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Splines: A unifying framework

Linking the continuous and the discrete …..
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Splines: A unifying framework

Linking the discrete and the continuous …..

Splines
1 2 3 4 5 6 7
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"Sampling and acquisition

"Algorithm design
“Think analog, act digital”

Multiresolution        

"Multi-scale approaches

      Wavelets

 Geometric processing
 Feature extraction
 PDEs ....
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OUTLINE
 The basic atoms: B-splines
 Spline-based image processing

 Interpolation vs. approximation
 Fast algorithms
 Applications

 Further perspectives
 Splines and wavelet theory
 Splines and fractals
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Splines: definition

 Cardinal splines = unit spacing and infinite number of knots

               The right framework for signal processing
          

Splines: definition

Definition: A function s(x) is a polynomial spline of degree n with knots

· · · < xk < xk+1 < · · · iff it satisfies the following two properties:

Piecewise polynomial:

s(x) is a polynomial of degree n within each interval [xk, xk+1);

Higher-order continuity:

s(x), s(1)(x), · · · , s(n−1)(x) are continuous at the knots xk.

1

 Effective degrees of freedom per segment:
          n+1                             −
          n           =      1 
   (polynomial coefficients)
   (constraints)
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THE BASIC ATOMS: B-SPLINES

 Polynomial B-splines
 B-spline representation
 Differential properties
 Dilation properties
 Multidimensional B-splines
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Polynomial B-splines
 B-spline of degree n

 Key properties

B-spline basis functions

Causal B-spline of degree n

βn
+(x) = β0

+ ∗ β0
+ ∗ · · · ∗ β0

+︸ ︷︷ ︸
(n + 1) times

(x), β0
+(x) =





1, x ∈ [0, 1)

0, otherwise.

Key properties

Compact support: shortest polynomial spline of degree n

Positivity

Piecewise polynomial

Smoothness: Hölder continuous of order n

Symmetric B-spline of degree n

βn(x) = βn
+

(
x + n+1

2

)

1

∗ ∗…
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 Symmetric B-splines

B-spline basis functions

Causal B-spline of degree n

βn
+(x) = β0

+ ∗ β0
+ ∗ · · · ∗ β0

+︸ ︷︷ ︸
(n + 1) times

(x), β0
+(x) =





1, x ∈ [0, 1)

0, otherwise.

Key properties

Compact support: shortest polynomial spline of degree n

Positivity

Piecewise polynomial

Smoothness: Hölder continuous of order n

Symmetric B-spline of degree n

βn(x) = βn
+

(
x + n+1

2

)
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analog signal discrete signal
(B-spline coefficients)
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B-spline representation

Basis functions
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Cubic spline (n=3)
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B-spline representation

V =

{
s(x) : Dn+1{s(x)} =

∑

k∈Z
a[k]δ(x− k)

}
∩ L2

Derivative operator: D = d
dx

Theorem: Every cardinal spline, s(x) ∈ V , has a unique and stable

representation in terms of its B-spline expansion

s(x) =
∑

k∈Z
c[k] βn

+(x− k)

Theorem (Schoenberg, 1946)

Every cardinal polynomial spline, s(x), has a unique and stable representation in
terms of its B-spline expansion

s(x) =
∑

k∈Z
c[k] βn

+(x− k)

8

B-spline representation

V =

{
s(x) : Dn+1{s(x)} =

∑

k∈Z
a[k]δ(x− k)

}
∩ L2

Derivative operator: D = d
dx

Theorem: Every cardinal spline, s(x) ∈ V , has a unique and stable

representation in terms of its B-spline expansion

s(x) =
∑

k∈Z
c[k] βn

+(x− k)

In modern terminology: {βn
+(x− k)}k∈Z forms a Riesz basis.

8



Discrete operator (finite difference)

Continuous operator (derivative)

The lego revisited

9

"Continous operator 
Discrete operator


Construction of the B-spline of degree 0

Step function: x0
+ = D−1{δ(x)}

β0
+(x) = x0

+ − (x− 1)0+ = ∆1
+D−1{δ(x)}

βn
+(x) = ∆n+1

+ D−(n+1){δ(x)} =
∆n+1

+ xn
+

n!

β̂n
+(ω) =

(
1− e−jω

jω

)n+1

=
(1− e−jω)n+1

(jω)n+1

∀f ∈ S′, ∆m
+f(x) = βm−1

+ ∗Dmf(x)

Dmβn
+(x) = ∆m

+βn−m
+ (x)

4
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4

Differential operators

D{·} =
d
dx

F←→ jω

Dm{·} F←→ (jω)m

∆+{·} F←→ 1− e−jω

∆m
+{·} F←→ (1− e−jω)m

4

Differential operators

D{·} =
d
dx

F←→ jω

Dm{·} F←→ (jω)m

∆+{·} F←→ 1− e−jω

∆m
+{·} F←→ (1− e−jω)m

4

"Fourier domain formula

The lego

D{·} =
d
dx

F←→ jω

∆+{·} F←→ 1− e−jω

β̂0
+(ω) =

1− e−jω

jω

5



B-splines: differential interpretation
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"Continuous operators 
Discrete operators
Derivatives
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 B-spline construction
x0

+ = D−1{δ(x)} (Step function)

β0
+(x) = ∆1

+D−1{δ(x)} = x0
+ − (x− 1)0+
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+ (x)

4

1 2 3 4 5

1

One-sided power function:

Green function of Dn+1

Dn+1{ρ(x)} = δ(x) =⇒ ρ(x) = D−(n+1){δ(x)} =
xn

+

n!
(impulse response of (n + 1)-fold integrator)

One-sided power function

xn
+ =





xn, x ≥ 0

0, x < 0

3

Finite differences



B-splines: Dilation properties
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m-scale relation

Dilation by a factorm

βn
+(x/m) =

∑

k∈Z
hn

m[k]βn(x− k) with Hn
m(z) =

1
mn

(
m−1∑

k=0

z−k

)n+1

Piecewise constant case (n = 0)

H0
m(z) = 1 + z−1 + · · · z−(m−1)

(Moving sum filter)

Dyadic case (m = 2)

Hn
2 (z) = 2

(
1 + z−1

2

)n+1

=
1
2n

n+1∑

k=0

(
n + 1

k

)
z−k

(Binomial filter)

5

m-scale relation

Dilation by a factorm

βn
+(x/m) =

∑

k∈Z
hn

m[k]βn(x− k) with Hn
m(z) =

1
mn

(
m−1∑

k=0

z−k

)n+1

Piecewise constant case (n = 0)

H0
m(z) = 1 + z−1 + · · · z−(m−1)

(Moving sum filter)

Dyadic case (m = 2)

Hn
2 (z) = 2

(
1 + z−1

2

)n+1

=
1
2n

n+1∑

k=0

(
n + 1

k

)
z−k

(Binomial filter)

5

1 1 1 1 1

m-scale relation

Dilation by a factorm

βn
+(x/m) =

∑

k∈Z
hn

m[k]βn
+(x− k) with

Hn
m(z) =

1
mn

(
m−1∑

k=0

z−k

)n+1

Piecewise constant case (n = 0)

H0
m(z) = 1 + z−1 + · · · z−(m−1)

(Moving sum filter)

Applications: fast spline-based algorithms

Zooming

Smoothing

Multi-scale processing

Wavelet transform

5



Dyadic case: Wavelets
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1 1

2

Dyadic case: wavelets

Dilation by a factor of 2

βn
+(x/2) =

∑

k∈Z
hn

2 [k]βn
+(x− k)

Binomial filter

Hn
2 (z) = 2

(
1 + z−1

2

)n+1

=
1
2n

n+1∑

k=0

(
n + 1

k

)
z−k

Example: piecewise linear splines

6

Dyadic case: wavelets

Dilation by a factor of 2

βn
+(x/2) =

∑

k∈Z
hn

2 [k]βn
+(x− k)

Binomial filter

Hn
2 (z) =

1
2n

(
1 + z−1

)n+1 =
1
2n

n+1∑

k=0

(
n + 1

k

)
z−k

Example: piecewise linear splines

17



continuous-space image image array
(B-spline coefficients)

Compactly supported
basis functions

B-spline representation of images
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
Symmetric, tensor-product B-splines


Multidimensional spline function

B-spline representation of images

Symmetric, tensor-product B-splines

βn(x1, · · · , xd) = βn
+(x1)× · · ·× βn

+(xd)

Multidimensional spline functions

s(x1, · · · , xd) =
∑

(k1,···kd)∈Zd

c[k1, · · · , kd] βn(x1 − k1, · · · , xd − kd)

15

B-spline representation of images

Symmetric, tensor-product B-splines

βn(x1, · · · , xd) = βn(x1)× · · ·× βn(xd)

Multidimensional spline functions

s(x1, · · · , xd) =
∑

(k1,···kd)∈Zd

c[k1, · · · , kd] βn(x1 − k1, · · · , xd − kd)

15
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SPLINE-BASED IMAGE PROCESSING

 Spline fitting: overview
 interpolation
 approximation

 Designing simple, efficient algorithms
 B-spline interpolation
 Fast multi-scale processing

 Applications



Spline fitting: Overview
"B-spline representation:

"Exact fit: interpolation (reversible)

Spline fitting

s(x) =
∑

k∈Z
c[k]βn(x− k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] such that min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{
∑

k∈Z
|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

13

Interpolation
algorithm

Spline fitting
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"Regularized fit: smoothing splines

"Least squares approximation: spline projectors
"Generalized sampling theory

"Multi-scale approximation (resizing, pyramids, wavelets)



Regularized fit: Smoothing splines
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"B-spline representation:

"Smoothing splines
Smoothing 
algorithm

Spline fitting

s(x) =
∑

k∈Z
c[k]βn(x− k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] such that min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{
∑

k∈Z
|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}
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Discrete, noisy input:

Spline fitting

s(x) =
∑

k∈Z
c[k]βn(x − k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] = 〈f, ϕ̃(·/a − k)〉 such that

min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{
∑

k∈Z
|f [k] − s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}
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Theorem: The solution (among all functions) of the smoothing spline problem

min
s∈W m

2

{
∑

k∈Z
|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

is a cardinal spline of degree 2m− 1. Its coefficients c[k] = hλ ∗ f [k] can be
obtained by suitable digital filtering of the input samples f [k].

Special case: the draftman’s spline

The minimum curvature interpolant is obtained by settingm = 2 and λ → 0.
It is a cubic spline !

14

"Special case: the draftman’s spline

Theorem: The solution (among all functions) of the smoothing spline problem

min
s(x)

{
∑

k∈Z
|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

is a cardinal spline of degree 2m− 1. In addition, its coefficients c[k] = hλ ∗ f [k]
can be obtained by suitable digital filtering of the input samples f [k].

Special case: the draftman’s spline

The minimum curvature interpolant is obtained by settingm = 2 and λ → 0.
It is a cubic spline !

18



Smoothing splines: Example

17

"Efficient implementation: separable, recursive filtering

Spline fitting

s(x) =
∑

k∈Z
c[k]βn(x− k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Smoothing with increasing values of λ

19



Least squares fit: Multi-scale approximation
 Spline space at scale a

Sampling 
algorithm

Spline fitting

s(x) =
∑

k∈Z
c[k]βn(x− k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Analog input f(x) c[k] such that min
s∈Va

‖f − s‖2
L2

Noisy discrete input f [k] = s(k) + n[k] such that

min
s∈W m

2

{
∑

k∈Z
|f [k]− s(k)|2 + λ

∫ +∞

−∞
|Dms(x)|2dx

}

13

Spline fitting

s(x) =
∑

k∈Z
c[k]βn(x − k)

Goal: Determine c[k] such that s(x) is a ”good” representation of our signal

Discrete input f [k] c[k] such that s(x)|x=k = f [k]

Spline space at scale a

Va =

{
s(x) =

∑

k∈Z
c[k]βn

a (x − ak) : c[k] ∈ "2

}

Rescaled basis function: βn
a (x) := βn

(
x
a

)

Dual B-spline: β̃n
a (x) such that 〈β̃n

a (x),βn
a (x − ak)〉 = δ[k]

Minimum error spline approximation at scale a

Continuous-space input f(x) c[k] = 〈f, β̃n
a (· − ak)〉 such that

min
s∈Va

‖f − s‖2
L2
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Spline fitting
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 Minimum error approximation at scale a

Spline space at scale a

Va =

{
s(x) =

∑

k∈Z
c[k]βn

a (x − ak) : c[k] ∈ "2

}

Rescaled basis function: βn
a (x) := βn

(
x
a

)

Dual B-spline: β̃n
a (x) such that 〈β̃n

a (x),βn
a (x − ak)〉 = δ[k]

Minimum error spline approximation at scale a
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Spline approximation: LS resizing 
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Even though splines are quite 
sophisticated mathematically,

... they can be implemented
simply and efficiently !

20



B-spline interpolation made simple
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 Discrete B-spline kernelsB-spline interpolation

bn
1 [k] = βn(x)|x=k

z←→ Bn
1 (z) =

!n/2"∑

k=−!n/2"

βn(k)z−k

f(x)|x=k =
∑

k∈Z
c[l]βn(k − l) = (bn

1 ∗ c) [k] ⇒ c[k] =
(
(bn

1 )−1 ∗ f
)

[k]

(bn
1 )−1 [k] z←→ 6

z + 4 + z−1
=

(1− α)2

(1− αz)(1− αz−1)
1

1− αz−1

1
1− αz

7

 B-spline interpolation: inverse filter solution

B-spline interpolation

bn
1 [k] = βn(x)|x=k

z←→ Bn
1 (z) =

!n/2"∑

k=−!n/2"

βn(k)z−k

f [k] =
∑

k∈Z
c[l] βn(x− l)|x=k = (bn

1 ∗ c) [k] ⇒ c[k] = (bn
1 )−1 ∗ f [k]

(bn
1 )−1 [k] z←→ 6

z + 4 + z−1
=

(1− α)2

(1− αz)(1− αz−1)
1

1− αz−1

1
1− αz

7

 Efficient recursive implementation

B-spline interpolation

bn
1 [k] = βn(x)|x=k

z←→ Bn
1 (z) =

!n/2"∑

k=−!n/2"

βn(k)z−k

f [k] =
∑

k∈Z
c[l] βn(x− l)|x=k = (bn

1 ∗ c) [k] ⇒ c[k] = (bn
1 )−1 ∗ f [k]

(bn
1 )−1 [k] z←→ 6

z + 4 + z−1
=

(1− α)2

(1− αz)(1− αz−1)
1

1− αz−1

1
1− αz

7

(symmetric exponential)

B-spline interpolation
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1 (z) =
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1 ∗ c) [k] ⇒ c[k] = (bn
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(bn
1 )−1 [k] z←→ 6

z + 4 + z−1
=

(1− α)2

(1− αz)(1− αz−1)
1

1− αz−1

1
1− αz

7

B-spline interpolation

bn
1 [k] = βn(x)|x=k

z←→ Bn
1 (z) =

!n/2"∑

k=−!n/2"

βn(k)z−k

f [k] =
∑

k∈Z
c[l] βn(x− l)|x=k = (bn

1 ∗ c) [k] ⇒ c[k] = (bn
1 )−1 ∗ f [k]

(bn
1 )−1 [k] z←→ 6

z + 4 + z−1
=

(1− α)2

(1− αz)(1− αz−1)
1

1− αz−1

1
1− αz

7

Cascade of first order recursive filters

causal anti-causal

1/6 1/6

4/6
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Generic C-code  (splines of any degree n)

void    ConvertToInterpolationCoefficients (
            double c[ ],   long DataLength,    double  z[ ],   long NbPoles,   double  Tolerance)
 {double Lambda = 1.0; long n, k;
    if (DataLength == 1L) return;
    for (k = 0L; k < NbPoles; k++) Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[k]);
    for (n = 0L; n < DataLength; n++) c[n] *= Lambda;
    for (k = 0L; k < NbPoles; k++) {
        c[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance);
        for (n = 1L; n < DataLength; n++) c[n] += z[k] * c[n - 1L];
        c[DataLength - 1L] = (z[k] / (z[k] * z[k] - 1.0))
        
 * (z[k] * c[DataLength - 2L] + c[DataLength - 1L]);
        for (n = DataLength - 2L; 0 <= n; n--) c[n] = z[k] * (c[n + 1L]- c[n]); }
}

double  InitialCausalCoefficient (
            double  c[ ],  long    DataLength,  double  z,  double  Tolerance) 
{  double Sum, zn, z2n, iz; long n, Horizon;
    Horizon = (long)ceil(log(Tolerance) / log(fabs(z)));
    if (DataLength < Horizon) Horizon = DataLength;
    zn = z; Sum = c[0];
    for (n = 1L; n < Horizon; n++) {Sum += zn * c[n]; zn *= z;}
    return(Sum);
}

 Main recursion

 Initialization
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Spline interpolation
 Equivalent forms of spline representation

 Cardinal (or fundamental) spline

Finite-cost implementation of an infinite impulse response 
interpolator !

-5 -4 -3 -2 -1 1 2 3 4 5

1

s(x) =
∑

k∈Z
c[k]βn(x− k) =

∑

k∈Z

(
s(k) ∗ (bn

1 )−1[k]
)
βn(x− k)

=
∑

k∈Z
s(k)ϕn

int(x− k)

ϕn
int(x) =

∑

k∈Z
(bn

1 )−1[k] βn(x− k)

7

s(x) =
∑

k∈Z
c[k]βn(x− k) =

∑

k∈Z

(
s(k) ∗ (bn

1 )−1[k]
)
βn(x− k)

=
∑

k∈Z
s(k)ϕn

int(x− k)

ϕn
int(x) =

∑

k∈Z
(bn

1 )−1[k] βn(x− k)

7
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Limiting behavior
 Spline interpolator

Impulse response Frequency response

+∞

1

2

ϕn
int(x) F←→ Hn(ω) =

(
sin(ω/2)

ω/2

)n+1 1
Bn

1 (ejω)

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the

degree goes to infinity:

lim
n→∞

ϕn
int(x) = sinc(x), lim

n→∞
Hn(ω) = rect

( ω

2π

)

(in all Lp-norms)

7

0.5 1 1.5 2

1

0.5

(in all Lp-norms )

 Asymptotic property

Includes Shannon’s theory as a particular case !

ϕn
int(x) F←→ Hn(ω) =

(
sin(ω/2)

ω/2

)n+1 1
Bn

1 (ejω)

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the

degree goes to infinity:

lim
n→∞

ϕn
int(x) = sinc(x), lim

n→∞
Hn(ω) = rect

( ω

2π

)

(in all Lp-norms)

7

(Aldroubi et al., Sig. Proc., 1992)
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Geometric transformation of images
 2D separable model

2D re-sampling2D filtering
(separable)

 Applications
zooming, rotation, re-sizing, re-formatting, warping

Geometric transformation

f(x, y) =
k1+n+1∑

k=k1

l1+n+1∑

l=l1

c[k, l] βn(x− l) βn(y − l)

f [k, l] c[k, l] (x, y)

5

Geometric transformation

f(x, y) =
k1+n+1∑

k=k1

l1+n+1∑

l=l1

c[k, l] βn(x− l) βn(y − l)

f [k, l] c[k, l] (x, y)

5

Geometric transformation

f(x, y) =
k1+n+1∑

k=k1

l1+n+1∑

l=l1

c[k, l] βn(x− l) βn(y − l)

f [k, l] c[k, l] (x, y)

5
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Cubic spline coefficients in 2D

Digital filter
(recursive, 

   separable)

Geometric transformation

f(x, y) =
k1+n+1∑

k=k1

l1+n+1∑

l=l1

c[k, l] βn(x− l) βn(y − l)

f [k, l] c[k, l] (x, y)

Pixel values f [k, l]

B-spline coefficients c[k, l]

5

Geometric transformation

f(x, y) =
k1+n+1∑

k=k1

l1+n+1∑

l=l1

c[k, l] βn(x− l) βn(y − l)

f [k, l] c[k, l] (x, y)

Pixel values f [k, l]

B-spline coefficients c[k, l]

5
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Interpolation benchmark
Cumulative rotation experiment: the best algorithm wins !

Truncated sinc Cubic splineTruncated sinc Cubic spline

Bilinear Windowed-sinc Cubic spline
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High-quality image interpolation

Thévenaz et al., Handbook of Medical Image Processing, 2000
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1) Pyramid or tree algorithms

Three alternative methods for the fast evaluation ofThree alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17
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Binomial filter

1 11 1 1 1 1 1

2) Recursive filtering (iterated moving average)

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
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17
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(Unser et al., IEEE Trans. PAMI, 1993)

Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity
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+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

(Unser et al., IEEE Trans. Sig. Proc, 1994)
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Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite difference with step a: ∆a{f(x} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}

17

Challenge: O(N) evaluation of

multiple
integration

weighted 
differences

Running sums Interpolation + filtering
f(x) ∗ βn

+(x/a) = 1
an ∆n+1

a D−(n+1){f(x)}

Principle: The integral of a spline of degree n is a spline of degree n + 1.

18


Generalization

f(x) ∗ βn
+(x/a) = 1

an ∆n+1
a D−(n+1){f(x)}

Principle: The integral of a spline of degree n is a spline of degree n + 1.

18

3) Differential approach
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Three alternative methods for the fast computation of: f(x) ∗ βn(x/a)

O(N) complexity

Pyramid and tree algorithms

a = 2i

Hn
2 (z) ↓ 2

Recursive filtering (iterative moving average) a = m ∈ Z+

sm[k] = sm[k − 1] + f [k]− f [k −m]

Differential: integration and weighted differences

a ∈ R+

Integral (or primitive): F (x) =
∫ x
−∞ f(t)dt = D−1{f(x)}

Finite-difference with step a: ∆a{f(x)} = f(x)− f(x− a)

f(x) ∗ β0
+(x/a) = F (x)− F (x− a) = ∆1

aD−1{f(x)}
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Application: Image resizing

 Spline projector

Text

SNR=22.94 dB

"Interpolation
"n=1

"Resizing algorithm

"scaling= 70%



Application: Image resizing (LS)

(Munoz et al., IEEE Trans. Imag. Proc, 2001)

Text

"Orthogonal projector
"n=1

"Resizing algorithm

"scaling= 70%

SNR=28.359 dB

+ 5.419 dB
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Splines: More applications
 Sampling and interpolation

 Interpolation, re-sampling, grid conversion
 Image reconstruction
 Geometric correction

 Feature extraction
 Contours, ridges
 Differential geometry
 Image pyramids
 Shape and active contour models 

 Image matching
 Stereo
 Image registration

(multi-modal, rigid body or elastic)

 Motion analysis
 Optical flow
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SPLINES: FURTHER PERSPECTIVES

One-sided power function:

  M

Fractional B-splines

β0
+(x) = ∆+x0

+
F←→ 1− e−jω

jω

βα
+(x) =

∆α+1
+ xα

+

Γ(α + 1)
F←→

(
1− e−jω

jω

)α+1

One-sided power function: xα
+ =





xα, x ≥ 0

0, x < 0

Properties
{
βα

+(x− k)
}

k∈Z is a valid Riez basis for α < − 1
2

Convolution property: βα1
+ ∗ βα2

+ = βα1+α2
+
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(
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jω
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+ =





xα, x ≥ 0

0, x < 0

Properties
{
βα

+(x− k)
}

k∈Z is a valid Riez basis for α < − 1
2

Convolution property: βα1
+ ∗ βα2

+ = βα1+α2
+

6

  M

(Unser & Blu, SIAM Rev, 2000)


Fractional B-splines
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FURTHER PERSPECTIVES


Splines and wavelet theory

€ 

∗

scaling function regular part irregular part

distribution

Factorization of any scaling function (or wavelet) of order γ:

ϕ(x) =
(
βγ−1

+ ∗ ϕ0

)
(x)

where βα
+ with α = γ − 1: regular, B-spline part

ϕ0 ∈ S′: irregular. distributional part

Fractional splines are the optimal functions for the estimation of fractal processes

with 1/ω2H+1 spectral decay (fractional Brownian motion)

26

B-spline: explains all
fundamental properties

(Unser and Blu, IEEE-SP, 2003)


Splines and fractals

Factorization of any scaling function (or wavelet) of order γ:

ϕ(x) =
(
βγ−1

+ ∗ ϕ0

)
(x)

where βα
+ with α = γ − 1: regular, B-spline part

ϕ0 ∈ S′: irregular. distributional part

Splines are the optimal functions for the estimation of fractal processes

with 1/ω2H+1 spectral decay (fractional Brownian motion)

28
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general case:
compact support: 

n < γ ≤ n +1
γ = n +1

Splines: The key to wavelet theory

(Unser and Blu, IEEE-SP, 2003)

Sobolev smoothness
       

B-spline factorization:
   

Approximation order:
    

Polynomial reproduction
degree: 

    Vanishing moments:

⇔

  c

⇓ ⇑

⇓ γ ≥ s

Multi-scale differentiator
    

∂ sϕ ∈L2

ϕ = β+
γ −1 ∗ ϕ0 f − Pa f L2

=O(a γ ) ˜ ̂ ψ (ω) ∝ (− jω) γ ,  ω→ 0

n = γ −1 

x p∫ ˜ ψ (x)dx = 0,  p = 0,…, n

⇔

(Strang-Fix, 1971)
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CONCLUSION
 Distinctive features of splines

 Simple to manipulate
 Smooth and well-behaved
 Excellent approximation properties
 Multiresolution properties
 Fundamental nature    (Green functions of derivative operators)

 Splines and image processing
 A story of avoidance and, more recently, love…
 Best cost/performance tradeoff
 Many applications …

 Unifying signal processing formulation
 Tools: digital filters, convolution operators
 Efficient recursive-filtering solutions
 Flexibility: piecewise-constant to bandlimited
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The end: Thank you!
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