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SAMPLING: 50+ years after Shannon

Analog/physical world Discrete domain
4 2\
Continuous signals: L (R)

sampling

Signal subspace
+ " .
interpolation

Discrete signals: EQ(Z)}

= reconstruction algorithms
= signal processing

= image analysis

Introduction: Shannon revisited

Sampling preliminaries
Review paper on sampling

Sampling revisited

Quantitative approximation theory )
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Shannon’s sampling reinterpreted

Generating function: ¢(x) = sinc(x)

Subspace of bandlimited functions: V' (y) = span{y(z — k) }rez

analysis synthesis
~ sampllng
f(z) € Ly f(x)
- _ C
anti-aliasing _ _
filter Z 5z — k) ideal filter
kezZ

Analysis:  f(k) = (sinc(x — k), f(x))

Synthesis: f Z f ) sinc(x — k)

keZ

m Orthogonal basis: (sinc(x — k), sinc(z — 1)) = 0y [Hardy, 1941]

Orthogonal projection operator ! s

Generalized sampling: roadmap

m Nonideal acquisition system

sampling Measurements:
f(z) € L2(R)
__, acquisition 7 e g[k:] = (h * f)(l’)\x:k
device
Goal: Specify ¢ and the reconstruction algorithm Reconstruction
so that f(z) is a good approximation of f(z) algorithm
Continuous-domain model signal coefficients
f(@) = clklp(z - k) <> {clk]} ez
her Riesz-basis property Interpolation
H problem

Discrete signal

{f[E}hez
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SAMPLING PRELIMINARIES

= Function and sequence spaces

Smoothness conditions and sampling

Shift-invariant subspaces

Equivalent basis functions
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Continuous-domain signals

Mathematical representation: a function of the continuous variable x € R

m Lebesgue’s space of finite-energy functions

= Ly(R) = {f(x),x eR: /xeR |f(2)|2dz < —I—oo}

m Lo-inner product: (f, g) :/ IR{f(ac)g*(ac)dgc
EAS

1/2
« Lynorm: [|f]1z, = ( / |f<x>2dx) =TT
rz€eR
m Fourier transform
= Integral definition: f(w) :/ f(z)e “"dx
xER
1

= Parseval relation: || f||7, = 7 |f(w)2dw
weR
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Discrete-domain signals

Mathematical representation: a sequence indexed by the discrete variable k € Z

m Space of finite-energy sequences

w 0y(Z) = {a[k],k €Z:Y lalk]]® < +oo}

kEZ

1/2
u ly-norm: ||alle, = <Z |a[k”2>

kEZ

m Discrete-time Fourier transform
= z-transform: A(z) = Z alk]z=*
kEZ

= Fourier transform: A(e’*) = " a[kle 7"
keZ
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Smoothness conditions and sampling

m Sobolev’s space of order s € R*
Wi®) = { ) e ks [ (4P de < +oo)
weR
f and all its derivatives up to (fractional) order s are in Ly

m Mathematical requirements for ideal sampling
= The input signal f(z) should be continuous

= The samples f[k] = f(z)|.=x should be in /5

Theorem

Let f(x) € W5 with s > 5. Then, the samples of f at the integers, f[k] = f(z)|s=,
are in {5 and

F(e?*) = Zf[k‘]e*j”k = Z f(w + 27n) a.e.

keZ nez

Generalized (almost everywhere) version of Poisson’s formula [Blu-U., 1999]

1-8




Shift-invariant spaces

Integer-shift-invariant subspace associated with a generating function ¢ (e.g., B-spline):

Vie) = {f(x) =) clkp(z—k):ce 82(2)}

kEZ

Generating function: ¢ (z) — @(w)—/ o(z)e 1 da
z€R

m Autocorrelation (or Gram) sequence

aplk] £ (0()p(- = k) T A(?) = Y [ + 2mn)
nez
m Riesz-basis condition

Positive-definite Gram sequence: 0 < A < A, (e’*) < B* < 4oc
A-lelle, < [[Xgez clkle(@ —K)||,, < B-lclle.

1711,

Orthonormal basis < ay[k] =6, & A () =1 & || = | fllz, (Parseval)
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Example of sampling spaces

m Piecewise-constant functions

p(z) = rect(z) = f°(x) aylk] =96, <  the basis is orthonormal

m bandlimited functions

Z |p(w+27n)|> =1 < the basis is orthonormal
neZ

o(x) = sinc(x)
m Polynomial splines of degree n

p(z) = "(x) = (8°* 87 3%)(2)
—_———

(n+1) times

-2 -1 1 2

Autocorrelation sequence:  agn [k] = (8" * 7)(x)|z=r = B2 TL(k)

Proposition. The B-spline of degree n, 5" (z), generates a Riesz basis with lower and
upper Riesz bounds A = inf,{Agn (e7¥)} > (%>n+1 and B = sup,, {Agn (e7¥)} = 1.
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Equivalent and dual basis functions

m Equivalent basis functions:

Peq(T) =

> plkle(z — k)

kEZ

Proposition. Let ¢ be a valid (Riesz) generator of V() = span{p(z — k)}rez.
Then, ¢4 also generates a Riesz basis of V() iff.

0<Cy <|PEw)|? <Cy < +00

m Dual basis function

Unique function pe V() such that (¢(x), ¢

(almost everywhere)

(z —k)) =0 (biorthogonality)

Together, ¢ and <Op operate as if they were an orthogonal basis; i.e., the orthogonal

projector of any function f € L, onto V(i) is

Py f(@) = D (£, (- — k) (e — k)

kEZ c[k]

given by

Example: four equivalent

m Cubic B-spline: ¢(z) = 3%(x)
1

0.8

0.6

0.4

0.2

-2 0 2 4

Compact support

m Interpolating spline: ;. (x)
1

0.8

0.6

0.4

0.2

T/ o \A

-0.2

Interpolation: (pint(z),0(z — k)) = d5

4

6

cubic-spline bases

m Dual spline: &(m)

25
2
15
;
05
-05
-1

o

Biorthogonality: (¢ (z), ¢(x — k)) = dx

m Orthogonal spline: Yorno ()

1.2

1
0.8
0.6
0.4
0.2

A\ ~
-4 A/ o \ 2 4 6

Orthogonality: (Portho (), Portho(® — k)) = %

-0.2




SAMPLING REVISITED

= Generalized sampling system

= Generalized sampling theorem
= Consistent sampling: properties
= Performance analysis

= Applications

Generalized sampling system

acquisition digital
device correction filter reconstruction

sampling -

f(x)

f(z) € Lo — p1(—2x) —>®—Cl> Qz) —— oo(r) —
> 6z —k)

keZ

= p1(—a): prefilter (acquisition system)
= p2(x): generating function (reconstruction subspace)

m Constraints

= Consistent measurements: (f, o1 (- — k)) = c1[k] = (f, o1(- — k), Vk € Z

= Linearity and integer-shift invariance

Digital filtering solution: f(z) = Z (q*c1)[k] p2(z — k)

nez calk]




Generalized sampling theorem

Cross-correlation sequence: a12[k] = (p1(- — k), ¢2(+)) RN Aqa(ed@)

m Consistent sampling theorem

Let Aj5(e7¥) > m > 0. Then, there exists a unique solution f € V(i) that is
consistent with f in the sense that ¢; [k] = (f,¢1(- — k)) = (f, o1(- — k))

F@) = Parif@) = S (axe)klpa(z— k) with Q(2) !

=  Yrez oaz[k]z7F

m Geometric interpretation

f =Pa.1f is the projection of f onto V' (2) perpendicular to V (p1).

V(e1)

Orthogonality of error:

<f7f¢991('7k)> :(fv@l('fk»i(fv@l(‘*k)):0

N ci[k] c1[k]
Pof F P f V(p2) (consistency)

Consistent sampling: properties

V(1)

f =Py, f: oblique projection onto V(¢5) perpendicular to V(¢;)

Pof ‘\“\\quf V(p2)

>

m Generalization of Shannon’s theorem
Every signal f € V(2) can be reconstructed exactly

= Flexibility and realism
- o1 and 5 can be selected freely

- They need not be biorthogonal (unlike wavelet pairs)

m Special case: least-squares approximation
w1 € Vips) = V(1) =V(p2) = Pai1 =Py (orthogonal projection)

Minimun-error approximation: f(z) = Py f(z) = Z (f, <opz(~ —k)) w2z — k)

REL T (crrq) ]
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Application 1: interpolation revisited

m Interpolation constraint

cilk] = f(@)]o=r = (6( — k), f)

m Interpolator = consistent ideal sampling system

= |deal sampler: ¢ (z) = d(x)
= Reconstruction function: o (z) = ¢(x)

= Cross-correlation: ai2[k] = (6(- — k), ¢(+)) =

m Reconstruction/interpolation formula

1
Gnle) = S e
c[k] 2 3 4 5
—_—~
flz) = Z (f *qnt)[k] p(z — k) Example: cubic-spline interpolant
keZ
= ) fIE] e — k) Gint (1) =D qint[k] p(z — k)
= =
1-17

Application 2: consistent image display

m Problem specification

= Ideal acquisition device: @1 (z,y) = sinc(x) - sinc(y)

» LCD display: w2 (x,y) = rect(x) - rect(y)

m Separable image-enhancement filter

) . 1
Aqa(e?¥) = Z SJ(w+2mn)po(w+ 2mn) =  Q(¥) = — =
NneZ simce (ﬂ)
15
125 /
1

01 02 03 04 05 27
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Performance analysis

V(e1)

General case: f(z) € Ly Ly >> V(p2)

V(p2)

« f =P, f is an approximation of f
= Reference solution: P, f (orthogonal projection)

= Performance depends on the “angle” between V (1) and V (¢2)

Theorem (approximation equivalence)

1

_ <|lf-P <
Vfe Ly|lf =Paf|| < |If 211f]l < cos 01

If = Pafl

Z OF(w + 2mn) o (w + 27n)
ne”Z

where  cosfis = inf

€|—m,m N A
v IS g+ 2m)2 [ 1w + 2mm)
nez nez

[Unser-Aldroubi, 1994]
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QUANTITATIVE APPROXIMATION THEORY

Order of approximation
= Fourier-domain prediction of the Lo-error

Strang-Fix conditions

= Spline case

= Asymptotic form of the error
Optimized basis functions (MOMS)
= Comparison of interpolators
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Order of approximation

m General “shift-invariant” space at scale a

T a=1
X
Va((p): {Sa(x)zzc[k]ﬁp (a—k) :CEEQ} /
kez r1 r2 T3 r4 \5 >
. . T a=2
m Projection operator /><><\
Vf € Lo, Paf:argsinei‘r}a If = sallL, - ” —

m Order of approximation
Definition
A scaling/generating function ¢ has order of approximation L iff.

vaW2L7 Hf_PafHL2 SC'G’L'”JC(L)HLz

Fourier-domain prediction of the L,-error

Theorem [Blu-U., 1999]
Let P, f denote the orthogonal projection of f onto V() (at scale a).
Then,

too 1/2
views, Ii-Pafla= ([ @PE(aG2)  +ofa)

— o0

where

+oo
Fourier-transform notation: f(w) :/ f(z)e 7“*dx

— 00




Strang-Fix conditions of order L

Let ¢(x) satisfy the Riesz-basis condition. Then, the following Strang-
Fix conditions of order L are equivalent:

k40

1) $(0) =1, and o™ (21k) = 0 for
(1) #(0) o\ (2mk) {nzOmL—l

(2) ¢(x) reproduces the polynomials of degree L—1; i.e., there exist
weights p,, [k] such that

x" :an[k]go(az—k),forn:O...L—1
keZ

@) VfeWs, |f —Pafllr, = O(ar)
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Polynomial splines

m Basis functions: causal B-splines 4

Bi(x) = (B % 69) ()

1, for0<z<1
ﬁg(x) B { 0, otherwise /
] . /

m Fourier-domain formula

Bi (w) = (1_j;jw)n+1

m Order of approximation

3127k + Aw) = O(|Aw|™ 1) for k # 0
— B has order of approximation L = n + 1
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Spline approximation

m Fourier approximation kernel
Y ko |87 (w + 2mk) |2

E n((,(}) — ~
! 8
0.8 > kez |0™ (w + 27k)[?
0.6 =1 Order: L=n+1
L=2
0.4 L.
0.2 mL=8
T w
+o0
m Link with Riemann’s zeta function ((2)=> n*
n=1

1
Zk#o |w+2mk)|2+2
> okez |B™(w + 27k) |2

.w2n+2 4 O(’(U|2n+4)

Bp(w) = [2sin(w/2)*"+?

20(2n + 2))

Spline reconstruction of a PET-scan

Piecewise constant
L=1

Cubic spline
L=4
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Asymptotic form of the error

Theorem [U.-Daubechies, 1997]
Let ¢ be an Lth order function. Then, asymptotically, as a — 0,

VieWs, |If —Poflle, =Cr-a” || fP| L,

where

+o0
1 . 2 (2L)
CL = EJ ’ Z ‘¢(L)(27m)| (= Esz)(!O))
n=1

m Special case: splinesof order L =n + 1

\ / 2 2L | B
C, ssplines = C 2L! (Bernoulli number of order 21)

Characteristic decay of the error for splines

predicted Lo approximation error (dB)

n=3

-120}
asymptotic mode

_140 Il Il Il Il Il
0.1 0.2 0.5 1 2 5 10
sampling step a

Least squares approximation of the function f(z) = e~ /2




Optimized basis functions (MOMS)

m Motivation

u Cost of prefiltering is negligible (in 2D and 3D)
= Computational cost depends on kernel size W

= Order of approximation is a strong determinant of quality

QUESTION: What are the basis functions with maximum order of approximation and
minimum support ?

L1
ANSWER: Shortest functions of order L (MOMS)  ¢rmoms(z) = Z arD* L1 ()
k=0

m Most interesting MOMS
= B-splines: smoothest (3%~ € C'“~1) and only refinable MOMS
= Shaum'’s piecewise-polynomial interpolants (no prefilter)

= OMOMS: smallest approximation constant C7,

1 d2 3
Foon(o) = ) + = L)
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Comparisons of cubic interpolators of size \W=4

0 T T T
Keys P
—-— cubic Lagrange o
-10F | — — - cubic spline P ]
——  cubic O'moms o g

m -20F b
=)
3
w
o 301 R
£
O
X
§ 40 - .
s -
3
5
o
w50 1

—60F |

_70 - / 1 1 1

0 /4 /2 3mn/4 4

angular frequency




CONCLUSION

= Generalized sampling
Unifying Hilbert-space formulation: Riesz basis, etc.

Approximation point of view:
projection operators (oblique vs. orthogonal)

Increased flexibility; closer to real-world systems
Generality: nonideal sampling, interpolation, etc...

= Quest for the “optimal” representation space
Not bandlimited ! (prohibitive cost, ringing, etc.)
Quantitative approximation theory: L2-estimates, asymptotics
Optimized functions: MOMS
Signal-adapted design ?

= Interpolation/approximation in the presence of noise
Regularization theory: smoothing splines
Stochastic formulation: hybrid form of Wiener filter
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