ B % | N
fundamental properties \\,f” T | I
scaling function regular part irregular part

m Splines and fractals

Splines are the optimal functions for the estimation of fractal processes

with 1 /w?H¥1 spectral decay (fractional Brownian motion)
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Splines: The key to wavelet theory

Sobolev smoothness

¢ EL,
U, Y=S5
B-spline factorization: Approximation order: Multi-scale differentiator
y-1 < .
¢ =P, *q@, < | r-24. =0w@") < | () x(-jo)’, ®—=0
generalcase: n<y=n+1
‘U’ ﬂ compact support: Yy =n+1 (Strang-Fix, 1971)

Polynomial reproduction

degree: n=[y -1]

I

Vanishing moments:
fxpfp(x)dx =0, p=0,...,n (Unser and Blu, IEEE-SP, 2003)
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CONCLUSION

= Distinctive features of splines

Simple to manipulate

Smooth and well-behaved

Excellent approximation properties

Multiresolution properties

Fundamental nature (Green functions of derivative operators)

= Splines and image processing
A story of avoidance and, more recently, love...
Best cost/performance tradeoff
Many applications ...

= Unifying signal processing formulation

Tools: digital filters, convolution operators
Efficient recursive-filtering solutions
Flexibility: piecewise-constant to bandlimited
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The end: Thank you!
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