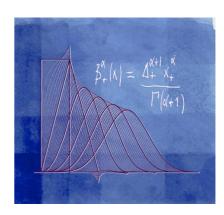


Representer theorems for ill-posed problems with sparsity constraints

Michael Unser Biomedical Imaging Group EPFL, Lausanne, Switzerland

Joint work with Julien Fageot, John-Paul Ward, and Harshit Gupta



BLISS Seminar, June 28, 2017, University of California, Berkeley.

OUTLINE

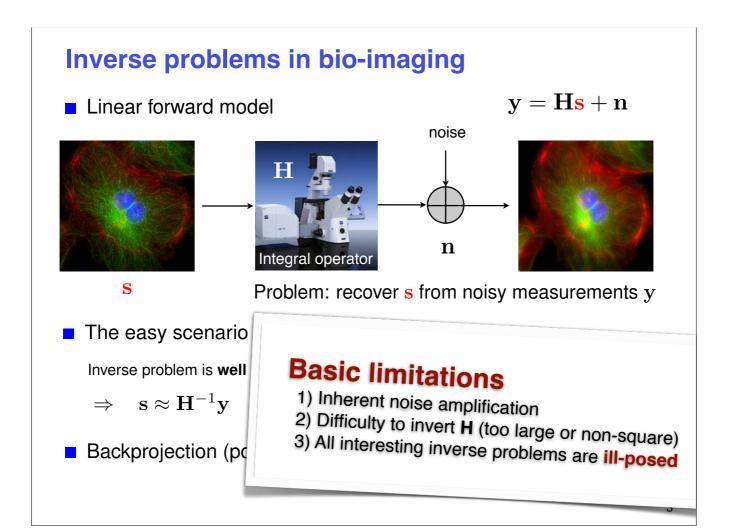
Linear inverse problems and regularization

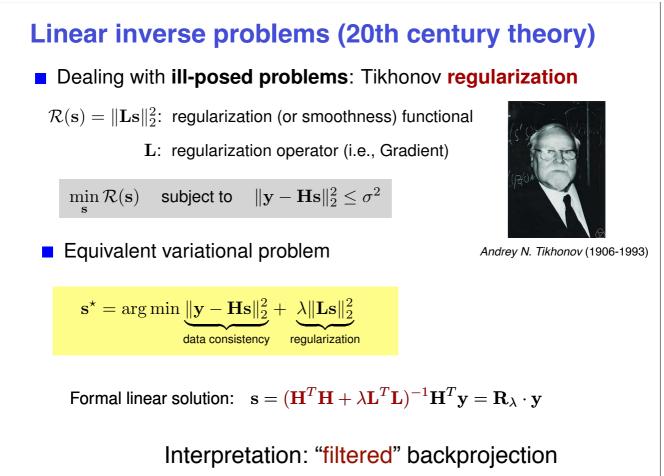
- Tikhonov regularization
- The sparsity (r)evolution
- Compressed sensing and l₁ minimization

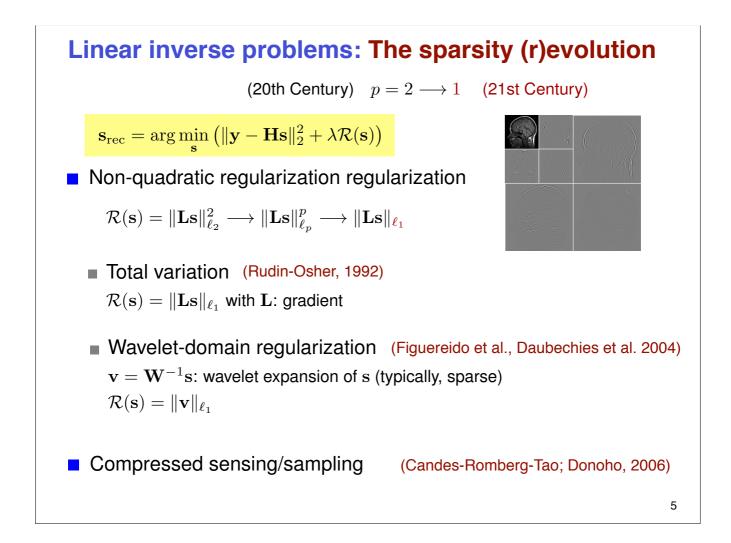
Part I: Discrete-domain regularization (l₂ vs. l₁)

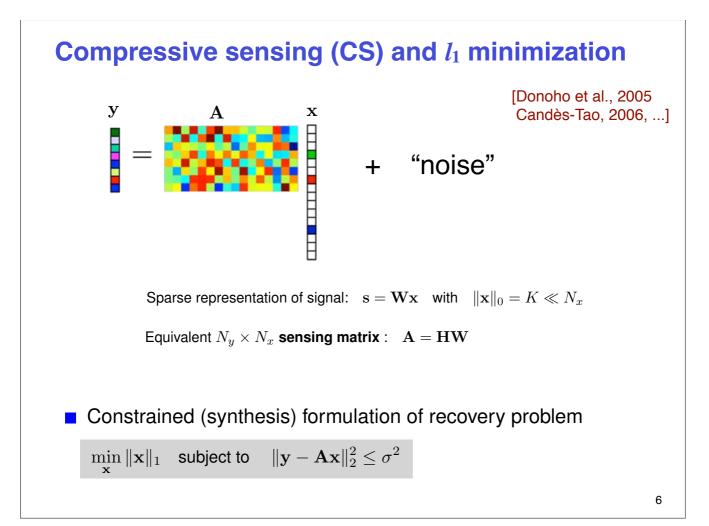
Part II: Continuous-domain regularization (L₂ vs. gTV)

- Classical *L*₂ regularization: theory of RKHS
- Splines and operators
- Minimization of gTV: the optimality of splines
- Enabling components for the proof
- Special case TV in 1D









CS: Three fundamental ingredients

7

1. Existence of sparsifying transform (W or L)

- Restricted isometry; few linearly dependent columns (spark)
- 3. Non-linear signal recovery (l_1 minimization)

CS: Examples of applications in imaging

- Magnetic resonance imaging (MRI) (Lustig, *Mag. Res. Im.* 2007) - Radio Interferometry (Wiaux, Notic. R. Astro. 2007) - Teraherz Imaging (Chan, Appl. Phys. 2008) - Digital holography (Brady, Opt. Express 2009; Marim 2010) - Spectral-domain OCT (Liu, Opt. Express 2010) (Arce, IEEE Sig. Proc. 2014) - Coded-aperture spectral imaging - Localization microscopy (Zhu, Nat. Meth. 2012) - Ultrafast photography (Gao, *Nature* 2014) 8

Classical regularized least-squares estimator

Linear measurement model:

 \Rightarrow

- $y_m = \langle \mathbf{h}_m, \mathbf{x} \rangle + n[m], \quad m = 1, \dots, M$
- \blacksquare System matrix of size $M\times N$: $\ \mathbf{H}=[\mathbf{h}_{1}\cdots\mathbf{h}_{M}]^{T}$

$$\mathbf{x}_{\text{LS}} = \arg\min_{\mathbf{x} \in \mathbb{R}^N} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_2^2$$

$$\mathbf{x}_{\text{LS}} = (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{I}_N)^{-1} \mathbf{H}^T \mathbf{y}$$
$$= \mathbf{H}^T \mathbf{a} = \sum_{m=1}^M a_m \mathbf{h}_m \quad \text{where} \quad \mathbf{a} = (\mathbf{H} \mathbf{H}^T + \lambda \mathbf{I}_M)^{-1} \mathbf{y}$$

Interpretation: $\mathbf{x}_{\text{LS}} \in \text{span}\{\mathbf{h}_m\}_{m=1}^M$

Lemma $(\mathbf{H}^T\mathbf{H} + \lambda \mathbf{I}_N)^{-1}\mathbf{H}^T = \mathbf{H}^T(\mathbf{H}\mathbf{H}^T + \lambda \mathbf{I}_M)^{-1}$

Generalization: constrained *l*₂ **minimization**

- Discrete signal to reconstruct: $x = (x[n])_{n \in \mathbb{Z}}$
- Sensing operator $H : \ell_2(\mathbb{Z}) \to \mathbb{R}^M$ $x \mapsto \mathbf{z} = H\{x\} = (\langle x, h_1 \rangle, \dots, \langle x, h_M \rangle) \text{ with } h_m \in \ell_2(\mathbb{Z})$
- Closed convex set in measurement space: $\mathcal{C} \subset \mathbb{R}^M$

Example: $C_{\mathbf{y}} = \{ \mathbf{z} \in \mathbb{R}^M : \|\mathbf{y} - \mathbf{z}\|_2^2 \le \sigma^2 \}$

Representer theorem for constrained ℓ_2 minimization

(P2)
$$\min_{x \in \ell_2(\mathbb{Z})} \|x\|_{\ell_2}^2$$
 s.t. $H\{x\} \in \mathcal{C}$

The problem (P2) has a unique solution of the form

$$x_{\mathrm{LS}} = \sum_{m=1}^{M} a_m h_m = \mathrm{H}^*\{\mathbf{a}\}$$

with expansion coefficients $\mathbf{a} = (a_1, \cdots, a_M) \in \mathbb{R}^M$.

(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016) 11

Constrained l_1 **minimization** \Rightarrow **sparsifying effect**

- Discrete signal to reconstruct: $x = (x[n])_{n \in \mathbb{Z}}$
- Sensing operator $H : \ell_1(\mathbb{Z}) \to \mathbb{R}^M$ $x \mapsto \mathbf{z} = H\{x\} = (\langle x, h_1 \rangle, \dots, \langle x, h_M \rangle) \text{ with } h_m \in \ell_\infty(\mathbb{Z})$
- Closed convex set in measurement space: $\mathcal{C} \subset \mathbb{R}^M$

Representer theorem for constrained ℓ_1 minimization

P1)
$$\mathcal{V} = \arg\min_{x \in \ell_1(\mathbb{Z})} \|x\|_{\ell_1} \text{ s.t. } H\{x\} \in \mathcal{C}$$

is convex, weak*-compact with extreme points of the form

$$x_{\text{sparse}}[\cdot] = \sum_{k=1}^{K} a_k \delta[\cdot - n_k] \quad \text{with} \quad K = \|x_{\text{sparse}}\|_0 \le M.$$

If CS condition is satisfied, then solution is unique

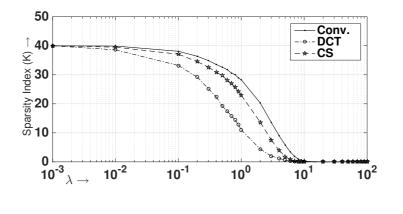
(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016)

Controlling sparsity

Measurement model: y_n

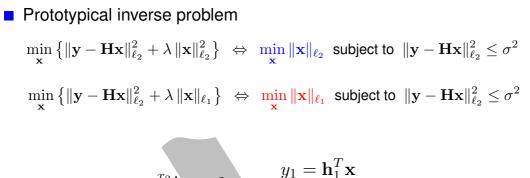
$$m_n = \langle h_m, x \rangle + n[m], \quad m = 1, \dots, M$$

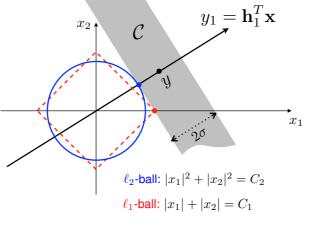
$$x_{\text{sparse}} = \arg\min_{x \in \ell_1(\mathbb{Z})} \left(\sum_{m=1}^M |y_m - \langle h_m, x \rangle|^2 + \lambda ||x||_{\ell_1} \right)$$

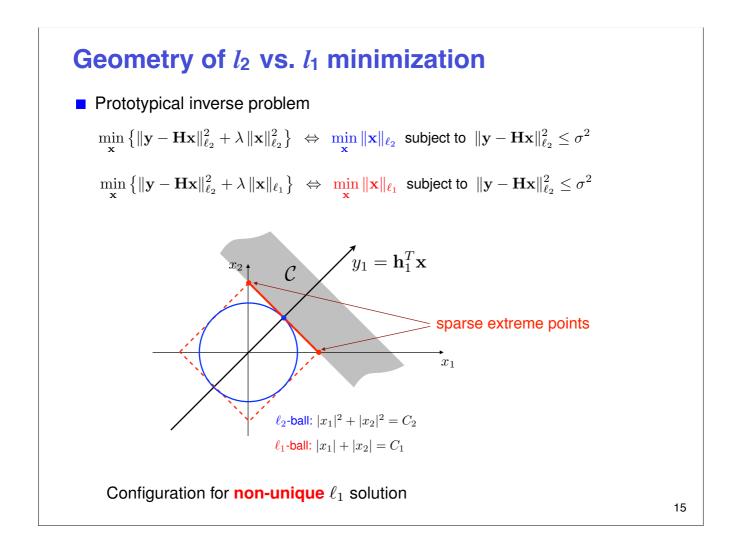


13

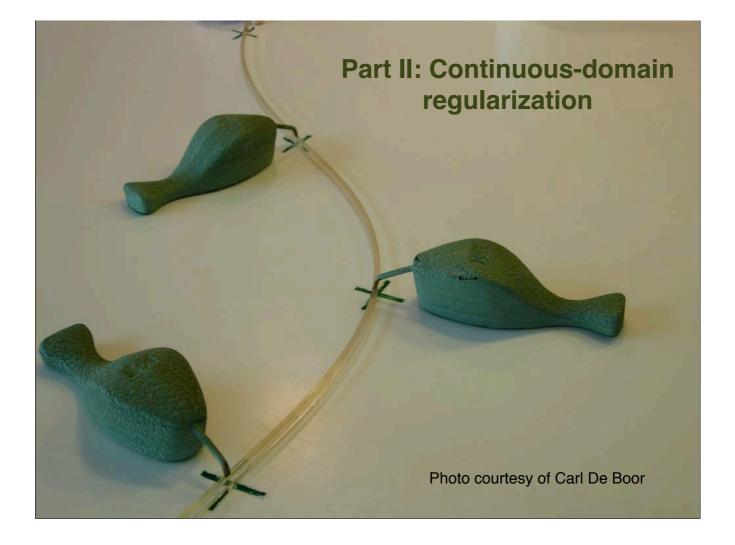
Geometry of *l*₂ vs. *l*₁ minimization



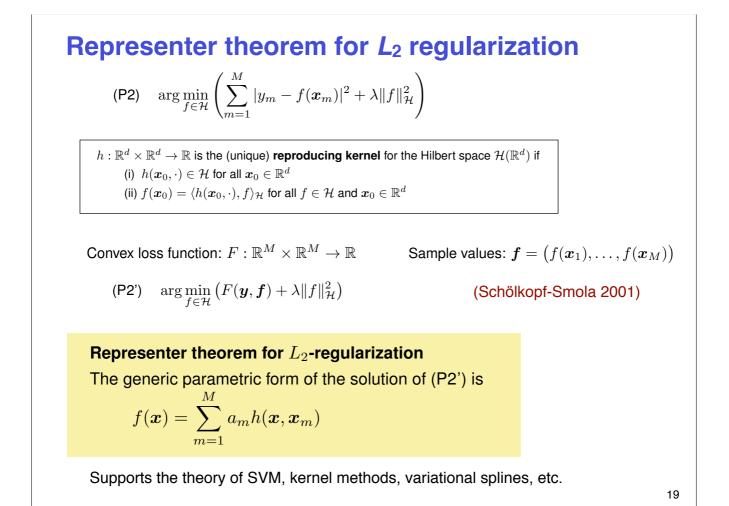




<section-header>



Continuous-domain regularization (L ₂ scenario)		
Regularization functional:	$\ \mathrm{L}f\ _{L_2}^2 = \int_{\mathbb{R}^d} \mathrm{L}f(oldsymbol{x}) ^2 \mathrm{d}oldsymbol{x}$	
	L: suitable differential operator	
Theory of reproducing kernel Hilbert spaces (Aronszajn 1950)		
$\langle f,g angle_{\mathcal{H}} = \langle \mathrm{L}f,\mathrm{L}g angle$		
Interpolation and approximation theory		
Smoothing splines	(Schoenberg 1964, Kimeldorf-Wahba 1971)	
Thin-plate splines, radia	al basis functions (Duchon 1977)	
Machine learning		
 Radial basis functions, 	kernel methods (Poggio-Girosi 1990)	
Representer theorem(s) (Schölkopf-Smola 2001)	



Sparsity and continuous-domain modeling

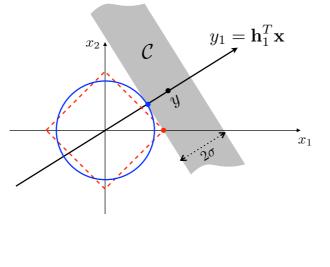
Compressed sensing (CS)
 Generalized sampling and infinite-dimensional CS (Adcock-Hansen, 2011)
 Xampling: CS of analog signals (Eldar, 2011)
 Splines and approximation theory
 L₁ splines (Fisher-Jerome, 1975)
 Locally-adaptive regression splines (Mammen-van de Geer, 1997)
 Generalized TV (Steidl et al. 2005; Bredies et al. 2010)
 Statistical modeling
 Sparse stochastic processes (Unser et al. 2011-2014)

Geometry of *l*₂ vs. *l*₁ minimization

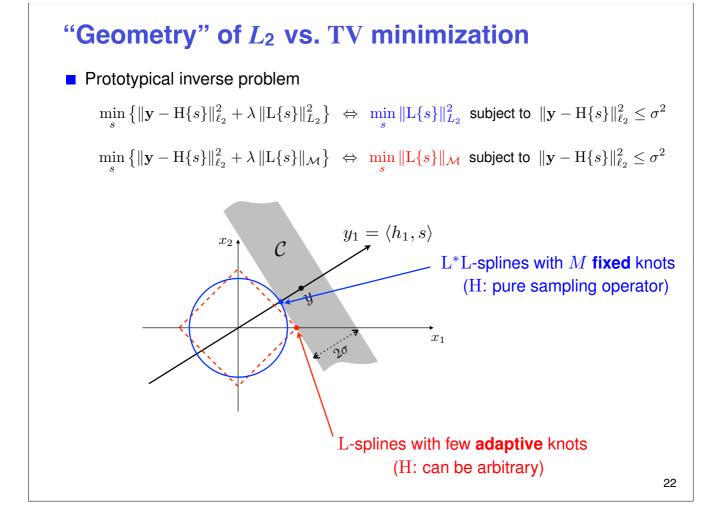
Prototypical inverse problem

 $\min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 + \lambda \|\mathbf{x}\|_{\ell_2}^2 \right\} \iff \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_2} \text{ subject to } \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 \le \sigma^2$

 $\min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 + \lambda \|\mathbf{x}\|_{\ell_1} \right\} \iff \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_1} \text{ subject to } \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 \le \sigma^2$



21



Splines are analog and intrinsically sparse

 $L\{\cdot\}$: admissible differential operator

 $\delta(\cdot - oldsymbol{x}_0)$: Dirac impulse shifted by $oldsymbol{x}_0 \in \mathbb{R}^d$

Definition

The function $s: \mathbb{R}^d \to \mathbb{R}$ is a (non-uniform) L-spline with knots $(\boldsymbol{x}_k)_{k=1}^K$ if

 $L\{s\} = \sum_{k=1}^{K} a_k \delta(\cdot - \boldsymbol{x}_k) = \boldsymbol{w}_{\delta}$: spline's innovation

Spline theory: (Schultz-Varga, 1967)

FRI signal processing: Innovation variables (2K) (Vetterli et al., 2002)

 a_k

 $\mathbf{L} = \frac{\mathbf{d}}{\mathbf{d}x}$

- Location of singularities (knots) : $\{x_k\}_{k=1}^K$
- Strength of singularities (linear weights): $\{a_k\}_{k=1}^K$

23

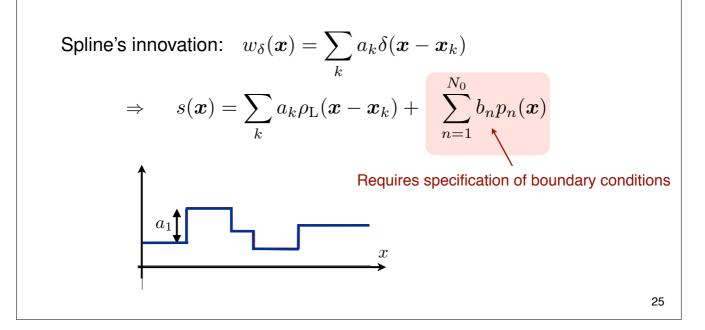
Spline synthesis: example $L = D = \frac{d}{dx} \qquad \text{Null space: } \mathcal{N}_D = \text{span}\{p_1\}, \quad p_1(x) = 1$ $\rho_D(x) = D^{-1}\{\delta\}(x) = \mathbb{1}_+(x): \text{Heaviside function}$ $\frac{1}{p_1(x)} = \sum_k a_k \delta(x - x_k)$ $\frac{1}{p_1(x)} = \sum_k a_k \mathbb{1}_+(x - x_k)$ $p_1(x) = b_1 p_1(x) + \sum_k a_k \mathbb{1}_+(x - x_k)$

Spline synthesis: generalization

L: spline admissible operator (LSI)

 $ho_{\mathrm{L}}({m{x}}) = \mathrm{L}^{-1}\{\delta\}({m{x}})$: Green's function of L

Finite-dimensional null space: $\mathcal{N}_{L} = \operatorname{span}\{p_n\}_{n=1}^{N_0}$



Principled operator-based approach

- Biorthogonal basis of $\mathcal{N}_{\mathrm{L}} = \mathrm{span}\{p_n\}_{n=1}^{N_0}$
 - $\phi = (\phi_1, \cdots, \phi_{N_0})$ such that $\langle \phi_m, p_n \rangle = \delta_{m,n}$
 - Projection operator: $p=\sum_{n=1}^{N_0}\langle\phi_n,p
 angle p_n$ for all $p\in\mathcal{N}_{\mathrm{L}}$

Operator-based spline synthesis

Boundary conditions: $\langle s, \phi_n \rangle = \mathbf{b_n}, \ n = 1, \cdots, N_0$

Spline's innovation:
$$L\{s\} = w_{\delta} = \sum_{k} a_{k} \delta(\cdot - \boldsymbol{x}_{k})$$

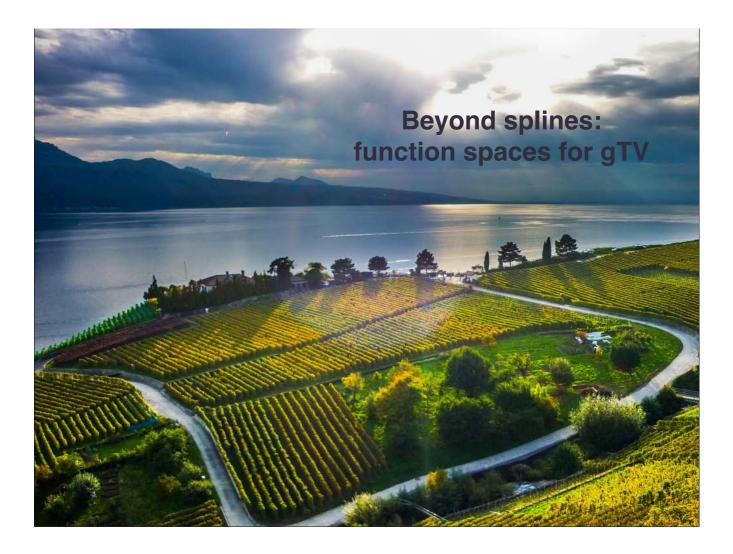
 $s(\boldsymbol{x}) = L_{\phi}^{-1}\{w_{\delta}\}(\boldsymbol{x}) + \sum_{n=1}^{N_{0}} b_{n} p_{n}(\boldsymbol{x})$

Existence of L_{ϕ}^{-1} as a stable right-inverse of L ? (see **Theorem 1**)

$$LL_{\phi}^{-1}w = w$$

$$\boldsymbol{\phi}(\mathbf{L}_{\boldsymbol{\phi}}^{-1}w) = \mathbf{0}$$

26



From Dirac impulses to Borel measures

 $\mathcal{S}(\mathbb{R}^d)$: Schwartz's space of smooth and rapidly decaying test functions on \mathbb{R}^d

 $\mathcal{S}'(\mathbb{R}^d)$: Schwartz's space of tempered distributions

Space of real-valued, countably additive Borel measures on \mathbb{R}^d

$$\mathcal{M}(\mathbb{R}^d) = \left(C_0(\mathbb{R}^d)\right)' = \left\{ w \in \mathcal{S}'(\mathbb{R}^d) : \|w\|_{\mathcal{M}} = \sup_{\varphi \in \mathcal{S}(\mathbb{R}^d) : \|\varphi\|_{\infty} = 1} \langle w, \varphi \rangle < \infty \right\},$$

where $w : \varphi \mapsto \langle w, \varphi \rangle = \int_{\mathbb{R}^d} \varphi(\mathbf{r}) w(\mathbf{r}) \mathrm{d}\mathbf{r}$

Equivalent definition of "total variation" norm

 $\|w\|_{\mathcal{M}} = \sup_{\varphi \in C_0(\mathbb{R}^d) : \|\varphi\|_{\infty} = 1} \langle w, \varphi \rangle$

Basic inclusions

- $\delta(\cdot x_0) \in \mathcal{M}(\mathbb{R}^d)$ with $\|\delta(\cdot x_0)\|_{\mathcal{M}} = 1$ for any $x_0 \in \mathbb{R}^d$
- $\| \| f \|_{\mathcal{M}} = \| f \|_{L_1(\mathbb{R}^d)} \text{ for all } f \in L_1(\mathbb{R}^d) \quad \Rightarrow \quad L_1(\mathbb{R}^d) \subseteq \mathcal{M}(\mathbb{R}^d)$

Optimality result for Dirac measures

- **H**: linear continuous map $\mathcal{M}(\mathbb{R}^d) \to \mathbb{R}^M$
- \mathcal{C} : convex compact subset of \mathbb{R}^M
- Generic constrained TV minimization problem

$$\mathcal{V} = \arg\min_{w \in \mathcal{M}(\mathbb{R}^d) : \mathbf{H}(w) \in \mathcal{C}} \|w\|_{\mathcal{M}}$$

Generalized Fisher-Jerome theorem

The solution set \mathcal{V} is a **convex, weak***-**compact** subset of $\mathcal{M}(\mathbb{R}^d)$ with **extremal points** of the form

$$w_{\delta} = \sum_{k=1}^{K} a_k \delta(\cdot - \boldsymbol{x}_k)$$

with $K \leq M$ and $\boldsymbol{x}_k \in \mathbb{R}^d$.

(U.-Fageot-Ward, ArXiv 2016)

Jerome-Fisher, 1975: Compact domain & scalar intervals

29

General convex problems with gTV regularization

$$\mathcal{M}_{\mathcal{L}}(\mathbb{R}^d) = \left\{ s : gTV(s) = \|\mathcal{L}\{s\}\|_{\mathcal{M}} = \sup_{\|\varphi\|_{\infty} \le 1} \langle \mathcal{L}\{s\}, \varphi \rangle < \infty \right\}$$

- Linear measurement operator $\mathcal{M}_{L}(\mathbb{R}^{d}) \to \mathbb{R}^{M} : f \mapsto \mathbf{z} = \mathrm{H}\{f\}$
- \mathcal{C} : **convex** compact subset of \mathbb{R}^M
- Finite-dimensional null space $\mathcal{N}_{L} = \{q \in \mathcal{M}_{L}(\mathbb{R}^{d}) : L\{q\} = 0\}$ with basis $\{p_{n}\}_{n=1}^{N_{0}}$

Admissibility of regularization: $H\{q_1\} = H\{q_2\} \Leftrightarrow q_1 = q_2$ for all $q_1, q_2 \in \mathcal{N}_L$

Theorem (gTV optimality of spline for linear inverse problems) The extremal points of the constrained minimization problem

$$\mathcal{V} = \arg \min_{f \in \mathcal{M}_{\mathrm{L}}(\mathbb{R}^d)} \|\mathrm{L}\{f\}\|_{\mathcal{M}} \quad \text{s.t.} \quad \mathrm{H}\{f\} \in \mathcal{C}$$

are necessarily of the form $f(\boldsymbol{x}) = \sum_{k=1}^{K} a_k \rho_L(\boldsymbol{x} - \boldsymbol{x}_k) + \sum_{n=1}^{N_0} b_n p_n(\boldsymbol{x})$ with $K \leq M - N_0$; that is, **non-uniform** L-**splines** with knots at the \boldsymbol{x}_k and $\|L\{f\}\|_{\mathcal{M}} = \sum_{k=1}^{K} |a_k|$. The full solution set is the **convex hull** of those extremal points.

(U.-Fageot-Ward, ArXiv 2016) 30

Representer theorem for gTV regularization

(P1)
$$\arg \min_{f \in \mathcal{M}_{\mathrm{L}}(\mathbb{R}^d)} \left(\sum_{m=1}^M |y_m - \langle h_m, f \rangle|^2 + \lambda \|\mathrm{L}f\|_{\mathcal{M}} \right)$$

- L: spline-admissible operator with null space $\mathcal{N}_{\mathrm{L}} = \mathrm{span}\{p_n\}_{n=1}^{N_0}$
- **gTV semi-norm:** $\|L\{s\}\|_{\mathcal{M}} = \sup_{\|\varphi\|_{\infty} \leq 1} \langle L\{s\}, \varphi \rangle$
- Measurement functionals $h_m: \mathcal{M}_L(\mathbb{R}^d) \to \mathbb{R}$ (weak*-continuous)

Convex loss function: $F : \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}$

W

Measurements:
$$\boldsymbol{z} = (\langle h_1, f \rangle, \dots, \langle h_M, f \rangle)$$

(P1')
$$\arg \min_{f \in \mathcal{M}_{\mathrm{L}}(\mathbb{R}^d)} \left(F(\boldsymbol{y}, \boldsymbol{z}) + \lambda \| \mathrm{L}f \|_{\mathcal{M}} \right)$$

Representer theorem for gTV-regularization The extreme points of (P1') are **non-uniform** L-**spline** of the form

$$f_{\rm spline}(\boldsymbol{x}) = \sum_{k=1}^{K_{\rm knots}} a_k \rho_{\rm L}(\boldsymbol{x} - \boldsymbol{x}_k) + \sum_{n=1}^{N_0} b_n p_n(\boldsymbol{x})$$

with $\rho_{\rm L}$ such that ${\rm L}\{\rho_{\rm L}\} = \delta$, $K_{\rm knots} \leq M - N_0$, and $\|{\rm L}f_{\rm spline}\|_{\mathcal{M}} = \|\mathbf{a}\|_{\ell_1}$.

All solutions have the same measurements $\boldsymbol{z}_0 = (\langle h_1, f_{\text{spline}} \rangle, \dots, \langle h_M, f_{\text{spline}} \rangle) \in \mathbb{R}^M$

31

<section-header>

Existence of stable right-inverse operator

 $L_{\infty,n_0}(\mathbb{R}^d) = \{f: \mathbb{R}^d \to \mathbb{R}: \sup_{\boldsymbol{x} \in \mathbb{R}^d} \left(|f(\boldsymbol{x})| (1+\|\boldsymbol{x}\|)^{-n_0} \right) < +\infty \}$

Theorem 1 (U.-Fageot-Ward, ArXiv 2016)

Let L be a spline-admissible operator with a N_0 -dimensional null space $\mathcal{N}_L \subseteq L_{\infty,n_0}(\mathbb{R}^d)$ such that $p = \sum_{n=1}^{N_0} \langle p, \phi_n \rangle p_n$ for all $p \in \mathcal{N}_L$. Then, there exists a **unique and stable operator** $L_{\phi}^{-1} : \mathcal{M}(\mathbb{R}^d) \to L_{\infty,n_0}(\mathbb{R}^d)$ such that, for all $w \in \mathcal{M}(\mathbb{R}^d)$,

- Right-inverse property: $LL_{\phi}^{-1}w = w$,
- Boundary conditions: $\phi(L_{\phi}^{-1}w) = 0$ with $\phi = (\phi_1, \cdots, \phi_{N_0})$.

Its generalized impulse response $g_{\phi}(x, y) = L_{\phi}^{-1} \{\delta(\cdot - y)\}(x)$ is given by

$$g_{\boldsymbol{\phi}}(\boldsymbol{x}, \boldsymbol{y}) =
ho_{\mathrm{L}}(\boldsymbol{x} - \boldsymbol{y}) - \sum_{n=1}^{N_0} p_n(\boldsymbol{x}) q_n(\boldsymbol{y})$$

with $\rho_{\rm L}$ such that ${\rm L}\{\rho_{\rm L}\} = \delta$ and $q_n(\boldsymbol{y}) = \langle \phi_n, \rho_{\rm L}(\cdot - \boldsymbol{y}) \rangle$.

<u> </u>	0
3	З

Characterization of generalized Beppo-Levi spaces

Regularization operator $L: \mathcal{M}_L(\mathbb{R}^d) \to \mathcal{M}(\mathbb{R}^d)$

$$f \in \mathcal{M}_{\mathcal{L}}(\mathbb{R}^d) \quad \Leftrightarrow \quad \mathrm{gTV}(f) = \|\mathcal{L}\{f\}\|_{\mathcal{M}} < \infty$$

Theorem 2 (U.-Fageot-Ward, ArXiv 2016)

Let L be a spline-admissible operator that admits a stable right-inverse L_{ϕ}^{-1} of the form specified by Theorem 1. Then, any $f \in \mathcal{M}_{L}(\mathbb{R}^{d})$ has a unique representation as

$$f = \mathcal{L}_{\phi}^{-1}w + p,$$

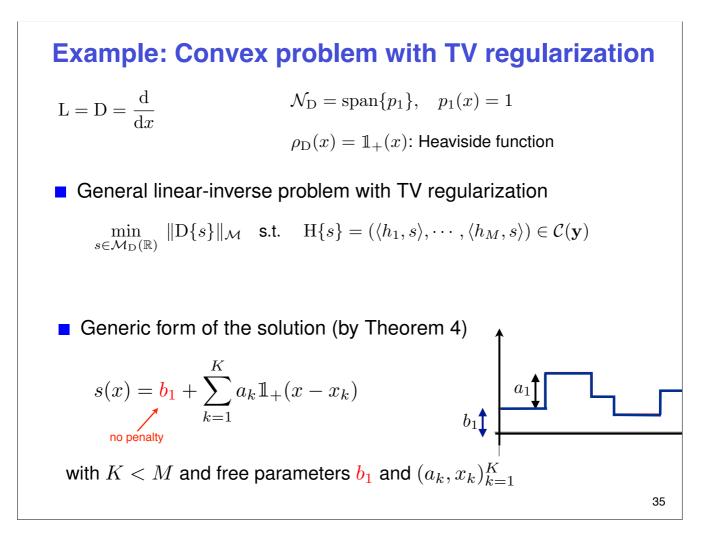
where $w = L\{f\} \in \mathcal{M}(\mathbb{R}^d)$ and $p = \sum_{n=1}^{N_0} \langle \phi_n, f \rangle p_n \in \mathcal{N}_L$ with $\phi_n \in (\mathcal{M}_L(\mathbb{R}^d))'$. Moreover, $\mathcal{M}_L(\mathbb{R}^d)$ is a Banach space equipped with the norm

$$||f||_{\mathrm{L},\phi} = ||\mathrm{L}f||_{\mathcal{M}} + ||\phi(f)||_2.$$

Generalized Beppo-Levi space: $\mathcal{M}_{L}(\mathbb{R}^{d}) = \mathcal{M}_{L, \phi}(\mathbb{R}^{d}) \oplus \mathcal{N}_{L}$

$$\mathcal{M}_{\mathrm{L},oldsymbol{\phi}}(\mathbb{R}^d) = \left\{f\in\mathcal{M}_{\mathrm{L}}(\mathbb{R}^d):oldsymbol{\phi}(f)=oldsymbol{0}
ight\}$$

$$\mathcal{N}_{\mathrm{L}} = \left\{ p \in \mathcal{M}_{\mathrm{L}}(\mathbb{R}^d) : \mathrm{L}\{p\} = 0 \right\}$$



SUMMARY: Sparsity in infinite dimensions

- Discrete-domain formulation

 Contrasting behavior of *l*₁ vs. *l*₂ regularization
 Minimization of *l*₁ favors sparse solutions (independently of sensing matrix)

 Continuous-domain formulation *s* ∈ X
 Linear measurement model *s* ↦ *z* = H{*s*}

 Linear signal model: PDE

 Ls = w ⇒ s = L⁻¹w

 L-splines = signals with "sparsest" innovation
 gTV(s) = ||Ls||_M
- Deterministic optimality result
 - gTV regularization: favors "sparse" innovations
 - Non-uniform L-splines: universal solutions of linear inverse problems

Acknowledgments

Many thanks to (former) members of EPFL's Biomedical Imaging Group

- Dr. Pouya Tafti
- Prof. Arash Amini
- Dr. Emrah Bostan
- Dr. Masih Nilchian
- Dr. Ulugbek Kamilov
- Dr. Cédric Vonesch
- **.**...

and collaborators ...

Dr. Arne Seitz

- Prof. Demetri Psaltis
- Prof. Marco Stampanoni
- Prof. Carlos-Oscar Sorzano

37

Preprints and demos: <u>http://bigwww.epfl.ch/</u>

References

- New results on sparsity-promoting regularization
 - M. Unser, J. Fageot, H. Gupta, "Representer Theorems for Sparsity-Promoting ℓ₁ Regularization," *IEEE Trans. Information Theory*, Vol. 62, No. 9, pp. 5167-5180.
 - M. Unser, J. Fageot, J.P. Ward, "Splines Are Universal Solutions of Linear Inverse Problems with Generalized-TV Regularization," *SIAM Review*, in press, arXiv:1603.01427 [math.FA].

Theory of sparse stochastic processes

- M. Unser and P. Tafti, An Introduction to Sparse Stochastic Processes, Cambridge University Press, 2014.
 Preprint, available at http://www.sparseprocesses.org.
- **For splines**: see chapter 6

Algorithms and imaging applications

- E. Bostan, U.S. Kamilov, M. Nilchian, M. Unser, "Sparse Stochastic Processes and Discretization of Linear Inverse Problems," *IEEE Trans. Image Processing*, vol. 22, no. 7, pp. 2699-2710, 2013.
- C. Vonesch, M. Unser, "A Fast Multilevel Algorithm for Wavelet-Regularized Image Restoration," IEEE Trans. Image Processing, vol. 18, no. 3, pp. 509-523, March 2009.
- M. Nilchian, C. Vonesch, S. Lefkimmiatis, P. Modregger, M. Stampanoni, M. Unser, "Constrained Regularized Reconstruction of X-Ray-DPCI Tomograms with Weighted-Norm," *Optics Express*, vol. 21, no. 26, pp. 32340-32348, 2013.

