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OUTLINE

= From classical to modern image reconstruction
The sparsity (r)evolution= Compressed Sensing

= Sparsity revisited: the spline connection

= Non-Gaussian statistical modeling
Sparse stochastic processes

= [terative image reconstruction (MAP formulation)

Examples of biomedical image reconstruction
Deconvolution microscopy
Computed tomography

= Learning: Emergence of 3rd generation methods
SplineProx, FBPConvNet

Inverse problems in bio-imaging

m Linear forward model y =Hs+n

Integral operator

S Problem: recover s from noisy measurements y

m The easy scenari

Hypotheses: Hiswe  Bagie limitations

=~ g~ (H'H ;)) Iljn.;}(_arent noise amplification
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Linear inverse problems (20th century theory)

m Dealing with ill-posed problems: Tikhonov regularization

R(s) = ||Ls||3: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

minR(s) subjectto |y — Hs||3 < o2
S

m Equivalent variational problem Andrey N. Tikhonov (1906-1993)

s* = argmin |y — Hs||3 + A|Ls||3
—_—— ——

data consistency  regularization
. . _ T Ty\—-1yg7T,, —
Formal linear solution: s=(H H+ AL'L)" " H 'y =R,y

Interpretation: “filtered” backprojection

Statistical formulation (20th century)

m Linear measurement model: y =Hs +n ;ﬁ' .i
n : additive white Gaussian noise (i. i. d.) “--391’5\*\
s : realization of Gaussian process with zero-mean (*]; 17 & 2

and covariance matrix E{s - s’} = C, b
Norbert Wiener (1894-1964)

m Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

1 .
swap = argming — [y —Hs[5+  [|C7'/*s|3
—_———

A 7
~"

Data Log likelihood

Gaussian prior likelihood

1 L= C;"2: Whitening filter

m Quadratic regularization (Tikhonov)
stik = argmin ([[y — Hs|3 + AR(s)) with R(s) = |[Ls||3
Linear solution: s = (H H + AL'L)"'HTy =R, -y




Linear inverse problems: The sparsity (r)evolution

(20th Century) p=2 — 1 (21st Century)
Srec = argmin (|ly — Hs||3 + AR(s))

m Non-quadratic regularization regularization

R(s) = |[Lsl7, — [[Ls|[y, — [ILs],

= Total variation (Rudin-Osher, 1992)
R(s) = ||Ls||¢, with L: gradient

= Wavelet-domain regularization (Figuereido et al., Daubechies et al. 2004)

v = W 1ls: wavelet expansion of s (typically, sparse)
R(s) = [[vle

m Compressed sensing/sampling (Candes-Romberg-Tao; Donoho, 2006)
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Compressive sensing (CS) and /; minimization

[Donoho et al., 2005
Candes-Tao, 20086, ...]

i - oA

+ “noise”

(HEE EEEEE NN

Sparse representation of signal: s = Wx with ||x||o = K < N,

Equivalent N, x N, sensing matrix : A = HW

Occam’s razor: Xgparse = min ||x[lo  subjectto |y — Ax[|3 < o2
X

m Relaxed (convex) formulation of recovery problem

min ||x||; subjectto |ly — Ax[|3 < o?
X




CS: Three fundamental ingredients
(Donoho, IEEE T. Inf. Theo. 2006) (Candés-Romberg, Inv. Prob. 2007)

1. Existence of sparsifying transform (W or L)

- Wavelet basis
- Dictionary
- Differential operator (Gradient)

2. Incoherence of sensing matrix A
- Restricted isometry; few linearly dependent columns (spark)

- Quasi-random and delocalized structure:
Gaussian matrix with i.i.d. entries,
random sampling in Fourier domain

3. Non-linear signal recovery (/i minimization)

CS: Examples of applications in imaging

- Magnetic resonance imaging (MRI)  (Lustig, Mag. Res. Im. 2007)

- Radio Interferometry (Wiaux, Notic. R. Astro. 2007)

- Teraherz Imaging (Chan, Appl. Phys. 2008)

- Digital holography (Brady, Opt. Express 2009; Marim 2010)
- Spectral-domain OCT (Liu, Opt. Express 2010)

- Coded-aperture spectral imaging (Arce, IEEE Sig. Proc. 2014)

- Localization microscopy (Zhu, Nat. Meth. 2012)

- Ultrafast photography (Gao, Nature 2014)
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Ten years after: Impact in clinical imaging

Commercial implementation of sparsity-based
iterative reconstruction algorithms

- L)
- Siemens: Compressed Sensing Cardiac Cine Lg ':J
(FDA approval, Jan 2017) @\ o=

W

- GE: HyperSense
(FDA approval, April 2017)

HyperSense
Up to 8x reduction in scan time*
[
|
| Eiﬁ |

| |
| X |

HyperSense uses the rinciple of data sparsity fo
This allows for shorter scan ti

(56)

108 pending ot FOA. ot ovaloblefor sce i the Uped Sctes.

Understanding sparsity:



Splines are analog and intrinsically sparse

L{-}: admissible differential operator
§(- — xo): Dirac impulse shifted by o € R?

Definition
The function s : R? — R is a (non-uniform) L-spline with knots (x;)X_, if
K
L{s} = Z ard(- — k) =ws : spline’s innovation
k=1
I d
Spline theory: (Schultz-Varga, 1967 = 3.
P y ( g ) a, ;ﬂ da
Lk Th+1

m FRI signal processing: Innovation variables (2/K) (Vetterli et al., 2002)
= Location of singularities (knots) : {zx }*_,

m Strength of singularities (linear weights): {ak}le

13

Spline synthesis: example

d
L=D-= i Null space: ANp =span{p1}, pi(z)=1

pp(z) = D76} (x) = 14 (x): Heaviside function

T ws(x) = Zaké(:v — Tk)
k

1 0\ z

1 **

r s(x) =bipi(x) + Zakﬂ+(a: — )
k

o}
Y 1

Vg
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Spline synthesis: generalization
L: spline admissible operator (LSI)
pL(z) = L71{d}: Green’s function of L

Finite-dimensional null space: A;, = span{p,}.2,

Spline’s innovation: w;(x E arpd(x — xk)

Requires specification of boundary conditions

"H

15

New optimality result: universality of splines

L: spline-admissible operator
Mi(RY) = {f:&TV(f) = [L{fHIm = sup (L{f},¢) < oo}

lelloo <1
Generalized total variation : ¢TV(f) = ||[L{f}||z, when L{f} € Li(R?)

Linear measurement operator My, (R) — RM : f — z = H{f}

Theorem: The extremal points of the generic linear-inverse problem

V=arg min (Ily = E{HIZ + ML Hwm)

are non-uniform L-splines of the form

Kknots NO
fsparse(w) — Z arpPL (CE - mkz) + Z bnpn<w)
k=1 n=1

with Kknots < M — NO and ”L{fsparse}HM = Ha”El-

(U.-Fageot-Ward, ArXiv 2016; SIAM Review in press) 16




OUTLINE

= From classical to modern image reconstruction v
The sparsity (r)evolution= Compressed Sensing

= Sparsity revisited v/
Optimality of splines for gTV

= Non-Gaussian statistical modeling
Sparse stochastic processes

= lterative image reconstruction (MAP formulation)

= Learning: Emergence of 3rd generation methods
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Variational-MAP formulation of inverse problem

m Linear forward model noise

y=Hs+n
linear /‘\ —...
model N "ﬁ
H n

m Reconstruction as an optimization problem

Srec = argmin ||y — Hs|l; + A|Ls|p ., p=1,2

data consistency  regularization

— log Prob(s) : prior likelihood

18




An
introduction

to sparse
stochastic
ProCesSes
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Random spline: archetype of sparse signal
Random weights {a,, } i.i.d. and random knots {¢,,} (Poisson with rate \)
m Stochastic differential equation

Ds(t) = w(t)

with boundary condition s(0) =0

Innovation: w(t) = Z and(t —tp) ' l l :

m Formal solution = Compound Poisson process

s(t) Zan “HOC = ta)}(8)

—bl+zan]1+(t_tn) '_;

20




Lévy processes: all admissible brands of innovations

Generalized innovations : white Lévy noise with E{w(t)w(t')} = 026(t —t')

Ds=w (perfect decoupling!)
White noise (innovation) Lévy process
0 Brownian motion 0 (Wiener 1 923)
Gaussian
Integrator 00 02 04 0.6 08 10

Impulsive w(t) t S(t) Compound Poisson
— dr —— 0

0

SaS (Cauchy) Lévy fiight

(Paul Lévy circa 1930)
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Generalized innovation model

Theoretical framework: Gelfand’s theory of generalized stochastic processes

Generic test function ¢ € S plays the role of index variable

Solution of SDE (general operator) LLs = w

@

innovation process sparse stochastic process
N L—l >

1 ]
@ White noise s=L"w ,—i_F_ @
w

X = <907 w> J% L «— L Pu— Y = <§073> = <§07L_1w> = <L_1*90’w>

@ Approximate
decoupling

Proper definition of Regularization operator vs. wavelet analysis

continuous-domain white noise
" ¢ al, IEEE-IT 2014) Main feature: inherent sparsity
nser et al, - g .
(few significant coefficients)

22




Description of sparse stochastic process
m Specification of spatial dependencies

Whitening operator L = s=L"1w

m Specification of innovation (sparsity behavior)

Canonical observation through a rectangular window
1

Xia = (w,rect) = (iunhi ,FL)

w = white noise = Xjq = (w, rect) is infinitely divisible
with canonical Lévy exponent f(w) = log E{e/“Xid},

Definition: A random variable X with generic pdf piq(x) is infinitely divisible (id) iff., for
any N € Z™, there exist i.i.d. random variables X1, ..., X such that X < X1+ -+ XnN.

X = (w,rect) =

23

X Probability laws of sparse processes are id

m Analysis: go back to innovation process: w = Ls

= Generic random observation: X = {p,w) with p € S(R?) or p € L,(R?) (by extension)

—
= Linear functional: Y = (¢, s) = (1, L™ w) = (L™, w)

If g = L=y € L,(RY) then Y = (3, s) = (¢, w) is infinitely divisible
with (modified) Lévy exponent fy(w) = [ f(wo(x))de

— w w)—jw dw
N py(y) = F 1{ef4>( )}(y) :/ef¢>( ) =] y2_ @
R Vs

= explicit form of pdf

An Introduction to CAMBRIDGE

Unser and Tafti .
Sparse Stochastic Processes

24




Examples of infinitely divisible laws

pia(z)
(a) Gaussian
, 1.2
20
pGauss (‘/L.) \/ﬁ €
(b) Laplace
; -
‘ﬁi PLaplace (.T) - Ee Al]

(c) Compound Poisson
o

pPoisson(w) = f—l{ek(ﬁA(w)—l)}

Jasiedg

E

(d) Cauchy (stable)

s

o0

s

o0

o0s
B 0

Characteristic function: piq(w) = / pid(x)ejwmdzc = of @)
R

1

PcCauchy (37) = m

25

Aesthetic sparse signal: the Mondrian process
L=D,D, <= (jw)(jw,)

26




High-level properties of SSP

m Infinite divisible probability laws: broadest class of distributions
preserved through linear transformation.

m Explicit calculations: Analytical determination of transform-domain
statistics (including, joint pdfs).

m Unifying framework: includes all traditional families of stochastic
processes (ARMA, fBm), as well as their non-Gaussian generalizations.

m Sparsifying transforms / ICA: SSP are (approximately) decoupled in a
matched operator-like wavelet basis. (Pad-U., IEEE-SP 2015)

= N-term approximation properties: SSP are truly “sparse” as described
by their inclusion in (weighted) Besov spaces. (Fageot et al., ACHA 2015)

I An Introduction to

Sparse Stochastic Processes

27

OUTLINE

= From classical to modern image reconstruction v/
The sparsity (r)evolution= Compressed Sensing

= Sparsity revisited v/
Optimality of splines for gTV

= Non-Gaussian statistical modeling v/
Sparse stochastic processes

= [terative image reconstruction (MAP formulation)

= Learning: Emergence of 3rd generation methods
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Discretization of reconstruction problem

Spline-like reconstruction model: s(r) = Z slklBr(r) <+— s = (s[k])kea
keQ
®m Innovation model

L = . .
° v Discretization u = Ls (matrix notation)
s = L 'w

py is part of infinitely divisible family

m Physical model: image formation and acquisition

Yo = / 51(@) 7 (@)@ + nfm] = (s1,7m) +nlm], (m=1,...,M)
]Rd

y=Yo+tn=Hs+n n: i.i.d. noise with pdf py

Mk = (m, Br) = /Rd N (7) Br(r)dr: (M x K) system matrix

29

Posterior probability distribution

psy (sly) = PyisyIs)ps(s) _ px(y — Hs)ps(s) (Bayes’ rule)
Py (¥) py(y)
= %PN(.Y — Hs)ps(s)

u=>Ls = ps(s) < pu(Ls) = [leqpu([Ls]k)

m Additive white Gaussian noise scenario (AWGN)

y — Hs|?
psw(S\.V)cxeXp( | = | )Hp

. and then take the log and maximize ...

30




General form of MAP estimator

SMAP = argmin (% ly — Hs||g + o2 dom @U([Ls]n))

= Gaussian: pU(x) = \/2—;06_:”2/(203) = Q)U(x) = 2%3}2 + C]_
o on
= Laplace: py(z) = el =  Oy(z) = Nz|+C
Student: py (z) ! Ly = Py(z)=( +1)1 (14+2*)+C
u . ) = xIr) = \r — | 10 x
bu B(r b \22+1 v 2/ 108 3

N
S
o
l Potential: ¢y (z) = —log py(x)

31

Proximal operator: pointwise denoiser

1
C42) - 2, 2
proXg,, (y;0°) = argrunel£§|y —ul® + 0Py (u)

o2 ®y (u)

linear attenuation /- minimization
W soft-threshold ¢1 minimization
B shrinkage function ~ {, relaxation for p — 0

32




Maximum a posteriori (MAP) estimation

m Constrained optimization formulation

Auxiliary innovation variable: u = Ls

. 1 2 2 .
SMAP = arg min <§Hy —Hs|;+0 zn: @U([u]n)> subjectto u = Ls

m Augmented Lagrangian method

Quadratic penalty term: £||Ls — ul|3

Lagrange multipler vector: o

1
La(s,u,x) = 3 ly — Hs|)3 + o2 Z Oy ([u]n) + ol (Ls —u) + gHLs —ul|2
mn

33

Alternating direction method of multipliers (ADMM)

1
La(s,u,0) =3 |y - Hs|3 + 02> @y (u],) + af(Ls — u) + %HLS — u2

n

Sequential minimization

sF*1 < arg min £4(s,u”, a")
seRN

k af Tt = ak 4 p(LsF 1 — uF)
uFt! « arg min £4(s*1, u, o*tY)

ucR®N

Linear inverse problem:  s*! — (HTH + 4L7L) ™" (HTy + z++1)

with  z* ™ = LT (pu” — oF)

. = . 2
Nonlinear denoising: ~ u**!' = proxg, (Ls* ™' + Lot o)

a”
T

m Proximal operator taylored to stochastic model

1
proxg,, (y; A) = argmin o [y — ul* + APy (u)

. o ; Y,
Cauchy prior with increasing sg




Deconvolution of fluorescence micrographs

m Physical model of a diffraction-limited microscope

g(x,y,z):(th*s)(:B,y,z) ?

3-D point spread function (PSF)

hap(z,y,2) = Io |px (35, 3% #HQ

z

2 2
oAz, y,2) = / P(w1,ws) exp (j27rzw1 —|—w2> exp (—j27rxw1+ywz> dw;dws
RZ

2\ f3 Mo

Optical parameters
= A wavelength (emission)
= M: magnification factor
= fo: focal length
s P(wi,w2) = Ljju|<r,: Pupil function
= NA = nsinf = Ry/ fo: numerical aperture

35
Deconvolution experiments
(b)
Figure 10.3 Images used in deconvolution experiments. (a) Stem cells surrounded by goblet
cells. (b) Nerve cells growing around fibers. (c) Artery cells.
Table 10.2 Deconvolution performance of MAP estimators based on different prior
distributions.
Estimation performance (SNR in dB)
BSNR (dB) Gaussian Laplace Student’s
Stem cells 20 14.43 13.76 11.86
30 15.92 15.77 13.15
40 18.11 18.11 13.83
Nerve cells 20 13.86 15.31 14.01 L: discrete gradient
30 15.89 18.18 15.81
40 18.58 20.57 16.92
Artery cells 20 14.86 15.23 13.48
30 16.59 17.21 14.92
40 18.68 19.61 15.94
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3D deconvolution with sparsity constraints

Maximum intensity projections of 384 x448x260 image stacks;
Leica DM 5500 widefield epifluorescence microscope with a 63 x oil-immersion objective;
C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

(Vonesch-U. IEEE Trans. Im. Proc. 2009)

Computed tomography (straight rays)

Projection geometry: « = t0 + r6~ with 6 = (cosf,sin )

X
\c}x
m Radon transform (line integrals) P
Ry {s(x) (1) = / s(t0 + 10 )dr
R

:/ s(x)o(t — (x, 0))dx ~
R2

(applicable to
, tomographic phase microscopy
sinogram with plane wave illumination)

Equivalent analysis functions: 7, () = 6 (¢, — (., 0.,))
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Computed tomography reconstruction results

(@)

Figure 10.6 Images used in X-ray tomographic reconstruction experiments. (a) The
Shepp-Logan (SL) phantom. (b) Cross section of a human lung.

Table 10.4 Reconstruction results of X-ray computed tomography using different

estimators.
Directions  Estimation performance (SNR in dB)
Gaussian  Laplace Student’s
SL Phantom 120 16.8 17.53 18.76 L: discrete gradient
SL Phantom 180 18.13 18.75 20.34
Lung 180 22.49 21.52 21.45
Lung 360 24.38 22.47 22.37

39

Cryo-electron tomography (real data) 3

Standard Fourier-based High-resolution Fourier-based High-resolution
reconstruction reconstruction reconstruction with sparsity
p e :
AN, T

AR

-

& e

S Ly s &
g\ ~"‘V.‘...'
A,

." .'&‘ ‘v“ "

-

slice 34 slice 35 slice 36 slice 34 slice 35 slice 36

slice 52

slice 52

slice 66 slice 67 slice 68 slice 66 slice 67 slice6g 40




Conceptual summary of 2nd generation methods

Physical model Statistical model of signal

1 * *

J(X,U):glly—HXH% + AR+ pllLx—ul3

~"

. . . algorithmic
consistency prior constraints 9

coupling

Schematic structure of reconstruction algorithm:

— Repeat
x" = arg min J(x, u™ V). Linear step (problem specific)
Niter
u® = arg min.J (x™), u): Statistical or “denoising” step
| until stop criterion
41
Part 3:

The (deep) learning (r)evolution

= Emergence of 3rd generation methods

42




Learning within the current paradigm

m Data-driven tuning of parameters: )\, calibration of forward model

Semi-blind methods, sequential optimization

m Improved decoupling/representation of the signal

Data-driven dictionary learning
(based of sparsity or statistics/ICA)

= “optimal”’ L

(Elad 2006, Ravishankar 2011, Mairal 2012)

m Learning of non-linearities / Proximal operators _ _
= “optimal” potential ®
CNN-type parametrization, backpropagation

(Chen-Pock 2015-2016, Kamilov 2016)
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Connection with deep neural networks
(Gregor-LeCun 2010)

Unrolled lterative Shrinkage Thresholding Algorithm (ISTA)

LISTA : learning-based ISTA

1TH*y 1TH*y 1TH"y
v v v
X, > l-1TH*H 0 " I-1TH*H e “ o> 1-1TH‘H @—»+x*
ISTA with sparsifying transformation (@)
s ™
a iL WHy oF 1T WHYy
v v
x0—>|E|—i 1= WHHW @—» L 1= WHHW {l—}»+@—>x*
& J
FBPConvNet structures\ (b) f
\ J h
\ b TS
N vy Y e ¥
RO Ra s EN (ORRa x
J
(© &
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SplineProx: learning shrinkage functions

SplineProx(z|a) = Z apB>(x/T — k)

kEZ
Cubic spline prox
100 ' p P :
50+ <
0 m ﬂ d
-50 &/
-100 : : s
-100 -50 0 50 100

Pointwise nonlinearity parametrized by B-spline coefficients a

Mathematical constraints: firmly nonexpansive vs. monotonic

(Kamilov IEEE SPL 2016; Nguyen et al., arXiv:1705.05591 [cs.LG])
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Recent appearance of Deep ConvNets
(Jin et al. 2016; Chen et al. 2017; ...)

m CT reconstruction based on Deep ConvNets
m Input: Sparse view FBP reconstruction

= Training: Set of 500 high-quality full-view CT reconstructions

= Architecture: U-Net with skip connection (Jin et al., arXiv:1611.03679)
Skip connection
64 64 64 « # of channels 12864 64 1 1
U-net

N NN NEENcN

spatial dimension :512x512
64" 128128 256 128 T128

| 256 x 256 I | I

I
128 256 256 512 256 256| > 3x3conv.+BN
I»I*I .*I+I +RelU
128x 128 ¥ 2x2max pooling

* skip connection
256" 512 512 1024 12 ‘512] :
and concatenation
soxos| H-HE-HE - - ) 2 concatenat
5124 1024 11024 +BN +RelU
32x32 > E— S - 1x1conv.
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CT data Dose reduction by 7: 143 views

FBP TV FBPConvNet
Ground truth SNR 24.06 SNR 29.64 SNR 35.38

Reconstructed from
from 1000 views (Jin et al., IEEE Trans. Im Proc., in press)

W MAYO CLINIC

CT data Dose reduction by 20: 50 views
FBP TV FBPConvNet
Ground truth SNR 13.43 SNR 24.89 SNR 28.53

Reconstructed from
from 1000 views

(Jin et al., IEEE Trans. Im Proc., in press)

W MAYO CLINIC




Primary reconstruction methods: typology

Methods Theories
1. Classical (FBP) Tikhonov Gaussian estimation o
&
8
2. Sparsity-driven Compressed sensing gTV-splines =}
5
o
@
3. Extended modeling Sparse stochastic  Bi-level optimization &
processes (joint statistical estimation) 3
a
4. Deep learning Machine learning Data science
New learning era
49
Reconstruction methods: tuning parameters
1. Classical (FBP) L or power spectrum — A
2. Sparsity-driven L or sparsifying transform — A
Q
3
L or sparsifying transform -
. Dictionar -
3. Extended modeling N R onary g
Lévy exponent Shrinkage functions <
4. Deep learning weights of neural network

(millions) l
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Comparison chart

1. Classical 2. Sparsity 3. Extended 4. Deep
reconstruction driven modeling learning
Speed +++ ++ + --- [ +++
training
Reconstruction + ++ _|__|_(+) +++
quality
Full views ++ ++(+) A+ 277
no way to train
Fewviews (CS)|  + ++ ++(+) —
Theoretical
guarantees +++ ++(+) +(+) P - .)‘
(optimality, worst case...)
Robustness ++ +++ ++(+) need to retrain
for each configuration
Traln!ng data Modest Modest Average Enormous
requirement
51
Conclusion

m Can we further reduce exposure time/improve image quality ?

Preliminary results with FBPConvNet suggest that there is still room considerable
improvement using learning: x4 reduction or more ?

m Key to success

- Realistic forward model (physics) with autocalibration

- Better signal modeling

- Reducing the number of parameters to tune

m The future: Computational imaging with educated learning

Find a “safe” compromize between principled approaches (robust,
with guarantees of performance) and purely data-driven approaches (top
performers) whose functioning is not yet understood.

Important requirement for bioimaging

= Looking “good” is not enough = task-oriented evaluation

= Difficulty of having “goldstandard” for training CNNs

= Need worst-case guarantees; understanding of bias/limitations
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