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OUTLINE

■ From classical to modern image reconstruction
■ The sparsity (r)evolution⇒ Compressed Sensing

■ Sparsity revisited: the spline connection 
■ Non-Gaussian statistical modeling 
■ Sparse stochastic processes 

■ Iterative image reconstruction (MAP formulation)

■ Learning: Emergence of 3rd generation methods
■ SplineProx, FBPConvNet 

Deconvolution microscopy
Computed tomography

Examples of biomedical image reconstruction

Inverse problems in bio-imaging

4

noise

n

Linear forward model

s
Integral operator

H

y = Hs+ n

Problem: recover s from noisy measurements y

Backprojection (poor man’s solution): s ⇡ HTy

The easy scenario

Hypotheses: H is well conditioned & noise is negligible

) s ⇡ H�1 y) s ⇡ (HTH)�1HTy

Basic limitations
  1) Inherent noise amplification  2) Difficulty to invert H (too large or non-square)  3) All interesting inverse problems are ill-posed



Formal linear solution: s = (HTH+ �LTL)�1HTy = R� · y

Linear inverse problems (20th century theory)
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Equivalent variational problem

s? = argmin ky �Hsk22| {z }
data consistency

+ �kLsk22| {z }
regularization

Interpretation: “filtered” backprojection

R(s) = kLsk22: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

Formal linear solution: s = (HTH+ �LTL)�1HTy = R� · y

Andrey N. Tikhonov (1906-1993)

min
s

R(s) subject to ky �Hsk22  �2

Dealing with ill-posed problems: Tikhonov regularization

Statistical formulation (20th century)
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sMAP = argmins
1

�2
ky �Hsk22

| {z }
Data Log likelihood

+ kC�1/2
s sk22| {z }

Gaussian prior likelihood

Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

m L = C�1/2
s : Whitening filter

Quadratic regularization (Tikhonov)

Linear measurement model: y = Hs+ n

Norbert Wiener (1894-1964)

sTik = argmin
s

�
ky �Hsk22 + �R(s)

�
with R(s) = kLsk22

Linear solution : s = (HTH+ �LTL)�1HTy = R� · y

n : additive white Gaussian noise (i. i. d.)

s : realization of Gaussian process with zero-mean

and covariance matrix E{s · sT } = Cs



Linear inverse problems: The sparsity (r)evolution
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(Figuereido et al., Daubechies et al. 2004)

(Rudin-Osher, 1992)

(Candes-Romberg-Tao; Donoho, 2006)Compressed sensing/sampling

srec = argmin
s

�
ky �Hsk22 + �R(s)

�

Wavelet-domain regularization

v = W�1s: wavelet expansion of s (typically, sparse)

R(s) = kvk`1

Total variation

R(s) = kLsk`1 with L: gradient

(20th Century) p = 2 �! 1 (21st Century)

Non-quadratic regularization regularization

R(s) = kLsk2`2 �! kLskp`p �! kLsk`1

8

y A x

Sparse representation of signal: s = Wx with kxk0 = K ⌧ N
x

Equivalent N
y

⇥N
x

sensing matrix : A = HW

+    “noise”

Compressive sensing (CS) and l1 minimization 
[Donoho et al., 2005

     Candès-Tao, 2006, ...]

Occam’s razor: xsparse = min
x

kxk
0

subject to ky �Axk2
2

 �2

Relaxed (convex) formulation of recovery problem

min
x

kxk1 subject to ky �Axk22  �2



CS: Three fundamental ingredients
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1. Existence of sparsifying transform (W or L)
- Wavelet basis
- Dictionary
- Differential operator (Gradient) 

2. Incoherence of sensing matrix A
- Restricted isometry; few linearly dependent columns (spark)
- Quasi-random and delocalized structure:
   Gaussian matrix with i.i.d. entries,
   random sampling in Fourier domain

3. Non-linear signal recovery (l1 minimization)

(Donoho, IEEE T. Inf. Theo. 2006)
     

(Candès-Romberg, Inv. Prob. 2007)

CS: Examples of applications in imaging
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- Magnetic resonance imaging (MRI) 

- Radio Interferometry

(Lustig, Mag. Res. Im. 2007)

- Teraherz Imaging

(Wiaux, Notic. R. Astro. 2007)

(Chan, Appl. Phys. 2008)

- Digital holography (Brady, Opt. Express 2009; Marim 2010)

- Spectral-domain OCT (Liu, Opt. Express 2010) 

- Coded-aperture spectral imaging (Arce, IEEE Sig. Proc. 2014) 

- Localization microscopy (Zhu, Nat. Meth. 2012) 

- Ultrafast photography (Gao, Nature 2014) 



Ten years after: Impact in clinical imaging
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Commercial implementation of sparsity-based 
 iterative reconstruction algorithms

- Siemens: Compressed Sensing Cardiac Cine 
(FDA approval, Jan 2017)

- GE: HyperSense
(FDA approval, April 2017)

12
Photo courtesy of Carl De Boor

The spline connection
Understanding sparsity:
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Splines are analog and intrinsically sparse

Spline theory: (Schultz-Varga, 1967)

(Vetterli et al., 2002)

L =
d
dx

:   spline’s innovation

L{·}: admissible differential operator

�(·� x0): Dirac impulse shifted by x0 2 Rd

Definition

The function s : Rd ! R is a (non-uniform) L-spline with knots (xk)Kk=1 if

L{s} =
KX

k=1

ak�(·� xk) = w�

ak

xk xk+1

FRI signal processing: Innovation variables (2K)

Location of singularities (knots) : {xk}Kk=1

Strength of singularities (linear weights): {ak}Kk=1

Spline synthesis: example
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L = D =
d

dx

x

x1

w�(x) =
X

k

ak�(x� xk)

a1

x

s(x) = b1p1(x) +
X

k

ak +(x� xk)

b1

Null space: ND = span{p1}, p1(x) = 1

⇢D(x) = D�1{�}(x) = +(x): Heaviside function



Spline synthesis: generalization
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Requires specification of boundary conditions

L: spline admissible operator (LSI)

) s(x) =
X

k

ak⇢L(x� xk) +
N0X

n=1

bnpn(x)

Spline’s innovation: w�(x) =
X

k

ak�(x� xk)

a1

x

⇢L(x) = L�1{�}: Green’s function of L

Finite-dimensional null space: NL = span{pn}N0
n=1

New optimality result: universality of splines
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L: spline-admissible operator

Generalized total variation : gTV(f) = kL{f}kL1 when L{f} 2 L1(Rd)

 (U.-Fageot-Ward, ArXiv 2016; SIAM Review in press)

ML(Rd) =
�
f : gTV(f) = kL{f}kM = sup

k'k11
hL{f},'i < 1

 

Linear measurement operator ML(R) ! RM : f 7! z = H{f}

V

Theorem: The extremal points of the generic linear-inverse problem

V = arg min
f2M

L

(Rd
)

�
ky �H{f}k2

2

+ �kL{f}kM
�

are non-uniform L-splines of the form

f
sparse

(x) =
K

knotsX

k=1

ak⇢L(x� xk) +
N

0X

n=1

bnpn(x)

with K
knots

 M �N
0

and kL{f
sparse

}kM = kak`
1

.
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OUTLINE

■ From classical to modern image reconstruction ✔
■ The sparsity (r)evolution⇒ Compressed Sensing

■ Sparsity revisited ✔
■ Optimality of splines for gTV 

■ Non-Gaussian statistical modeling
■ Sparse stochastic processes 

■ Iterative image reconstruction (MAP formulation)

■ Learning: Emergence of 3rd generation methods

Variational-MAP formulation of inverse problem

18

Linear forward model

y = Hs+ n

Reconstruction as an optimization problem

srec = argmin ky �Hsk22| {z }
data consistency

+ �kLskpp| {z }
regularization

, p = 1, 2

� log Prob(s) :  prior likelihood

linear
model

noise

H n
s



EDEE Course 19

An
introduction
to sparse
stochastic
processes

Random spline: archetype of sparse signal

20

Stochastic differential equation

Ds(t) = w(t)

with boundary condition s(0) = 0

Innovation: w(t) =
X

n

an�(t� tn)

Random weights {an} i.i.d. and random knots {tn} (Poisson with rate �)

Formal solution = Compound Poisson process

s(t) = D�1w(t) =
X

n

anD
�1{�(·� tn)}(t)

= b1 +
X

n

an +(t� tn)



Lévy processes: all admissible brands of innovations
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(perfect decoupling!)

0.0 0.2 0.4 0.6 0.8 1.0

0 0

0.0 0.2 0.4 0.6 0.8 1.0
0 0

0.0 0.2 0.4 0.6 0.8 1.0

0 0

Compound Poisson

Brownian motion

Integrator

Gaussian 

Impulsive Z t

0
d⌧

Lévy flight

s(t)w(t)

White noise (innovation) Lévy process

S↵S (Cauchy)

(Paul Lévy circa 1930)

(Wiener 1923)

Generalized innovations : white Lévy noise with E{w(t)w(t0)} = �2
w�(t� t0)

Ds = w

22

Generalized innovation model

1 3White noise

Whitening operator

L�1

L

s = L�1w

w

2

Generic test function ' � S plays the role of index variable

Solution of SDE (general operator)

Proper definition of
 continuous-domain white noise

X = h', wi

Theoretical framework: Gelfand’s theory of generalized stochastic processes

(Unser et al, IEEE-IT 2014)

innovation process sparse stochastic process

Regularization operator vs. wavelet analysis

4 Approximate 
decoupling

Main feature: inherent sparsity
(few significant coefficients)

= hL�1⇤', wiY = h', si= h',L�1wi

Ls = w



Description of sparse stochastic process
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1

Xid = hw, recti = h , i

1
n

1
n

X = hw, recti = h , i
= h , i+ · · ·+ h , i

1 i.i.d.

Definition: A random variable X with generic pdf pid(x) is infinitely divisible (id) iff., for

any N 2 Z+
, there exist i.i.d. random variables X1, . . . , XN such that X

d

= X1+ · · ·+XN .

Specification of spatial dependencies

Whitening operator L

Canonical observation through a rectangular window

Specification of innovation (sparsity behavior)

) s = L�1w

w = white noise ) Xid = hw, recti is infinitely divisible

with canonical Lévy exponent f(!) = logE{ej!Xid}.

� Probability laws of sparse processes are id

24

) pY (y) = F�1{ef�(!)}(y) =
Z

R
ef�(!)�j!y d!

2⇡

=  explicit form of pdf
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Analysis: go back to innovation process: w = Ls

Generic random observation: X = h', wi with ' 2 S(Rd) or ' 2 Lp(Rd) (by extension)

Linear functional: Y = h , si = h ,L�1wi = h
z }| {
L�1⇤ , wi

If � = L�1⇤ 2 Lp(Rd) then Y = h , si = h�, wi is infinitely divisible
with (modified) L

´

evy exponent f�(!) =
R
Rd f

�
!�(x)

�
dx



Examples of infinitely divisible laws
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�4 �2 2 4

0.1
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(a) Gaussian

(b) Laplace

(c) Compound Poisson

(d) Cauchy (stable)

2000
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5
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�5

5

2000
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5

2000

�5

5

Sparser

pid(x)

pCauchy(x) =
1

⇡ (x2 + 1)

pGauss(x) =
1p
2⇡�2

e�
x

2

2�2

pLaplace(x) =
�

2
e��|x|

p

Poisson

(x) = F�1{e�(p̂A(!)�1)}

Characteristic function: bpid(!) =
Z

R
pid(x)e

j!xdx = ef(!)

Aesthetic sparse signal: the Mondrian process

26

� = 30

L = DxDy
F�⇥ (j�x)(j�y)



High-level properties of SSP

27

Sparsifying transforms / ICA: SSP are (approximately) decoupled in a

matched operator-like wavelet basis.

N -term approximation properties: SSP are truly “sparse” as described

by their inclusion in (weighted) Besov spaces.
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Explicit calculations: Analytical determination of transform-domain

statistics (including, joint pdfs).

Infinite divisible probability laws: broadest class of distributions

preserved through linear transformation.

Unifying framework: includes all traditional families of stochastic

processes (ARMA, fBm), as well as their non-Gaussian generalizations.
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OUTLINE

■ From classical to modern image reconstruction ✔
■ The sparsity (r)evolution⇒ Compressed Sensing

■ Sparsity revisited ✔
■ Optimality of splines for gTV 

■ Non-Gaussian statistical modeling ✔
■ Sparse stochastic processes 

■ Iterative image reconstruction (MAP formulation)

■ Learning: Emergence of 3rd generation methods



Discretization of reconstruction problem
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Innovation model

u = Ls (matrix notation)

Ls = w

s = L�1w
Discretization

pU is part of infinitely divisible family

Spline-like reconstruction model: s(r) =
X

k2⌦

s[k]�k(r)  ! s = (s[k])k2⌦

Physical model: image formation and acquisition

ym =

Z

Rd

s1(x)⌘m(x)dx+ n[m] = hs1, ⌘mi+ n[m], (m = 1, . . . ,M)

y = y0 + n = Hs+ n

[H]m,k = h⌘m,�ki =
Z

Rd

⌘m(r)�k(r)dr: (M ⇥K) system matrix

n: i.i.d. noise with pdf pN

Posterior probability distribution

30

pS|Y (s|y) =
pY |S(y|s)pS(s)

pY (y)
=

pN
�
y �Hs

�
pS(s)

pY (y)

=
1

Z
pN (y �Hs)pS(s)

(Bayes’ rule)

u = Ls ) pS(s) / pU (Ls) ⇡
Q

k2⌦ pU
�
[Ls]k

�

... and then take the log and maximize ...

Additive white Gaussian noise scenario (AWGN)

pS|Y (s|y) / exp

✓
�ky �Hsk2

2�2

◆ Y

k2⌦

pU
�
[Ls]k

�



General form of MAP estimator
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Sparser

sMAP = argmin
⇣

1
2 ky �Hsk22 + �2

P
n �U ([Ls]n)

⌘

Gaussian: p
U

(x) =

1p
2⇡�0

e

�x

2
/(2�2

0) ) �

U

(x) =

1
2�2

0
x

2
+ C1

Laplace: p
U

(x) =

�

2 e
��|x| ) �

U

(x) = �|x|+ C2

Student: p
U

(x) =

1

B

�
r,

1
2

�
✓

1

x

2
+ 1

◆
r+ 1

2

) �

U

(x) =

�
r +

1

2

�
log(1 + x

2
) + C3

-4 -2 0 2 4
0

1

2

3

4

5

Potential: �U (x) = � log pU (x)

Proximal operator: pointwise denoiser

32

-4 -2 0 2 4
0
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5

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

�2�U (u)

︎ linear attenuation
︎ soft-threshold
︎ shrinkage function ⇡ `p relaxation for p ! 0

`2 minimization

`1 minimization



Maximum a posteriori (MAP) estimation
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Auxiliary innovation variable: u = Ls

Constrained optimization formulation

sMAP = arg min
s2RK

 
1

2
ky �Hsk22 + �2

X

n

�U

�
[u]n

�
!

subject to u = Ls

LA(s,u,↵) =
1

2
ky �Hsk22 + �2

X

n

�U ([u]n) +↵T (Ls� u) +
µ

2
kLs� uk22

Alternating direction method of multipliers (ADMM)
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Linear inverse problem:

Nonlinear denoising:

sk+1 � arg min
s�RN

LA(s,u
k,↵k)

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

Sequential minimization

Proximal operator taylored to stochastic model

prox�U
(y;�) = argmin

u

1

2

|y � u|2 + ��U (u)

↵k+1 = ↵k + µ
�
Lsk+1 � uk

�

sk+1 =
�
HTH+ µLTL

��1 �
HTy + zk+1

�

with zk+1 = LT
�
µuk �↵k

�

uk+1
= prox�U

�
Lsk+1

+

1
µ↵

k+1
;

�2

µ

�

LA(s,u,↵) =
1

2
ky �Hsk22 + �2

X

n

�U ([u]n) +↵T (Ls� u) +
µ

2
kLs� uk22
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Deconvolution of fluorescence micrographs
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Physical model of a diffraction-limited microscope

g(x, y, z) = (h3D ⇤ s)(x, y, z)

3-D point spread function (PSF)

h3D(x, y, z) = I0

��
p

�

�
x

M

,

y

M

,

z

M

2

���2

p�(x, y, z) =

Z

R2

P (!1,!2) exp

✓
j2⇡z

!

2
1 + !

2
2

2�f

2
0

◆
exp

✓
�j2⇡

x!1 + y!2

�f0

◆
d!1d!2

Optical parameters
�: wavelength (emission)

M : magnification factor

f0: focal length

P (!1,!2) = k!k<R0
: pupil function

NA = n sin ✓ = R0/f0: numerical aperture

Deconvolution experiments

36
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15

(a) (b) (c)

(a) (b) (c)

Figure 10.3 Images used in deconvolution experiments. (a) Stem cells surrounded by goblet
cells. (b) Nerve cells growing around fibers. (c) Artery cells.

where sinc(x) = sin(ºx)/(ºx). The entries of the system matrix in (10.9) are then
obtained as

[H]
m,k = h¥

m

, sinc(·°k)i
= hh2D(·°m),sinc(·°k)i
=

°

sinc§h2D
¢

(m °k) = h2D(m °k).

In effect, this is equivalent to constructing the system matrix from the samples of the
PSF since h2D is already band-limited as a result of the imaging physics (diffraction-
limited microscope).

An important aspect for the implementation of the signal-recovery algorithm is
that H is a discrete convolution matrix which is diagonalized by the discrete Fourier
transform. The same is true for the regularization operator L as well as for any linear
combination, product, or inverse of such convolution matrices. This allows us to
convert (10.23) to a simple Fourier-domain multiplication which yields a fast and
direct implementation of the linear step of the algorithm. The computational cost is
essentially that of two FFTs (one forward and one backward Fourier transform).

Experimental results
The reference data are provided by the three microscopic images in Figure 10.3

which display different types of cells. The input images of size (512£512) are blurred
with a Gaussian PSF of support (9 £ 9) and standard deviation æ0 = 4 to simulate
the effect of wide-field microscope with a low-NA objective. The measurements are
degraded with additive white Gaussian noise so as to meet some prescribed blurred
SNR (BSNR) defined as BSNR = var(Hs)/æ2.

For deconvolution, the algorithm is run for a maximum of 500 iterations, or until
the absolute relative error between the successive iterates is less than 5£10°6. The
results are summarized in Table 10.2. The first observation is that the standard linear
deconvolution (MAP estimator based on a Gaussian prior) performs remarkably well
for the image in Figure 10.3(a), which is heavily textured. The MAP estimator based
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Table 10.2 Deconvolution performance of MAP estimators based on different prior

distributions.

Estimation performance (SNR in dB)
BSNR (dB) Gaussian Laplace Student’s

Stem cells 20 14.43 13.76 11.86
30 15.92 15.77 13.15
40 18.11 18.11 13.83

Nerve cells 20 13.86 15.31 14.01
30 15.89 18.18 15.81
40 18.58 20.57 16.92

Artery cells 20 14.86 15.23 13.48
30 16.59 17.21 14.92
40 18.68 19.61 15.94

on the Laplace prior, on the other hand, yields the best performance for images hav-
ing sharp edges with a moderate amount of texture, such as those in Figures 10.3(b)-
(c). This confirms the general claim that it is possible to improve the reconstruction
performance through the promotion of sparse solutions. However, as the applica-
tion of Student’s prior to images typically encountered in microscopy demonstrates,
exaggeration in the enforcement of sparsity is a distinct risk. Finally, we note that
the Gaussian and Laplace versions of the algorithm are compatible with the meth-
ods commonly used in the field; for instance, `2-Tikhonov regularization [PMC93]
and `1/TV regularization [DBFZ+06].

10.3.3 Magnetic resonance imaging

Magnetic resonance refers to the property of atomic nuclei in a static magnetic
field to absorb and restitute electromagnetic radiation. This energy is re-emitted
at a resonance frequency that is proportional to the strength of the magnetic field.
The basic idea of magnetic resonance imaging (MRI) is to induce a space-dependent
variation of the frequency of resonance by imposing spatial magnetic gradients. The
specimen is then excited by applying pulsed radio waves that cause the nuclei (or
spins) in the specimen to produce a rotating magnetic field detectable by the receiv-
ing coil(s) of the scanner.

Here, we shall focus on 2-D MRI where the excitation is confined to a single plane.
In effect, by applying a proper sequence of magnetic gradient fields, one is able to
sample the (spatial) Fourier transform of the spin density s(r ) with r 2 R2. Specific-
ally, the mth (noise-free) measurement is given by

ŝ(!m) =
Z

R2
s(r )e°jh!m ,r i dr ,

where the sampling occurs according to some predefined k-space trajectory (the
convention in MRI is to use k =!m as the spatial frequency variable). This is to say
that the underlying basis functions are the complex exponentials ¥m(r ) = e°jh!m ,r i.

L: discrete gradient



3D deconvolution with sparsity constraints
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Maximum intensity projections of 384⇥448⇥260 image stacks;

Leica DM 5500 widefield epifluorescence microscope with a 63⇥ oil-immersion objective;

C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

(Vonesch-U. IEEE Trans. Im. Proc. 2009)

Computed tomography (straight rays)

38
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Figure 10.5 X-ray tomography and the Radon transform. (a) Imaging geometry. (b) 2-D
reconstruction of a tomogram. (c) Its Radon transform (sinogram).

In practice, the measurements correspond to the sampled values of the Radon
transform of the absorption map s(x) at a series of points (tm ,µm),m = 1, . . . , M . From
(10.32), we deduce that the analysis functions are

¥m(x) = ±
°

tm °hx ,µmi
¢

which represent a series of idealized lines inR2 perpendicular toµm = (cosµm , sinµm).

Discretization
For discretization purpose, we represent the absorption distribution as the weighted

sum of separable B-spline-like basis functions

s(x) =
X

k
s[k]Ø(x °k) ,

with Ø(x) = Ø(x)Ø(y) where Ø(x) is a suitable symmetric kernel (typically, a polyno-
mial B-spline of degree n). The constraint here is thatØ ought to have a short support
to reduce computations, which rules out the use of the sinc basis.

In order to determine the system matrix, we need to compute the Radon transform
of the basis functions. The properties of the Radon transform that are helpful for that
purpose are

x

y

�

r

R ✓
{s}

(t)

=

Z

R2

s(x)�(t� hx,✓i)dx

Projection geometry: x = t✓ + r✓?
with ✓ = (cos ✓, sin ✓)

Radon transform (line integrals)

R✓{s(x)}(t) =
Z

R
s(t✓ + r✓?)dr

sinogram

Equivalent analysis functions: ⌘m(x) = �
�
tm � hx,✓mi

�

(applicable to
tomographic phase microscopy
with plane wave illumination)
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Figure 10.6 Images used in X-ray tomographic reconstruction experiments. (a) The
Shepp-Logan (SL) phantom. (b) Cross section of a human lung.

Table 10.4 Reconstruction results of X-ray computed tomography using different

estimators.

Directions Estimation performance (SNR in dB)
Gaussian Laplace Student’s

SL Phantom 120 16.8 17.53 18.76
SL Phantom 180 18.13 18.75 20.34

Lung 180 22.49 21.52 21.45
Lung 360 24.38 22.47 22.37

section of the lung of size (750£750). In the simulations of the forward model, we use
a standard parallel geometry with an angular sampling that is matched to the size of
the images. Specifically, the projections are taken along Mµ = 180,360 equiangular
directions for the lung image and Mµ = 120,180 directions for the SL phantom. The
measurements are degraded with Gaussian noise with a signal-to-noise ratio of 20
dB.

For the reconstruction, we solve the quadratic minimization problem (10.21) iter-
atively by using 50 conjugate-gradient (inner) iterations. The reconstruction results
are reported in Table 10.4.

We observe that the imposition of the strong level of sparsity brought by Student’s
priors is advantageous for the SL phantom. This is not overly surprising given that
the SL phanton is an artificial construct composed of piecewise-constant regions (el-
lipses). For the realistic lung image (true CT), we find that the Gaussian solution out-
performs the others. Similarly to the deconvolution and MRI problems, the present
MAP estimators are in line with the Tikhonov-type [WLLL06] and TV [XQJ05] recon-
structions used for X-ray CT.
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Figure 10.6 Images used in X-ray tomographic reconstruction experiments. (a) The
Shepp-Logan (SL) phantom. (b) Cross section of a human lung.

Table 10.4 Reconstruction results of X-ray computed tomography using different

estimators.

Directions Estimation performance (SNR in dB)
Gaussian Laplace Student’s

SL Phantom 120 16.8 17.53 18.76
SL Phantom 180 18.13 18.75 20.34

Lung 180 22.49 21.52 21.45
Lung 360 24.38 22.47 22.37

section of the lung of size (750£750). In the simulations of the forward model, we use
a standard parallel geometry with an angular sampling that is matched to the size of
the images. Specifically, the projections are taken along Mµ = 180,360 equiangular
directions for the lung image and Mµ = 120,180 directions for the SL phantom. The
measurements are degraded with Gaussian noise with a signal-to-noise ratio of 20
dB.

For the reconstruction, we solve the quadratic minimization problem (10.21) iter-
atively by using 50 conjugate-gradient (inner) iterations. The reconstruction results
are reported in Table 10.4.

We observe that the imposition of the strong level of sparsity brought by Student’s
priors is advantageous for the SL phantom. This is not overly surprising given that
the SL phanton is an artificial construct composed of piecewise-constant regions (el-
lipses). For the realistic lung image (true CT), we find that the Gaussian solution out-
performs the others. Similarly to the deconvolution and MRI problems, the present
MAP estimators are in line with the Tikhonov-type [WLLL06] and TV [XQJ05] recon-
structions used for X-ray CT.

Computed tomography reconstruction results

39

L: discrete gradient

Cryo-electron tomography (real data)

40

High-resolution Fourier-based
 reconstruction

Standard Fourier-based
 reconstruction

High-resolution
 reconstruction with sparsity 



consistency prior constraints algorithmic 
coupling

Physical model Statistical model of signal

Repeat

x

(n) = argmin
x

J(x,u(n�1)):

u

(n) = argmin
u

J(x(n),u):

until stop criterion

Linear step (problem specific)

Statistical or “denoising” step
Niter

Schematic structure of reconstruction algorithm:

J(x,u) =
1

2
ky �Hxk22

| {z }
+ �R(u)| {z } + µkLx� uk22
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Conceptual summary of 2nd generation methods

42

Part 3: 

The (deep) learning (r)evolution

⇒ Emergence of 3rd generation methods



Learning within the current paradigm
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Data-driven tuning of parameters: �, calibration of forward model

Semi-blind methods, sequential optimization

Learning of non-linearities / Proximal operators

CNN-type parametrization, backpropagation

(Elad 2006, Ravishankar 2011, Mairal 2012)  

(Chen-Pock 2015-2016, Kamilov 2016)  

) “optimal” L

) “optimal” potential �

Improved decoupling/representation of the signal

Data-driven dictionary learning

(based of sparsity or statistics/ICA)

Connection with deep neural networks

44

LISTA : learning-based ISTA

FBPConvNet structures

ISTA with sparsifying transformation

 X

Unrolled Iterative Shrinkage Thresholding Algorithm (ISTA)
(Gregor-LeCun 2010) 
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SplineProx: learning shrinkage functions
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Pointwise nonlinearity parametrized by B-spline coefficients a

(Kamilov IEEE SPL 2016; Nguyen et al., arXiv:1705.05591 [cs.LG])  

SplineProx(x|a) =
X

k2Z
ak�

3
(x/T � k)

Mathematical constraints: firmly nonexpansive vs. monotonic 

Recent appearance of Deep ConvNets
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CT reconstruction based on Deep ConvNets

Input: Sparse view FBP reconstruction

Training: Set of 500 high-quality full-view CT reconstructions

Architecture: U-Net with skip connection (Jin et al., arXiv:1611.03679)

(Jin et al. 2016; Chen et al. 2017; ... )



Dose reduction by 7: 143 views

(Jin et al., IEEE Trans. Im Proc., in press)
 Reconstructed from

from 1000 views

CT data 

Dose reduction by 20: 50 views

 Reconstructed from
from 1000 views

CT data 

(Jin et al., IEEE Trans. Im Proc., in press)



Primary reconstruction methods: typology
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1. Classical (FBP)

2. Sparsity-driven

3. Extended modeling

4. Deep learning

Theories

Tikhonov Gaussian estimation

Compressed sensing gTV-splines

Sparse stochastic
processes

Machine learning Data science

Bi-level optimization
(joint statistical estimation)

degree of understanding

New learning era

Methods

Reconstruction methods: tuning parameters
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1. Classical (FBP)

2. Sparsity-driven

3. Extended modeling

4. Deep learning weights of neural network
(millions)

L or power spectrum

�! �

L or sparsifying transform

�! �

L or sparsifying transform

+
Lévy exponent

�!
Dictionary

+
Shrinkage functions

com
plexity
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Comparison chart
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1. Classical
reconstruction

2. Sparsity
     driven

3. Extended 
    modeling

4. Deep 
    learning

Speed

Reconstruction
quality

Theoretical 
guarantees

(optimality, worst case...)

+
+++ ++ + --- / +++

++ ++(+) +++

Few views (CS)

Full views ++ ++(+) +++ ???
no way to train

training

+ ++ ++(+)

+++ ++(+) +(+) ?

Robustness ++ +++ ++(+) --need to retrain
for each configuration

Training data 
requirement Modest Modest Average Enormous

3. Extended 
    modeling

Conclusion
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Important requirement for bioimaging

Preliminary results with FBPConvNet suggest that there is still room considerable 
improvement using learning: ⨉4 reduction or more ?

Key to success

- Realistic forward model (physics) with autocalibration
- Better signal modeling                         
- Reducing the number of parameters to tune

Find a “safe” compromize between principled approaches (robust,
with guarantees of performance) and purely data-driven approaches (top 
performers) whose functioning is not yet understood.

Can we further reduce exposure time/improve image quality ?

The future: Computational imaging with educated learning

Looking “good” is not enough ) task-oriented evaluation

Difficulty of having “goldstandard” for training CNNs

Need worst-case guarantees; understanding of bias/limitations
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