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OUTLINE

■ 1. Imaging as an inverse problem
■ Basic imaging operators
■ Comparison of modalities
■ Discretization of the inverse problem

■ 2. Classical reconstruction algorithms
■ Backprojection
■ Tikhonov regularization
■ Wiener / LMSE solution

■ 3. Modern methods: the sparsity (re)evolution
Magnetic resonance imaging
Computed tomography
Differential phase-contrast tomography

Specific examples:

■ 4. What’s next: the learning revolution ?



(assuming noise is negligible)

Inverse problem is well posed if 9c0 > 0 s.t., for all s 2 X , c0ksk  kHsk

Inverse problems in bio-imaging

3

noise

n

Linear forward model

s
Integral operator

H

y = Hs+ n

Problem: recover s from noisy measurements y

Backprojection (poor man’s solution): s ⇡ HTy

Basic limitations
  1) Inherent noise amplification  2) Difficulty to invert H (too large or non-square)  3) All interesting inverse problems are ill-posed

) s ⇡ H�1y

The easy scenario

4

Part 1: 

 Setting up
 the problem



Forward imaging model (noise-free)
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H : L2(Rd) ! RM

s 2 L2(Rd) (space of finite-energy functions)

defined over a continuum in space-time

from continuum to discrete (finite dimensional)

(by the Riesz representation theorem)

impulse response of mth detector

Unknown molecular/anatomical map: s(r), r = (x, y, z, t) 2 Rd

Imaging operator H : s 7! y = (y1, · · · , yM ) = H{s}

) [y]m = ym = h⌘m, si =
Z

Rd

⌘m(r)s(r)dr

Linearity assumption: for all s1, s2 2 L2(Rd), ↵1,↵2 2 R

H{↵1s1 + ↵2s2} = ↵1H{s1}+ ↵2H{s2}

6

Images are obviously made of sine waves ...



Basic operator: Fourier transform

7

f̂(!) = F{f}(!) =

Z

Rd

f(x)e�jh!,xidx

F : L2(Rd) ! L2(Rd)

Equivalent analysis functions: ⌘m(x) = ejh!m,xi
(complex sinusoids)

Reconstruction formula (inverse Fourier transform)

f(x) = F�1{f}(x) = 1

(2⇡)d

Z

Rd

f̂(!)ejh!,rid! (a.e.)

2D Fourier reconstruction

8

Original image:

f(x)

Reconstruction using N largest coefficients:

f̃(x) =
1

(2�)2
�

subset
f̂(�)ej�x,�⇥



Magnetic resonance imaging

9

x
z �0 = �0(x)

Frequency encode:

(sampling of Fourier transform)ŝ(!m) =

Z

R3

s(r)e�jh!m,ridr

ŝw(!m) =

Z

R3

w(r)s(r)e�jh!m,ridr

r = (x, y, z)

Magnetic resonance: !0 = �B0

Linear forward model for MRI

Extended forward model with coil sensitivity

Basic operator: Windowing

10

W : L2(Rd) ! L2(Rd)

Application: Structured illumination microscopy (SIM)

W{f}(x) = w(x)f(x)

Positive window function (continuous and bounded): w 2 Cb(Rd), w(x) � 0

Special case: modulation

w(r) = ejh!0,ri

ejh!0,rif(r)
F ! f̂(! � !0)



Basic operator: Convolution
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H : L2(Rd) ! L2(Rd)

Convolution as a frequency-domain product

(h ⇤ f)(x) F ! ĥ(!)f̂(!)

Frequency response: ĥ(!) = F{h}(!)

H{f}(x) = (h ⇤ f)(x) =
Z

Rd

h(x� y)f(y)dy

Equivalent analysis functions: ⌘m(x) = h(xm � ·)

Impulse response: h(x) = H{�}

Modeling of optical systems

Diffraction-limited optics = LSI system

f(x, y) g(x, y) = (h ⇤ f)(x, y)

Airy disc

Radial profileAberation-free point spread function (in focal plane)

h(x, y) = h(r) = C ·
�
2J1(�r)

�r

�2

where r =
�

x2 + y2 (radial distance)

Airy disk

Point source output
Effect of misfocus

(in focus) (defocus)

h(x, y): Point Spread Function (PSF)

12



Basic operator: X-ray transform

13

10.3 MAP reconstruction of biomedical images 273
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Figure 10.5 X-ray tomography and the Radon transform. (a) Imaging geometry. (b) 2-D
reconstruction of a tomogram. (c) Its Radon transform (sinogram).

In practice, the measurements correspond to the sampled values of the Radon
transform of the absorption map s(x) at a series of points (tm ,µm),m = 1, . . . , M . From
(10.32), we deduce that the analysis functions are

¥m(x) = ±
°

tm °hx ,µmi
¢

which represent a series of idealized lines inR2 perpendicular toµm = (cosµm , sinµm).

Discretization
For discretization purpose, we represent the absorption distribution as the weighted

sum of separable B-spline-like basis functions

s(x) =
X

k
s[k]Ø(x °k) ,

with Ø(x) = Ø(x)Ø(y) where Ø(x) is a suitable symmetric kernel (typically, a polyno-
mial B-spline of degree n). The constraint here is thatØ ought to have a short support
to reduce computations, which rules out the use of the sinc basis.

In order to determine the system matrix, we need to compute the Radon transform
of the basis functions. The properties of the Radon transform that are helpful for that
purpose are

x

y

�

r

R ✓
{s}

(t)

=

Z

R2

s(x)�(t� hx,✓i)dx

Projection geometry: x = t✓ + r✓?
with ✓ = (cos ✓, sin ✓)

Radon transform (line integrals)

R✓{s(x)}(t) =
Z

R
s(t✓ + r✓?)dr

sinogram

Equivalent analysis functions: ⌘m(x) = �
�
tm � hx,✓mi

�

Central slice theorem
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�

�x

�y

p̂ �
(�

)

Fourier transform

p �
(t)

t

Central-slice theorem

p̂�(⇥) = f̂(⇥ cos �, ⇥ sin �) = f̂pol(⇥, �)

Measurements of line integrals (Radon transform)

p✓(t) = R✓ {f} (t, ✓)

1D and 2D Fourier transforms

p̂✓(!) = F
1D

{p✓}(!)

f̂(!) = F
2D

{f}(!) = f̂
pol

(!, ✓)

Proof: for ✓ = 0

f̂(!, 0) =

Z +1

�1

Z +1

�1
f(x, y)e�j!x dxdy =

Z +1

�1

✓Z +1

�1
f(x, y) dy

◆

| {z }
p0(x)

e

�j!x dx = p̂0(!)

then use rotation property of Fourier transform. . .



2D or 3D 
tomography coherent x-ray yi = R✓ix

parallel, 
cone beam, spiral sampling

Modality Radiation Forward model Variations

Cardiac MRI
(parallel, non-uniform)

gated or not, 
retrospective registrationradio frequency

yt,i = FtWix

Wi: coil sensitivity

Magnetic resonance
 imaging (MRI) radio frequency y = Fx uniform or non-uniform 

sampling in k space

Optical diffraction
 tomography coherent light

with holography
or grating interferometryyi = WiFix

structured illumination 
microscopy (SIM)

fluorescence
yi = HWix

H: PSF of microscope

Wi: illumination pattern

full 3D reconstruction, 
non-sinusoidal patterns

3D deconvolution 
microscopy fluorescence brightfield, confocal, 

light sheety = Hx

Positron Emission 
Tomography (PET)

yi = H✓ixgamma rays list mode
with time-of-flight

Discretization: Finite dimensional formalism

16

y = y0 + n = Hs+ n

(M ⇥K) system matrix : [H]m,k = h⌘m,�ki =
Z

Rd

⌘m(r)�k(r)dr

Signal vector: s =
�
s[k]

�
k2⌦

of dimension K

s(r) =
X

k2⌦

s[k]�k(r)

Measurement model (image formation)

ym =

Z

Rd

s(r)⌘m(r)dr + n[m] = hs, ⌘mi+ n[m], (m = 1, . . . ,M)

⌘m: sampling/imaging function (mth detector)

n[·]: additive noise



Example of basis functions
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Bandlimited representation

�(x) = sinc(x)
-4 -2 0 2 4

-0.2

0.2
0.4
0.6
0.8
1

tri(x) = �1(x)

!2 !1 0 1 2 3
!0.2

0.2
0.4
0.6
0.8
1Pixelated model

�(x) = rect(x)

Bilinear model

�(x) = (rect ⇤ rect)(x) = tri(x)

Shift-invariant representation: �k(x) = �(x� k)

Separable generator: �(x) =
dY

n=1

�(xn)

18

Part 2: 

Classical image   

reconstruction 

Discretized forward model: y=Hs+ n

Inverse problem: How to efficiently recover s from y ?



Vector calculus
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Useful identities

�

�v
�
aT v

⇥
=

�

�v
�
vT a

⇥
= a

�

�v
�
vT Av

⇥
=

�
A + AT

⇥
· v

�

�v
�
vT Av

⇥
= 2A · v if A is symmetric

Scalar cost function J(v) : RN ! R

Vector differentiation:

@J(v)

@v
=

2

664

@J/@v1
.

.

.

@J/@vN

3

775 = rJ(v) (gradient)

Necessary condition for an unconstrained optimum (minimum or maximum)

@J(v)

@v
= 0 (also sufficient if J(v) is convex in v)

Formal least-squares solution

JLS(s,y) = ky �Hsk2 = kyk2 + sT HTH| {z }
A

s� 2yTH| {z }
aT

s

@JLS(s,y)
@s = 2HTHs�2HTy = 0 ) sLS = argmin

s
JLS(s,y) = (HTH)�1HTy

Backprojection (poor man’s solution): s ⇡ HTy

Basic reconstruction: least-squares solution

20

+Imaging
system

noise         

LS algorithm

OK if H is unitary , H�1 = HT

Basic limitations
  1) Inherent noise amplification  2) Difficulty to invert H (too large or non-square)  3) All interesting inverse problems are ill-posed

y = Hs+ n

ỹ = Hs̃

s s̃

Least-squares fitting criterion: JLS(s̃,y) = ky �Hs̃k2

min
s̃

ky � ỹk2 = min
s

JLS(s,y) (maximum consistency with the data)



Formal linear solution: s = (HTH+ �LTL)�1HTy = R� · y

Linear inverse problems (20th century theory)

21

Equivalent variational problem

s? = argmin ky �Hsk22| {z }
data consistency

+ �kLsk22| {z }
regularization

Interpretation: “filtered” backprojection

R(s) = kLsk22: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

Formal linear solution: s = (HTH+ �LTL)�1HTy = R� · y

Andrey N. Tikhonov (1906-1993)

min
s

R(s) subject to ky �Hsk22  �2

Dealing with ill-posed problems: Tikhonov regularization

Statistical formulation (20th century)

22

sMAP = argmins
1

�2
ky �Hsk22

| {z }
Data Log likelihood

+ kC�1/2
s sk22| {z }

Gaussian prior likelihood

Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

m L = C�1/2
s : Whitening filter

Quadratic regularization (Tikhonov)

Linear measurement model: y = Hs+ n

Norbert Wiener (1894-1964)

sTik = argmin
s

�
ky �Hsk22 + �R(s)

�
with R(s) = kLsk22

Linear solution : s = (HTH+ �LTL)�1HTy = R� · y

n : additive white Gaussian noise (i. i. d.)

s : realization of Gaussian process with zero-mean

and covariance matrix E{s · sT } = Cs



Iterative reconstruction algorithm
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Iterative constrained least-squares reconstruction

JTik(s,y) =
1
2ky �Hsk2 + �

2 kLsk
2

Gradient:

@JTik(s,y)

@s
= �s0 + (HTH+ �LTL)s with s0 = HTy

Steepest-descent algorithm

s(k+1) = s(k) + �
�
s0 � (HTH+ �LTL)̃s(k)

�

Positivity constraint (IC): [̃s(k+1)]i =

(
0, [s(k+1)]i < 0

[s(k+1)]i, otherwise.

(projection on convex set)

Generic minimization problem: s
opt

= argmin
s

J(s,y)

Steepest-descent solution

s(k+1) = s(k) � �rJ
�
s(k),y

�

Iterative deconvolution: unregularized case

24

Degraded image:
Gaussian blur + additive noise

van Cittert animation

Ground truth
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Effect of regularization parameter

Degraded image: 
Gaussian blur + additive noise

not enough: λ=0.02 not enough: λ=0.2

too much: λ=20Optimal regularization: λ=2 too much: λ=200

Selecting the regularization operator

26

TRS-invariant regularization functional

krsk2L2(Rd) = k(��)
1
2 sk2L2(Rd)

Fractional Brownian motion field

Statistical decoupling/whitening: (��)
�
2 s = w  ! 1

|!|� spectral decay

Translation, rotation and scale-invariant operators

Laplacian: �s = (rTr)s  ! �k!k2ŝ(!)

Modulus of gradient: |rs|

Fractional Laplacian: (��)
�
2  ! k!k� ŝ(!)

) L: discrete version of gradient
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Relevance of self-similarity for bio-imaging
■ Fractals and physiology

Designing fast reconstruction algorithms

28

Formal linear solution: s = (A+ �LTL)�1HTy = R� · y

Generic form of the iterator: s(k+1) = s(k) + �
�
s0 � (A+ �LTL)s(k)

�

Normal matrix: A = HTH (symmetric)

Recognizing structured matrices

L: convolution matrix ) LTL: symmetric convolution matrix

L, A: convolution matrices ) (A+ �LTL) : symmetric convolution matrix

Fast implementation

Diagonalization of convolution matrices ) FFT-based implementation

Applicable to:  - deconvolution microscopy (Wiener filter)
 - parallel rays computer tomography (FBP)
 - MRI, including non-uniform sampling of k-space
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Part 3: 

 Modern image   

 reconstruction 

Linear inverse problems: The sparsity (r)evolution

30

(Figuereido et al., Daubechies et al. 2004)

(Rudin-Osher, 1992)

(Candes-Romberg-Tao; Donoho, 2006)Compressed sensing/sampling

srec = argmin
s

�
ky �Hsk22 + �R(s)

�

Wavelet-domain regularization

v = W�1s: wavelet expansion of s (typically, sparse)

R(s) = kvk`1

Total variation

R(s) = kLsk`1 with L: gradient

(20th Century) p = 2 �! 1 (21st Century)

Non-quadratic regularization regularization

R(s) = kLsk2`2 �! kLskp`p �! kLsk`1



Sparsifying transforms
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0.1% 0.5% 1% 5% 10% 50% 100%
10-6

10-5

10-4

10-3

10-2

10-1

100

Percentage of coefficients kept

N
or

m
al

is
ed

 M
SE

 

 
Fourier
DCT
8x8 Block DCT
DWT (Haar)
DWT (spline2)
DWT (9/7)

Error maps

min=3, max=70 min=3, max=26 min=3, max=6

Biomedical images are well described by few basis coefficients

Prior =
sparse 

representation

Advantages:
• convex
• favors sparse
   solutions
• Fast: WFISTA

(Guerquin-Kern IEEE TMI 2011)

R(s) = �
��WT s

��
1

Theory of compressive sensing

32

[Donoho et al., 2005
     Candès-Tao, 2006, ...]

Formulation of ill-posed recovery problem when 2K < N
y

⌧ N
x

(P0) min
x

ky �Axk22 subject to kxk0  K

Generalized sampling setting (after discretization)

Linear inverse problem: y = Hs+ n

Sparse representation of signal: s = Wx with kxk0 = K ⌧ N
x

N
y

⇥N
x

system matrix : A = HW

Theoretical result

Under suitable conditions on A (e.g., restricted isometry), the solution is unique

and the recovery problem (P0) is equivalent to:

(P1) min
x

ky �Axk22 subject to kxk1  C1
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y A x

Sparse representation of signal: s = Wx with kxk0 = K ⌧ N
x

Equivalent N
y

⇥N
x

sensing matrix : A = HW

+    “noise”

Compressive sensing (CS) and l1 minimization 
[Donoho et al., 2005

     Candès-Tao, 2006, ...]

Constrained (synthesis) formulation of recovery problem

min
x

kxk1 subject to ky �Axk22  �2

Classical regularized least-squares estimator

34

= HTa =
MX

m=1

amhm where a = (HHT + �IM )�1y

Lemma

(HTH+ �IN )�1HT = HT (HHT + �IM )�1

xLS = arg min
x2RN

ky �Hxk22 + �kxk22

) xLS = (HTH+ �IN )�1HTy

Interpretation: xLS 2 span{hm}Mm=1

Linear measurement model:

ym = hhm,xi+ n[m], m = 1, . . . ,M

System matrix : H = [h1 · · ·hM ]T 2 RN⇥N



Generalization: constrained l2  minimization
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Example: Cy = {z 2 RM : ky � zk22  �2}

Discrete signal to reconstruct: x = (x[n])n2Z

Sensing operator H : `2(Z) ! RM

x 7! z = H{x} = (hx, h1i, . . . , hx, hM i) with hm 2 `2(Z)

Closed convex set in measurement space: C ⇢ RM

Representer theorem for constrained `2 minimization

(P2) min
x2`2(Z)

kxk2
`2

s.t. H{x} 2 C

The problem (P2) has a unique solution of the form

xLS =
MX

m=1

a

m

h

m

= H⇤{a}

with expansion coefficients a = (a1, · · · , aM ) 2 RM

.

(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016) 

Constrained l1 minimization

36

(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016) 

Representer theorem for constrained `1 minimization

(P1) V = arg min
x2`1(Z)

kxk
`1 s.t. H{x} 2 C

is convex, weak*-compact with extreme points of the form

xsparse[·] =
KX

k=1

a

k

�[·� n

k

] with K = kxsparsek0  M .

V

If CS condition is satisfied,
then solution is unique

⇒  sparsifying effect
Discrete signal to reconstruct: x = (x[n])n2Z

Sensing operator H : `1(Z) ! RM

x 7! z = H{x} = (hx, h1i, . . . , hx, hM i) with hm 2 `1(Z)

Closed convex set in measurement space: C ⇢ RM



Controlling sparsity
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Measurement model: ym = hhm, xi+ n[m], m = 1, . . . ,M

λ →10-3 10-2 10-1 100 101 102
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b): Gaussian model

Conv.
DCT
CS

λ →10-3 10-2 10-1 100 101 102
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a
rs

ity
 I

n
d

e
x 
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) 
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10
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a): Sparse model

Conv.
DCT
CS

xsparse = arg min
x2`1(Z)

 
MX

m=1

��
y

m

� hh
m

, xi
��2 + �kxk

`1

!

Geometry of l2  vs. l1 minimization

38

Prototypical inverse problem

min
x

�
ky �Hxk2`2 + � kxk2`2

 
, min

x

kxk`2 subject to ky �Hxk2`2  �2

min
x

�
ky �Hxk2`2 + � kxk`1

 
, min

x

kxk`1 subject to ky �Hxk2`2  �2

x2

x1

`2-ball: |x1|2 + |x2|2 = C2

`1-ball: |x1|+ |x2| = C1

C
y1 = h

T
1 x

y

2�



Geometry of l2  vs. l1 minimization
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Prototypical inverse problem

min
x

�
ky �Hxk2`2 + � kxk2`2

 
, min

x

kxk`2 subject to ky �Hxk2`2  �2

min
x

�
ky �Hxk2`2 + � kxk`1

 
, min

x

kxk`1 subject to ky �Hxk2`2  �2

x2

x1

`2-ball: |x1|2 + |x2|2 = C2

`1-ball: |x1|+ |x2| = C1

C y1 = h

T
1 x

sparse extreme points

Configuration for non-unique `1 solution

Variational-MAP formulation of inverse problem

40

Linear forward model

y = Hs+ n

Reconstruction as an optimization problem

srec = argmin ky �Hsk22| {z }
data consistency

+ �kLskpp| {z }
regularization

, p = 1, 2

� log Prob(s) :  prior likelihood

linear
model

noise

H n
s



Discretization of reconstruction problem
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u = Ls (matrix notation)

Ls = w

s = L�1w
Discretization

pU is part of infinitely divisible family

Spline-like reconstruction model: s(r) =
X

k2⌦

s[k]�k(r)  ! s = (s[k])k2⌦

y = y0 + n = Hs+ n n: i.i.d. noise with pdf pN

O
ne

 p
uf

f t
o 

fo
llo

w
, o

ne
 p

uf
f t

o 
fo

llo
w

, o
ne

 p
uf

f t
o 

fo
llo

w
, o

ne
 p

uf
f t

o 
 

fo
llo

w
, o

ne
 p

uf
f t

o 
fo

llo
w

, o
ne

 p
uf

f t
o 

fo
llo

w
, o

ne
 p

uf
f t

o 
fo

llo
w

…

 
 

A
U

T
H

O
R

 N
A

M
E,

 a
ffi

lia
tio

n

Pr
ov

id
in

g 
a 

no
ve

l a
pp

ro
ac

h 
to

 s
pa

rs
e 

st
oc

as
tic

 p
ro

ce
ss

es
, t

hi
s 

co
m

pr
eh

en
-

siv
e 

bo
ok

 p
re

se
nt

s 
th

e 
th

eo
ry

 o
f s

to
ch

as
tic

 p
ro

ce
ss

 t
ha

t 
ar

e 
ru

le
d 

by
  

st
oc

ha
st

ic
 d

iff
er

en
tia

l e
qu

at
io

ns
, a

nd
 t

ha
t 

ad
m

it 
a 

pa
rs

im
on

io
us

 r
ep

re
se

n-
 

ta
tio

n 
in

 a
 m

at
ch

ed
 w

av
el

et
-li

ke
 b

as
is.

 
Tw

o 
ke

y 
th

em
es

 a
re

 t
he

 s
ta

tis
tic

al
 p

ro
pe

rt
y 

of
 in

fin
ite

 d
iv

isi
bi

lit
y,

 w
hi

ch
 

le
ad

s 
to

 t
w

o 
di

st
in

ct
 t

yp
es

 o
f b

eh
av

io
r 

– 
G

au
ss

ia
n 

an
d 

sp
ar

se
 –

 a
nd

 t
he

 
st

ru
ct

ur
al

 li
nk

 b
et

w
ee

n 
lin

ea
r 

st
oc

ha
st

ic
 p

ro
ce

ss
es

 a
nd

 s
pl

in
e 

fu
nc

tio
ns

, 
w

hi
ch

 is
 e

xp
lo

ite
d 

to
 s

im
pl

ify
 t

he
 m

at
he

m
at

ic
al

 a
na

ly
sis

. T
he

 c
or

e 
of

 t
he

 
bo

ok
 is

 d
ev

ot
ed

 t
o 

in
ve

st
ig

at
in

g 
sp

ar
se

 p
ro

ce
ss

es
, i

nc
lu

di
ng

 a
 c

om
pl

et
e 

 
de

sc
rip

tio
n 

of
 t

he
ir 

tr
an

sf
or

m
-d

om
ai

n 
st

at
ist

ic
s.

 T
he

 fi
na

l p
ar

t 
de

ve
lo

ps
  

pr
ac

tic
al

 s
ig

na
l-p

ro
ce

ss
in

g 
al

go
rit

hm
s 

th
at

 a
re

 b
as

ed
 o

n 
th

es
e 

m
od

el
s,

  
w

ith
 s

pe
ci

al
 e

m
ph

as
is 

on
 b

io
m

ed
ic

al
 im

ag
e 

re
co

ns
tr

uc
tio

n.
 

Th
is 

is 
an

 id
ea

l r
ef

er
en

ce
 fo

r 
gr

ad
ua

te
 s

tu
de

nt
s 

an
d 

re
se

ar
ch

er
s 

w
ith

 a
n 

in
te

re
st

 in
 s

ig
na

l/i
m

ag
e 

pr
oc

es
sin

g,
 c

om
pr

es
se

d 
se

ns
in

g,
 a

pp
ro

xi
m

at
io

n 
th

eo
ry

, m
ac

hi
ne

 le
ar

ni
ng

, o
r 

st
at

ist
ic

s.

M
IC

H
A

E
L 

U
N

S
E

R
 is

 P
ro

fe
ss

or
 a

nd
 D

ire
ct

or
 o

f E
PF

L’
s 

Bi
om

ed
ic

al
 Im

ag
in

g 
G

ro
up

, S
w

itz
er

la
nd

. H
e 

is 
a 

m
em

be
r 

of
 t

he
 S

w
iss

 A
ca

de
m

y 
of

 E
ng

in
ee

rin
g 

Sc
ie

nc
es

, a
 fe

llo
w

 o
f E

U
RA

SI
P,

 a
nd

 a
 fe

llo
w

 o
f t

he
 IE

EE
.

P
O

U
Y

A
 D

. 
T

A
FT

I 
is 

a 
re

se
ar

ch
er

 a
t 

Q
la

ym
 B

m
bH

, D
üs

se
ld

or
t,

 a
nd

 a
 fo

rm
er

 
m

em
be

r 
of

 t
he

 B
io

m
ed

ic
al

 Im
ag

in
g 

G
ro

up
 a

t 
EP

FL
, w

he
re

 h
e 

co
nd

uc
te

d 
re

se
ar

ch
 o

n 
th

e 
th

eo
ry

 a
nd

 a
pp

lic
at

io
ns

 o
f p

ro
ba

bl
ili

st
ic

 m
od

el
s 

fo
r 

da
ta

.

Unser and Tafti An Introduction to 
Sparse Stochastic Processes

C
ov

er
 il

lu
st

ra
tio

n:
 t

o 
fo

llo
w

An
 

In
tr

od
uc

tio
n 

to
 S

pa
rs

e 
St

oc
ha

st
ic

 
Pr

oc
es

se
s

M
ic

ha
el

 U
ns

er
 a

nd
 P

ou
ya

 D
. T

af
ti

Unser and Tafti. 9781107058545 PPC. C M Y K

Statistical innovation model

Physical model: image formation and acquisition

ym =

Z

Rd

s(x)⌘m(x)dx+ n[m] = hs, ⌘mi+ n[m], (m = 1, . . . ,M)

Posterior probability distribution

42

pS|Y (s|y) =
pY |S(y|s)pS(s)

pY (y)
=

pN
�
y �Hs

�
pS(s)

pY (y)

=
1

Z
pN (y �Hs)pS(s)

(Bayes’ rule)

u = Ls ) pS(s) / pU (Ls) ⇡
Q

k2⌦ pU
�
[Ls]k

�

... and then take the log and maximize ...

Additive white Gaussian noise scenario (AWGN)

pS|Y (s|y) / exp

✓
�ky �Hsk2

2�2

◆ Y

k2⌦

pU
�
[Ls]k

�

Statistical decoupling



General form of MAP estimator
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Sparser

sMAP = argmin
⇣

1
2 ky �Hsk22 + �2

P
n �U ([Ls]n)

⌘

Gaussian: p
U

(x) =

1p
2⇡�0

e

�x

2
/(2�2

0) ) �

U

(x) =

1
2�2

0
x

2
+ C1

Laplace: p
U

(x) =

�

2 e
��|x| ) �

U

(x) = �|x|+ C2

Student: p
U

(x) =

1

B

�
r,

1
2

�
✓

1

x

2
+ 1

◆
r+ 1

2

) �

U

(x) =

�
r +

1

2

�
log(1 + x

2
) + C3

-4 -2 0 2 4
0

1

2
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5

Potential: �U (x) = � log pU (x)

Proximal operator: pointwise denoiser

44

-4 -2 0 2 4
0

1

2

3

4

5

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

�2�U (u)

︎ linear attenuation
︎ soft-threshold
︎ shrinkage function ⇡ `p relaxation for p ! 0

`2 minimization

`1 minimization



Maximum a posteriori (MAP) estimation
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Auxiliary innovation variable: u = Ls

Constrained optimization formulation

sMAP = arg min
s2RK

 
1

2
ky �Hsk22 + �2

X

n

�U

�
[u]n

�
!

subject to u = Ls

LA(s,u,↵) =
1

2
ky �Hsk22 + �2

X

n

�U ([u]n) +↵T (Ls� u) +
µ

2
kLs� uk22

(Bostan et al. IEEE TIP 2013)

Alternating direction method of multipliers (ADMM)

46

Linear inverse problem:

Nonlinear denoising:

sk+1 � arg min
s�RN

LA(s,u
k,↵k)

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

Sequential minimization

Proximal operator taylored to stochastic model

prox�U
(y;�) = argmin

u

1

2

|y � u|2 + ��U (u)

↵k+1 = ↵k + µ
�
Lsk+1 � uk

�

sk+1 =
�
HTH+ µLTL

��1 �
HTy + zk+1

�

with zk+1 = LT
�
µuk �↵k

�

uk+1
= prox�U

�
Lsk+1

+

1
µ↵

k+1
;

�2

µ

�

LA(s,u,↵) =
1

2
ky �Hsk22 + �2

X

n

�U ([u]n) +↵T (Ls� u) +
µ

2
kLs� uk22
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Deconvolution of fluorescence micrographs
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Physical model of a diffraction-limited microscope

g(x, y, z) = (h3D ⇤ s)(x, y, z)

3-D point spread function (PSF)

h3D(x, y, z) = I0

��
p

�

�
x

M

,

y

M

,

z

M

2

���2

p�(x, y, z) =

Z

R2

P (!1,!2) exp

✓
j2⇡z

!

2
1 + !

2
2

2�f

2
0

◆
exp

✓
�j2⇡

x!1 + y!2

�f0

◆
d!1d!2

Optical parameters
�: wavelength (emission)

M : magnification factor

f0: focal length

P (!1,!2) = k!k<R0
: pupil function

NA = n sin ✓ = R0/f0: numerical aperture

2-D convolution model
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g(x, y) = (h2D ⇤ s)(x, y)s(x, y)

Thin specimen

Modulation transfer function

ˆh2D(!) =

8
><

>:

2
⇡

 
arccos

⇣
k!k
!0

⌘
� k!k

!0

r
1�

⇣
k!k
!0

⌘2
!
, for 0  k!k < !0

0, otherwise

Airy disk: h2D(x, y) = I0

���2J1(r/r0)
r/r0

���
2

with r =
p
x

2 + y

2
, r0 = �f0

2⇡R0
, J1(r): first-order Bessel function.

Radial profile

Cut-off frequency (Rayleigh): !0 = 2R0
�f0

= ⇡
r0

⇡ 2NA
�



2-D deconvolution: numerical set-up
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Discretization

!0  ⇡ and representation in (separable) sinc basis {sinc(x� k)}k2Z2

Analysis functions: ⌘m(x, y) = h2D(x�m1, y �m2)

[H]m,k = h⌘m, sinc(·� k)i

= hh2D(·�m), sinc(·� k)i

=
�
sinc ⇤ h2D

�
(m� k) = h2D(m� k).

H and L: convolution matrices diagonalized by discrete Fourier transform

Linear step of ADMM algorithm implemented using the FFT

sk+1 =
�
HTH+ µLTL

��1 �
HTy + zk+1

�

with zk+1 = LT
�
µuk �↵k

�

Deconvolution experiments
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10.3 MAP reconstruction of biomedical images 269

15

(a) (b) (c)

(a) (b) (c)

Figure 10.3 Images used in deconvolution experiments. (a) Stem cells surrounded by goblet
cells. (b) Nerve cells growing around fibers. (c) Artery cells.

where sinc(x) = sin(ºx)/(ºx). The entries of the system matrix in (10.9) are then
obtained as

[H]
m,k = h¥

m

, sinc(·°k)i
= hh2D(·°m),sinc(·°k)i
=

°

sinc§h2D
¢

(m °k) = h2D(m °k).

In effect, this is equivalent to constructing the system matrix from the samples of the
PSF since h2D is already band-limited as a result of the imaging physics (diffraction-
limited microscope).

An important aspect for the implementation of the signal-recovery algorithm is
that H is a discrete convolution matrix which is diagonalized by the discrete Fourier
transform. The same is true for the regularization operator L as well as for any linear
combination, product, or inverse of such convolution matrices. This allows us to
convert (10.23) to a simple Fourier-domain multiplication which yields a fast and
direct implementation of the linear step of the algorithm. The computational cost is
essentially that of two FFTs (one forward and one backward Fourier transform).

Experimental results
The reference data are provided by the three microscopic images in Figure 10.3

which display different types of cells. The input images of size (512£512) are blurred
with a Gaussian PSF of support (9 £ 9) and standard deviation æ0 = 4 to simulate
the effect of wide-field microscope with a low-NA objective. The measurements are
degraded with additive white Gaussian noise so as to meet some prescribed blurred
SNR (BSNR) defined as BSNR = var(Hs)/æ2.

For deconvolution, the algorithm is run for a maximum of 500 iterations, or until
the absolute relative error between the successive iterates is less than 5£10°6. The
results are summarized in Table 10.2. The first observation is that the standard linear
deconvolution (MAP estimator based on a Gaussian prior) performs remarkably well
for the image in Figure 10.3(a), which is heavily textured. The MAP estimator based

270 Recovery of sparse signals

Table 10.2 Deconvolution performance of MAP estimators based on different prior

distributions.

Estimation performance (SNR in dB)
BSNR (dB) Gaussian Laplace Student’s

Stem cells 20 14.43 13.76 11.86
30 15.92 15.77 13.15
40 18.11 18.11 13.83

Nerve cells 20 13.86 15.31 14.01
30 15.89 18.18 15.81
40 18.58 20.57 16.92

Artery cells 20 14.86 15.23 13.48
30 16.59 17.21 14.92
40 18.68 19.61 15.94

on the Laplace prior, on the other hand, yields the best performance for images hav-
ing sharp edges with a moderate amount of texture, such as those in Figures 10.3(b)-
(c). This confirms the general claim that it is possible to improve the reconstruction
performance through the promotion of sparse solutions. However, as the applica-
tion of Student’s prior to images typically encountered in microscopy demonstrates,
exaggeration in the enforcement of sparsity is a distinct risk. Finally, we note that
the Gaussian and Laplace versions of the algorithm are compatible with the meth-
ods commonly used in the field; for instance, `2-Tikhonov regularization [PMC93]
and `1/TV regularization [DBFZ+06].

10.3.3 Magnetic resonance imaging

Magnetic resonance refers to the property of atomic nuclei in a static magnetic
field to absorb and restitute electromagnetic radiation. This energy is re-emitted
at a resonance frequency that is proportional to the strength of the magnetic field.
The basic idea of magnetic resonance imaging (MRI) is to induce a space-dependent
variation of the frequency of resonance by imposing spatial magnetic gradients. The
specimen is then excited by applying pulsed radio waves that cause the nuclei (or
spins) in the specimen to produce a rotating magnetic field detectable by the receiv-
ing coil(s) of the scanner.

Here, we shall focus on 2-D MRI where the excitation is confined to a single plane.
In effect, by applying a proper sequence of magnetic gradient fields, one is able to
sample the (spatial) Fourier transform of the spin density s(r ) with r 2 R2. Specific-
ally, the mth (noise-free) measurement is given by

ŝ(!m) =
Z

R2
s(r )e°jh!m ,r i dr ,

where the sampling occurs according to some predefined k-space trajectory (the
convention in MRI is to use k =!m as the spatial frequency variable). This is to say
that the underlying basis functions are the complex exponentials ¥m(r ) = e°jh!m ,r i.



Astrocytes cells bovine pulmonary artery cells human embryonic stem cells

Gaussian Estimator Laplace Estimator Student’s Estimator
Astrocytes cells 12.18 10.48 10.52
Pulmonary cells 16.90 19.04 18.34
Stem cells 15.81 20.19 20.50

Deconvolution results in dB
L : gradient

Optimized parameters

Disk shaped PSF (7x7)

2D deconvolution experiment
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1-

3D deconvolution of widefield stack

52(Vonesch-U., IEEE TIP 2009)

Maximum intensity projections of 384⇥448⇥260 image stacks;

Leica DM 5500 widefield epifluorescence microscope with a 63⇥ oil-immersion objective;

C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

wavelet regularization (Haar), 3 decomposition levels for X-Y, 2 decomposition levels for Z.



Magnetic resonance imaging (MRI)
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Physical image formation model (noise-free)

ŝ(!m) =

Z

R2

s(r)e�jh!m,ridr

Equivalent analysis function: ⌘m(r) = e�jh!m,ri

[H]m,n = h⌘m, sinc(·� n)i

= he�jh!m,·i, sinc(·� n)i = e�jh!m,ni

Discretization in separable sinc basis

Property: HTH is circulant (FFT-based implementation)

(sampling of Fourier transform)

Original SL Phantom Fourier Sampling Pattern
12 Angles

Student prior (log)

L : gradient

Optimized parameters

Laplace prior (TV)

MRI: Shepp-Logan phantom
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Original Phantom
(Guerquin-Kern TMI 2012)

Gaussian prior (Tikhonov)
SER =17.69 dB

Laplace prior (TV)
SER = 21.37 dB

Student prior
SER = 27.22 dB

L : gradient

Optimized parameters
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MRI phantom: Spiral sampling in k-space

MRI reconstruction experiments
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10.3 MAP reconstruction of biomedical images 271

15

(a) (b) (c)

(a) (b) (c)

Figure 10.4 Data used in MR reconstruction experiments. (a) Cross section of a wrist. (b)
Angiography image. (c) k-space sampling pattern along 40 radial lines.

Table 10.3 MR reconstruction performance of MAP estimators based on different prior

distributions.

Radial lines Estimation performance (SNR in dB)
Gaussian Laplace Student’s

Wrist 20 8.82 11.8 5.97
40 11.30 14.69 13.81

Angiogram 20 4.30 9.01 9.40
40 6.31 14.48 14.97

The basic problem in MRI is then to reconstruct s(r ) based on the partial know-
ledge of its Fourier coefficients which are also corrupted by noise. While the recon-
struction in the case of a dense Cartesian sampling amounts to a simple inverse Four-
ier transform, it becomes more challenging for other trajectories, especially as the
sampling density decreases.

For simplicity, we discretize the forward model by using the same sinc basis func-
tions as for the deconvolution problem of Section 10.3.2. This results in the system
matrix

[H]m,n = h¥m , sinc(·°n)i
= he°jh!m ,·i, sinc(·°n)i= e°jh!m ,ni

under the assumption that k!mk1 ∑ º. The clear advantage of using the sinc basis
is that H reduces to a discrete Fourier-like matrix, with the caveat that the frequency
sampling is not necessarily uniform.

A convenient feature of this imaging model is that the matrix HT H is circulant so
that the linear iteration step of the algorithm can be computed in exact form using
the FFT.
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The basic problem in MRI is then to reconstruct s(r ) based on the partial know-
ledge of its Fourier coefficients which are also corrupted by noise. While the recon-
struction in the case of a dense Cartesian sampling amounts to a simple inverse Four-
ier transform, it becomes more challenging for other trajectories, especially as the
sampling density decreases.

For simplicity, we discretize the forward model by using the same sinc basis func-
tions as for the deconvolution problem of Section 10.3.2. This results in the system
matrix

[H]m,n = h¥m , sinc(·°n)i
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under the assumption that k!mk1 ∑ º. The clear advantage of using the sinc basis
is that H reduces to a discrete Fourier-like matrix, with the caveat that the frequency
sampling is not necessarily uniform.

A convenient feature of this imaging model is that the matrix HT H is circulant so
that the linear iteration step of the algorithm can be computed in exact form using
the FFT.



ISMRM reconstruction challenge
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�1 wavelet regularizationL2 regularization (Laplacian)

(Guerquin-Kern IEEE TMI 2011)

Differential phase-contrast tomography
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Mathematical model
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CCD

(Pfeiffer, Nature 2006)

Paul Scherrer Institute (PSI), Villigen

[H](i,j),k =
@

@t
P✓j�k(tj)

y(t, ✓) =
@

@t
R✓{s}(t)

y = H s



Properties of Radon transform
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Projected translation invariance

R✓{'(·� x0)}(t) = R✓{'}(t� hx0,✓i)

Pseudo-distributivity with respect to convolution

R✓{'1 ⇤ '2}(t) = (R✓{'1} ⇤ R✓{'2}) (t)

Fourier central-slice theorem

Z

R
R✓{'}(t)e�j!tdt = '̂(!)|!=!✓

Proposition: Consider the separable function '(x) = '

1

(x)'

2

(y). Then,

R✓{'(·� x

0

)}(t) = '✓(t� t

0

)

where t

0

= hx
0

,✓i and

'✓(t) =

⇣
1

| cos ✓|'1

� ·
cos ✓

�
⇤ 1

| sin ✓|'2

� ·
sin ✓

�⌘
(t).

�p̂ �
(�

)

!1

!2

p̂✓(!) = \
R✓{'}(!) = '̂(! cos ✓,! sin ✓)

Reducing the numbers of views
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Rat brain reconstruction with 181 projections

ADMM-PCG g-FBP

SSIM = .96

SSIM = .95

SSIM = .89

SSIM = .49

SSIM = .51

SSIM = .60

SSIM = .43

SSIM = .15

Collaboration: Prof. Marco Stampanoni, TOMCAT PSI / ETHZ

(Nichian et al. Optics Express  2013)



Performance evaluation
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⇒  Reduction of acquisition time by a factor 10 (or more) ?

Goldstandard: high-quality iterative reconstruction with 721 views

consistency prior constraints algorithmic 
coupling

Physical model Statistical model of signal

Repeat

x

(n) = argmin
x

J(x,u(n�1)):

u

(n) = argmin
u

J(x(n),u):

until stop criterion

Linear step (problem specific)

Statistical or “denoising” step
Niter

Schematic structure of reconstruction algorithm:

J(x,u) =
1

2
ky �Hxk22

| {z }
+ �R(u)| {z } + µkLx� uk22
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Higher reconstruction quality: Sparsity-promoting schemes almost sys-

tematically outperform the classical linear reconstruction methods in MRI,

x-ray tomography, deconvolution microscopy, etc...

Outstanding research issues

Increased complexity: Resolution of linear inverse problems using `1
regularization requires more sophisticated algorithms (iterative and non-

linear); efficient solutions (FISTA, ADMM) have emerged during the past

decade.

(Candes-Romberg-Tao; Donoho, 2006)

(Chambolle 2004; Figueiredo 2004; Beck-Teboule 2009; Boyd 2011)

(Lustig et al. 2007)

Faster imaging, reduced radiation exposure: Reconstruction from a

lesser number of measurements supported by compressed sensing.

Beyond `1 and TV: Connection with statistical modeling & learning

Beyond matrix algebra: Continuous-domain formulation
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Part 4: 

Short guess about the future:
The (deep) learning revolution (??)



Learning within the current paradigm

65

Data-driven tuning of parameters: �, calibration of forward model

Semi-blind methods, sequential optimization

Learning of non-linearities / Proximal operators

CNN-type parametrization, backpropagation

(Elad 2006, Ravishankar 2011, Mairal 2012)  

(Chen-Pock 2015-2016, Kamilov 2016)  

) “optimal” L

) “optimal” potential �

Improved decoupling/representation of the signal

Data-driven dictionary learning

(based of sparsity or statistics/ICA)

Recent appearance of Deep Conv Neural Nets
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CT reconstruction based on Deep ConvNets

Input: Sparse view FBP reconstruction

Training: Set of 500 high-quality full-view CT reconstructions

Architecture: U-Net with skip connection (Jin et al., arXiv:1611.03679)

(Jin et al. 2016; Chen et al. 2017; ... )



Dose reduction by 7: 143 views

(Jin et al., arXiv:1611.03679)
 Reconstructed from

from 1000 views

CT data 

Dose reduction by 20: 50 views

(Jin et al., arXiv:1611.03679)

 Reconstructed from
from 1000 views

CT data 



Dose reduction by 14: 51 viewsµCT data 

 Reconstructed from
from 721 views

Challenges for deep learning methods
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How does one assess reconstruction quality ?

Should be “task oriented”!!!

Development of more realistic simulators

both “ground truth” images + physical forward model

Use of CNN to correct artifacts of current methods

Use of CNN to emulate/speedup some well-performing, but “slow”,

reference reconstruction methods

Can we trust the results ?

True 3D CNN toolbox (still missing)

Research challenges/opportunities

Fundamental change of paradigm

Requires availability of extensive sets of representative training data

together with gold-standards = desired high-quality reconstruction

Reconstruction from fewer measurements
(trained on high-quality full-view data sets).
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C: convex compact subset of RM

 (U.-Fageot-Ward, SIAM Review, in Press)

V

H{q1} = H{q2} , q1 = q2 for all q1, q2 2 NLAdmissibility of regularization:

Finite-dimensional null space NL = {q 2 ML(Rd) : L{q} = 0} with basis {pn}N0
n=1

Linear measurement operator ML(Rd) ! RM : f 7! z = H{f}

ML(Rd) =
�
s : gTV(s) = kL{s}kM = sup

k'k11
hL{s},'i < 1

 

Representer theorem for gTV regularization

The extremal points of the constrained minimization problem

V = arg min
f2ML(Rd)

kL{f}kM s.t. H{f} 2 C

are necessarily of the form f(x) =
KX

k=1

ak⇢L(x � xk) +

N0X

n=1

bnpn(x) with K 

M �N0; that is, non-uniform L-splines with knots at the xk and kL{f}kM =
P

k=1 |ak|. The full solution set is the convex hull of those extremal points.


