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Discretization of the inverse problem

= 2, Classical reconstruction algorithms

Backprojection
Tikhonov regularization
Wiener / LMSE solution

= 3. Modern methods: the sparsity (re)evolution

Specific exa_mples: Magnetic resonance imaging
Computed tomography
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Inverse problems in bio-imaging

m Linear forward model y =Hs+n
noise
n
S Problem: recover s from noisy measurements y

m The easy scenario

Inverse problem is wel Basic Iimitations

1)1 : e
= s~Hly 2; Dni::‘ierel?t noise amplification
Culty to invert H (too large or non-square)

D 3 i TR
m Backprojection (¢ ) Allinteresting inverse problems are il-posed

Part 1:

Setting up
the problem




Forward imaging model (noise-free)

Unknown molecular/anatomical map: s(r),r = (z,y, 2,t) € R?

defined over a continuum in space-time
s € Ly(R%)  (space of finite-energy functions)
Imaging operator H : s —y = (y1, - ,ym) = H{s}
from continuum to discrete (finite dimensional)
H: Lg(Rd) — RM
Linearity assumption: for all s, so € Lo(R?), a1, € R
H{a131 + 04282} = alH{sl} + CYQH{SQ}
/ impulse response of mth detector

= = v = (5) = [ ()s(r)r

(by the Riesz representation theorem) 5

Images are obviously made of sine waves ...

S T
=




Basic operator: Fourier transform

F: Ly(RY) — Ly(RY)

flw)=F{fHw)= [ flx)e i da

Ra

Reconstruction formula (inverse Fourier transform)

f@) = F ) = —

(2m) Jga

f(w)ej<“”’">dw (a.e.)

Equivalent analysis functions: 7,,,(x) = ¢/{“=®)  (complex sinusoids)

2D Fourier reconstruction

Original image: Reconstruction using N largest coefficients:
- 1 . :
— E : (z,w)
f(CL') f(w) - (27‘(’)2 f(w)ej

subset




Magnetic resonance imaging

m Magnetic resonance: wy = vBy

Frequency encode:

m Linear forward model for MR r=(z,y,2)

§(wm) = /Rs s(r)e Hwm:) qp (sampling of Fourier transform)

m Extended forward model with coil sensitivity

§w(wm):/ w(r)s(r)e @ dy
R3

Basic operator: Windowing
W : Ly(R?Y) — Ly(RY)
W{f}(@) = w(z)f(2)

Positive window function (continuous and bounded): w € C},(R%), w(x) > 0

m Special case: modulation
w(r) = el{wo,r)
(w0 £ () PN f(w —wp)

Application: Structured illumination microscopy (SIM)
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Basic operator: Convolution
H: Ly(RY) — Ly(RY)
H{fHe) = (h+ f)(@) = [ ble—v)f()dy
Rd
Impulse response:  h(x) = H{d}
Equivalent analysis functions: 7,,(x) = h(x,, — )
Frequency response:  h(w) = F{h}(w)

m Convolution as a frequency-domain product

]I’

(h+ f)@) = hw)f(w)
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Modeling of optical systems

,y): Point Spread Function (PSF)
Diffraction-limited optics = LSI system

m Aberation-free point spread function (in focal plane) Radial profile
B B 2J1 (wr)]?
bay) = () = ¢ | 2]

where r = /22 + y2 (radial distance)

m Effect of misfocus

Point source output

1y

(in focus) (defocus) 12




Basic operator: X-ray transform

Projection geometry: x = t0 + r0= with @ = (cosf,sin )

Q)
&
m Radon transform (line integrals) ‘ﬁ Y
’
Ro{s(x)}(t) = / (0 4 r6>)dr \
R BN
N,
Z/ s(x)o(t — (x, 0))dx —
R2
E e -
—
sinogram
Equivalent analysis functions: 7, () = 6 (¢, — (., 0.,))
13
Central slice theorem
m Measurements of line integrals (Radon transform) QD %
(Q%
po(t) = Re {f}(t,0)
m 1D and 2D Fourier transforms A
Po(w) = Fip{pe}(w) Fourier transform
f(w) :]'—QD{f}(w) :fpol(wae)
m Central-slice theorem D
) ‘\\9
po(w) = f(wcosh, wsinh) = foor(w, o) e
Proof: for6 =0
+oo

foo = [ [ swerraar= [ ([ rwaar) e an = e

-~

po()
then use rotation property of Fourier transform. ..

14




Modality Radiation Forward model Variations
2D or 3D
- = Rp.x parallel,
tomography coherent x-ray Yi 0: cone beam, spiral sampling
3D deconvolution —H brightfield, confocal,
microscopy fluorescence Yy r light sheet

structured illumination
microscopy (SIM)

fluorescence

H: PSF of microscope
W, illumination pattern

full 3D reconstruction,
non-sinusoidal patterns

Positron Emission - —H list mode
amma rays = He; T
Tomography (PET) 9 y Yi with time-of-flight
Magnetic resonance . _ if -unif
C C radio frequenc y=Fx uniform or non-uniform
imaging (MRI) q y sampling in k space
Cardiac MRI Yo = Fe Wiz gated or not,

(parallel, non-uniform)

radio frequency

W;: coil sensitivity

retrospective registration

Optical diffraction
tomography

coherent light

yi = W;Fx

with holography
or grating interferometry

Discretization: Finite dimensional formalism

s(r) = slk]Bk(r)

keQ

Signal vector: s = (s[k]), _, of dimension K

m Measurement model (image formation)

Yo — /R () (F)dr + nfm] = (s,m) + n[m], (m=1,.... M)

Nm: sampling/imaging function (mth detector)

n[-]: additive noise

y=Yo+tn=Hs+n

(M x K) system matrix :

Hse = (s i) = /

Rd

Im (T)ﬁk (T)dr

16




Example of basis functions

Shift-invariant representation: Sg(x) = S(x — k)
d
Separable generator: (x) = H B(xy)
n=1

m Pixelated model : 1
o8 tri(z) = 7 (x)

B(x) = rect(x) 06

0.4

0.2

m Bilinear model opl 2 1 0 1 2 3

B(x) = (rect x rect)(x) = tri(x)

m Bandlimited representation

B(z) = sinc(x)

17

Part 2:
Classical image

reconstruction

Discretized forward model: y=Hs+ n

Inverse problem: How to efficiently recover s fromy ?

18




Vector calculus

m Scalar cost function J(v) : RY — R

&]/6111
. - aJ(v) ) .
m Vector differentiation: v = : =VJ(v) (gradient)
6J/8UN

m Necessary condition for an unconstrained optimum (minimum or maximum)

aJ(v)
ov

=0 (also sufficient if J(v) is convex in v)

m Useful identities

O pN_ 0 .\
2 vy = 2 (vTa) =a
(%(VTAV):(AJFAT)-V
%(VTAV):QA-V if A is symmetric

19

Basic reconstruction: least-squares solution

noise

S [ =Hs+n 5
Imaging i y _
> system >(+) . — LS algorithm —
""" > I y = H S

m Least-squares fitting criterion:  Jis(S,y) = ||y — Hs||?

min ||y — ¥||* = min Jps(s,y) (maximum consistency with the data)
S S

m Formal least-squares solution

Jus(s,y) = — Hs|]? = 21 sTHTHs —2yTHs
Ls(s,y) = lly 1= =lyll H Hs-2y

Ohslsy) — 9HTHs—2HTy

Basic limitations

1) Inherent noise amplification

g) Difficulty foinvert H (too large or non-square)
OK if His unitary < ) All interesting inverse problems are ill-posed

m Backprojection (poor m:




Linear inverse problems (20th century theory)

m Dealing with ill-posed problems: Tikhonov regularization

R(s) = ||Ls||3: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

minR(s) subjectto ||y — Hs||3 < o2
S
m Equivalent variational problem Andrey N. Tikhonov (1906-1993)

s* = argmin ||y — Hs||3 + A|Ls||3
—_—— ——

data consistency  regularization
. . _ T Ty\—-1yg7T,, —
Formal linear solution: s=(H H+ AL'L)" " H'y =R,y

Interpretation: “filtered” backprojection

21

Statistical formulation (20th century)

m Linear measurement model: y = Hs +n

'
4

e\’
™

n : additive white Gaussian noise (i. i. d.) -

e

s : realization of Gaussian process with zero-mean ('/f
. . T ’_1 o

and covariance matrix E{s - s’ } = C; L2

Norbert Wiener (1894-1964)

m Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

1 .
swap = argming — [y —Hs[3+  [|C7'/s|3
—_———

A 7
~"

Data Log likelihood

Gaussian prior likelihood

1 L= C;"?: Whitening filter

m Quadratic regularization (Tikhonov)
stik = argmin ([[y — Hs[|3 + AR(s)) with R(s) = |[Ls||3
Linear solution: s = (H H + AL'L)"'HTy =R, -y

22




Iterative reconstruction algorithm
m Generic minimization problem: s, = argmin J(s,y)

m Steepest-descent solution

st+D) = 50 77 (s®) )

m lterative constrained least-squares reconstruction

Jri(s,y) = %[ly — Hs|* + 3| Ls|?

dJr;
Gradient: % =-so+ (H'H+ALTL)s with so=H"y

Steepest-descent algorithm

sttt = s(®) 4 y(sg — (HTH + ALTL)5)

0, [sF+D], <0

[S( A +1)]_ otherwise (projection on convex set)
9 -

Positivity constraint (IC): [§(++1)]; = {

23

Iterative deconvolution: unregularized case

Degraded image: van Cittert animation
Gaussian blur + additive noise

Ground truth

24




Effect of regularization parameter

Degraded image: not enough: A=0.02 not enough: A=0.2
Gaussian blur + additive noise

Optimal regularization: A=2 too much: A=20 too much: A=200

Unser: Image processing 9-25

Selecting the regularization operator

m Translation, rotation and scale-invariant operators
= Laplacian: As = (VIV)s +— —|w|?5(w)
= Modulus of gradient: |V s|

ol
2

= Fractional Laplacian: (—A) —  Jw]|7$(w)

m TRS-invariant regularization functional

1
IVslZ, @y = (=2)2s]17, ga = L: discrete version of gradient

m Fractional Brownian motion field

= Statistical decoupling/whitening: (—A)z2s = w — ﬁ spectral decay

26




Relevance of self-similarity for bio-imaging
= Fractals and physiology

27

Designing fast reconstruction algorithms
Normal matrix: A = HTH  (symmetric)

Formal linear solution: s = (A + \L7L)'HTy =R, -y

Generic form of the iterator: ~ s*+D) = s(¥) 4 y(sy — (A 4+ ALTL)s(®)

m Recognizing structured matrices

= L: convolution matrix = LTL: symmetric convolution matrix

= L, A: convolution matrices = (A + ALTL) : symmetric convolution matrix

m Fast implementation

= Diagonalization of convolution matrices = FFT-based implementation

= Applicable to: - deconvolution microscopy (Wiener filter)
- parallel rays computer tomography (FBP)
- MR, including non-uniform sampling of k-space

28




Part 3:
Modern image

reconstruction

Linear inverse problems: The sparsity (r)evolution

(20th Century) p=2 — 1 (21st Century)
Srec = argmsin (Ily — Hs||3 + AR(s))

m Non-quadratic regularization regularization

R(s) = |[Ls|l7, — [[Ls|[y, — [ILs],

m Total variation (Rudin-Osher, 1992)
R(s) = ||Ls||¢, with L: gradient

= Wavelet-domain regularization (Figuereido et al., Daubechies et al. 2004)

v = W™ 1s: wavelet expansion of s (typically, sparse)
R(s) = [[vle

m Compressed sensing/sampling (Candes-Romberg-Tao; Donoho, 2006)

30




Sparsifying transforms

Biomedical images are well described by few basis coefficients

10° - ‘ : .
—e—F%urier Prlor =
- DCT :
A -] —+— 8x8 Block DCT]"
10 F: D)§/VT((I)-|Caar) Sparse
1] —=— DWT (spline2) |- -
| 15 owrem representation
10-2'3 :
u : :
b= : :
B, 3l Y : ‘N?T
s B AN R(s) :)‘H S”l
10*F:
Advantages:
5 * convex
107 E:
: » favors sparse
o[[MI=B XD 5 k=25 =5 k=G L4 B solutions
10o.1% 05% 1% 5%  10% 50% 100% e Fast: WFISTA
Percentage of coefficients kept

(Guerquin-Kern IEEE TMI 2011)
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Theory of compressive sensing

m Generalized sampling setting (after discretization)
s Linearinverse problem: y =Hs+n

= Sparse representation of signal: s = Wx with ||x]jp = K < N,

= N, X N, system matrix: A =HW

m Formulation of ill-posed recovery problem when 2K < N, < N,

(PO) min|y — Ax|? subjectto ||x[jo < K

m Theoretical result

Under suitable conditions on A (e.g., restricted isometry), the solution is unique
and the recovery problem (P0) is equivalent to:

(P1) min|jy — Ax||2 subjectto |x|; < C;

[Donoho et al., 2005
Candeés-Tao, 20086, ...]

32




Compressive sensing (CS) and /; minimization

[Donoho et al., 2005
y A X Candés-Tao, 20086, ...]

+ “noise”

Sparse representation of signal: s = Wx with |[|x]jo = K < N,

Equivalent N, x N, sensing matrix: A = HW

m Constrained (synthesis) formulation of recovery problem
min [|x||; subjectto |ly — Ax|3 < o?

33

Classical regularized least-squares estimator

= Linear measurement model:
Ym = (hy, xX) +n[m], m=1,....M

= System matrix : H = [hy ---hy]T € RVXN
— g 2 2
xLs = arg min [ly — Hxlls + Al|x|l3

x€ERN

= x5 = HH+y) 'H'y

M
=H%a= Z amnh,, where a= (HHT + )\IM)_ly

m=1

Interpretation: xpg € span{h,, }}_,

Lemma
(H'H + My) 'HT = HT(HHT + M) !

34




Generalization: constrained », minimization

= Discrete signal to reconstruct: x = (z[n])nez

= Sensing operator H : /5(Z) — RM
x—z=H{z} = ((z,h1),...,{(x, has)) with by, € l2(Z)

= Closed convex set in measurement space: C ¢ RM

Example: Cy ={z € RM : |y —z|} < 0?}

Representer theorem for constrained /> minimization
P2 min ||z||2 st H{z}eC
(P2) e [E4rA {z}

The problem (P2) has a unique solution of the form
M
rLs = Z amh, = H*{a}
m=1

with expansion coefficients a = (ay,--- ,ap) € RM.

(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016) 35

Constrained /; minimization = sparsifying effect

= Discrete signal to reconstruct: = = (z[n])nez

= Sensing operator H : /1 (Z) — RM
x—z=H{z} = ((z,h),...,{(x, har)) with by, € Lo (Z)

= Closed convex set in measurement space: C C RM

Representer theorem for constrained /; minimization
(P1) VYV =arg min |zl st H{z}eC
x€ly(Z)

is convex, weak*-compact with extreme points of the form

K
xsparse['] = Z CLk(S[ - nk] with K = ||$sparse||0 S M.
k=1

If CS condition is satisfied,
then solution is unique

(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016)
36




Controlling sparsity

Measurement model:  y,, = (hp,z) + njm], m=1,.... M

Tsparse — wé%l?z) (Z |ym — {hm,x ‘ + AHxHZl)

50
ber”
é40- ~«-CS
530
£
220
o
3
10
0 I I I A et
10%, | 107? 10™ 10° 10’ 10°
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Geometry of I> vs. /1 minimization

m Prototypical inverse problem

min {|ly — Hx|7, + M[x|[7,} < min|x|l, subjectto |y —Hx|]7, <o

min {|ly — Hx|7, + Alx[le, } < min|x], subjectto [y —Hx]7, < o”

_ 1T
D) C yl - h]_ X
7IN
N
/’ \\
4 \-
\\ ) Pl 7 1
& K & 99
N .
N\ .
Nl
fg-ba”: |JZ1|2 + ‘JJ2|2 = CQ

fl—ball: |(E1‘ + |£C2| = Cl

38




Geometry of I> vs. /1 minimization

m Prototypical inverse problem

min {[ly — Hx|]7, + M[x|[7,} <« min|x]l, subjectto |y —Hx||7, <o

m)in{“y — Hx||§2 + A ||X||g1} & m}in |lx||¢, subjectto ||y — Hx||1?2 < o2

T2 C Y1 = h’{X

sparse extreme points

v
’
.
.
.
S
N

P
. xr
, 1
4
DN 7
[N .
N 2
’

lo-ball: |21]? + |z2|? = Oy

£1-ball: |(171‘ + |.’L‘2| =(C;

Configuration for non-unique ¢; solution
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Variational-MAP formulation of inverse problem

m Linear forward model noise

y=Hs+n
linear \ /‘\ _ -
model NI *’ﬁ .
H n

m Reconstruction as an optimization problem

Srec = argmin ||y — Hs|l; + A|Ls|} ., p=1,2

TV -~

data consistency  regularization

— log Prob(s) : prior likelihood

40




Discretization of reconstruction problem

Spline-like reconstruction model: s(r) = Z slkl]Br(r) <+— s = (s[k])kea
ke
m Statistical innovation model

Ls =
° v Discretization u = Ls (matrix notation)
s = L 'w

pu is part of infinitely divisible family

D An Introduction to CAvBRIDGE

Sparse Stochastic Processes

m Physical model: image formation and acquisition

Y — /]R s(@)nm(@)da + nfm] = (s,mm) +nlml,  (m=1,.... M)

y=Yo+tn=Hs+n n: i.i.d. noise with pdf py

41

Posterior probability distribution

_ pyis(yls)ps(s) _ pv (v — Hs)ps(s) (Bayes’ rule)

py (y) B py(y)

= Zow(y — H)ps(s)

pS|Y(S|Y)

Statistical decoupling

u=Ls = ps(s) xpy(Ls) ~ [[peqpu([Lslk)
m Additive white Gaussian noise scenario (AWGN)

psy (sly) o< exp (—M) 1 pu(Ls]k)

202
ke

... and then take the log and maximize ...

42




General form of MAP estimator

SMAP = argmin (% ly — Hs||§ + o2 dom @U([Ls]n))

= Gaussian: pU(x) = \/Z—;Oe_mQ/@Ug) = Q)U(x) = 2%1'2 + C]_
TOo (&)
= Laplace: py(z) = Je Al =  Oy(z) = Nz|+Co
Student: py () ! ! o = Py(z)=( —I—l)l (1+2?%)+C
. cpy () = z)=(r+ =)lo x
bu B(r ) \22+1 v 2/ 108 3

lasiedg

Potential: @y () = —log py(x)
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Proximal operator: pointwise denoiser

1
C52) - 2, 2
proXg,, (y;0°) = argr51€1£§|y —ul® + 0Py (u)

u= PI“OX@U(ZIQ 1)

o2 ®y (u)

linear attenuation /- minimization
W soft-threshold ¢1 minimization
B shrinkage function ~ {, relaxation for p — 0

44




Maximum a posteriori (MAP) estimation

m Constrained optimization formulation

Auxiliary innovation variable: u = Ls

. 1 2 2 .
SMAP = arg min <§Hy —Hs|;+0 zn: @U([u]n)> subjectto u = Ls

m Augmented Lagrangian method

Quadratic penalty term: £||Ls — ul|3

Lagrange multipler vector: o

1
La(s,u,x) = 3 ly — Hs|)3 + o2 Z Oy ([u]n) + ol (Ls —u) + gHLs —ul|3
mn

(Bostan et al. IEEE TIP 2013)
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Alternating direction method of multipliers (ADMM)

1
La(s,u,0) =3 |y - Hs| + 02> @y (u],) + af(Ls — u) + %HLS — u2

n

Sequential minimization
sF*1 < arg min £4(s,u”, ")

scRN
ot = ok 4 p(LsF 1 — uF)

uFt! « arg min £4(s*1, u, o**Y)
ucRN

Linear inverse problem:  s*! — (HTH + 4L7L) ™" (HTy + z++1)

with  z"T1 = LT (pu” — oF)

- - = 2
Nonlinear denoising: u**! = proxg  (LsFt! + Lakt!:
proxg,, “

a”
P

m Proximal operator taylored to stochastic model

1
proxg,, (y; A) = argmin o |y — ul* + Ay (u)

T o ; 6
Cauchy prior with increasing sg




Deconvolution of fluorescence micrographs

m Physical model of a diffraction-limited microscope

g(x7y7z) = (h3D * s)(ac,y,z)

2 -1 0 1 2 2 -1 0 1 2 2 10 1 2

3-D point spread function (PSF)

hap(z,y,2) = Io |px (35, 3% ﬁ)f :

z

2 2
paz,y, 2) = / P(w1,ws) exp (j?wzwl +;}2> exp (_j27rarwl—|—yw2> dw;dws
R? 20 [ Afo

Optical parameters
= \: wavelength (emission)
= M: magnification factor
= fo: focal length

P(w1,w2) = 1|ju||<r,: Pupil function

= NA = nsinf = Ry/ fo: numerical aperture 47

2-D convolution model

s(z,9) e 9@y = (e xs)(z,y)
Thin specimen E,_‘_:J

Radial profile

2
m Airy disk:  hap(z,y) = Io ‘Qm

r/ro

with r = /22 + y2, rg = 2;%0, Jp (r): first-order Bessel function.

m Modulation transfer function

2
2 IIWII) _ el _ (Ilwll>
“ arccos 1 , for0 < |w| <w
hop(w) =< 7 ( < wo wo wo < 0

0, otherwise

Cut-off frequency (Rayleigh): wo = 57 = 7~ =~ =5~

48




2-D deconvolution: numerical set-up
m Discretization
wo < 7 and representation in (separable) sinc basis {sinc(z — k)}, ;>

Analysis functions: 7, (z,y) = hop(x — my,y — ms)

H] 1k = (Nm, sinc(- — k))
(hop (- — m),sinc(- — k))
= (sinc * th)(m — k) = hap(m — k).

H and L: convolution matrices diagonalized by discrete Fourier transform
m Linear step of ADMM algorithm implemented using the FFT
Sk—l—l _ (HTH + ’uLTL)*1 (HTy + Zk+1>

with  z*t = L7 (pu”* — o)
49

Deconvolution experiments

(b) ()

Figure 10.3 Images used in deconvolution experiments. (a) Stem cells surrounded by goblet
cells. (b) Nerve cells growing around fibers. (c) Artery cells.

Table 10.2 Deconvolution performance of MAP estimators based on different prior
distributions.

Estimation performance (SNR in dB)
BSNR (dB) Gaussian Laplace Student’s

Stem cells 20 14.43 13.76 11.86
30 15.92 15.77 13.15

40 18.11 18.11 13.83

Nerve cells 20 13.86 15.31 14.01
30 15.89 18.18 15.81

40 18.58 20.57 16.92

Artery cells 20 14.86 15.23 13.48
30 16.59 17.21 14.92

40 18.68 19.61 15.94
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2D deconvolution experiment

Astrocytes cells

bovine pulmonary artery cells

Disk shaped PSF (7x7)

Deconvolution results in dB

human embryonic stem cells

L : gradient

Optimized parameters

Gaussian Estimator

Laplace Estimator

Student’s Estimator

Astrocytes cells

12.18

10.48

10.52

Pulmonary cells

16.90

19.04

18.34

Stem cells

15.81

20.19

20.50
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3D deconvolution of widefield stack

Maximum intensity projections of 384 x448x260 image stacks;
Leica DM 5500 widefield epifluorescence microscope with a 63x oil-immersion objective;
C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

wavelet regularization (Haar), 3 decomposition levels for X-Y, 2 decomposition levels for Z.

(Vonesch-U., IEEE TIP 2009)




Magnetic resonance imaging (MRI)

m Physical image formation model (noise-free)

§(wm) = /R2 s(r)e Hwm) qp (sampling of Fourier transform)

Equivalent analysis function: 7, (r) = e ~J{@m.7)

m Discretization in separable sinc basis

[H]m,n = <77m, sinc(- - n)>

= (eI wWm) sine(- — n)) = e Hwnm)

Property: H' H is circulant (FFT-based implementation)

53

MRI: Shepp-Logan phantom

Original SL Phantom Fourier Sampling Pattern
12 Angles

L : gradient
Optimized parameters

N\

Laplace prior (TV) Student prior (log) 54




MRI phantom: Spiral sampling in k-space

Original Phantom
(Guerquin-Kern TMI 2012)

Laplace prior (TV)
SER =21.37 dB

L : gradient
Optimized parameters

Gaussian prior (Tikhonov)
SER =17.69 dB

Student prior
SER =27.22 dB 55

MRI reconstruction experiments

Figure 10.4 Data used in MR reconstruction experiments. (a) Cross section of a wrist. (b)
Angiography image. (c) k-space sampling pattern along 40 radial lines.

Table 10.3 MR reconstruction performance of MAP estimators based on different prior

distributions.

Radial lines  Estimation performance (SNR in dB)

Gaussian  Laplace Student’s
Wrist 20 8.82 11.8 5.97
40 11.30 14.69 13.81
Angiogram 20 4.30 9.01 9.40
40 6.31 14.48 14.97

56




ISMRM reconstruction challenge

L5 regularization (Laplacian) ¢, wavelet regularization

(Guerquin-Kern IEEE TMI 2011)
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Differential phase-contrast tomography

Paul Scherrer Institute (PSI), Villigen Lg
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(Pfeiffer, Nature 2006)
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Mathematical model

)10 = TRo(s}t) =

y=Hs
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Properties of Radon transform

m Projected translation invariance

Ro{o(- — x0)}(t) = Ro{e}(t — (20, 6))

m Pseudo-distributivity with respect to convolution

Ro{p1 + 2}(t) = (Rofp1} * Ro{pa}) (1)

m Fourier central-slice theorem

/R Ro{o}(t)e 1t = G(w)]o_op

Po(w) = Ro{p}(w) = ¢(w cos f, wsin §)

A

w1

@\

3

) 7\9
w

2

Proposition: Consider the separable function ¢(x) = ¢1(z)p2(y). Then,

Ro{p(- = 0)}(t) = @o(t —to)

where tg = (x(, 6) and

po(t) = (|cols9|901(0080) * |si}10|902(si1.18)) (t).
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Reducing the numbers of views
Rat brain reconstruction with 181 projections
ADMM-PCG
SSIM = .96 SSIM = .51
SSIM = .95 SSIM = .60
e SSIM = .89 SSIM = .43

Collaboration: Prof. Marco Stampanoni, TOMCAT PSI / ETHZ

(Nichian et al. Optics Express 2013)




Performance evaluation

Goldstandard: high-quality iterative reconstruction with 721 views

q T T T 0.
30 ’\\\
0.8
20%— *

101

% = 0.5
& 7
Z £ 0.4
)
—e— ADMM-PCG 03 | —_e— ADMM-PCG f
0.2
1k
—=— FBP 0.1r | —=—FBP
. . . | 0 . . . |
361 181 91 46 23 361 181 91 46 23
Number of directions Number of directions
(a) (b)

= Reduction of acquisition time by a factor 10 (or more) ?
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Physical model Statistical model of signal
A |
Joew) =sly —Hxllz  + AR+ pfLx—ul;
N _ SN——
consistency prior constraints a/foour ZZ,’Z;’C

Schematic structure of reconstruction algorithm:
— Repeat

x" = arg min J (x, u"" ) Linear step (problem specific)

Niter (n) . (n) . . . .
u = argmin J(x'" u): Statistical or “denoising” step

__until stop criterion




Inverse problems in imaging: Current status

m Higher reconstruction quality: Sparsity-promoting schemes almost sys-
tematically outperform the classical linear reconstruction methods in MR,
x-ray tomography, deconvolution microscopy, etc... (Lustig et al. 2007)

m Faster imaging, reduced radiation exposure: Reconstruction from a

lesser number of measurements supported by compressed sensing.
(Candes-Romberg-Tao; Donoho, 2006)

= Increased complexity: Resolution of linear inverse problems using /1
regularization requires more sophisticated algorithms (iterative and non-
linear); efficient solutions (FISTA, ADMM) have emerged during the past
decade. (Chambolle 2004; Figueiredo 2004; Beck-Teboule 2009; Boyd 2011)

m Outstanding research issues
m Beyond /; and TV: Connection with statistical modeling & learning

m Beyond matrix algebra: Continuous-domain formulation
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Part 4:

Short guess about the future:
The (deep) learning revolution (??)
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Learning within the current paradigm

m Data-driven tuning of parameters: )\, calibration of forward model

Semi-blind methods, sequential optimization

m Improved decoupling/representation of the signal

Data-driven dictionary learning

= “optimal”’ L
(based of sparsity or statistics/ICA)

(Elad 2006, Ravishankar 2011, Mairal 2012)

m Learning of non-linearities / Proximal operators

= ‘“optimal” potential ®
CNN-type parametrization, backpropagation

(Chen-Pock 2015-2016, Kamilov 2016)
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Recent appearance of Deep Conv Neural Nets
(Jin et al. 2016; Chen et al. 2017; ...)

m CT reconstruction based on Deep ConvNets
= Input: Sparse view FBP reconstruction

= Training: Set of 500 high-quality full-view CT reconstructions

= Architecture: U-Net with skip connection (Jin et al., arXiv:1611.03679)
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CT data Dose reduction by 7: 143 views

Reconstructed from
from 1000 views (Jin et al., arXiv:1611.03679)

CT data Dose reduction by 20: 50 views

Reconstructed from
from 1000 views

(Jin et al., arXiv:1611.03679)




LCT data Dose reduction by 14: 51 views

Reconstructed from
from 721 views

Challenges for deep learning methods

m Fundamental change of paradigm
Requires availability of extensive sets of representative training data
together with gold-standards = desired high-quality reconstruction

m Research challenges/opportunities

How does one assess reconstruction quality ?
: . ., quatty Can we trust the results ?
Should be “task oriented”!!!

= Use of CNN to correct artifacts of current methods

m Reconstruction from fewer measurements
(trained on high-quality full-view data sets).

= Use of CNN to emulate/speedup some well-performing, but “slow”,
reference reconstruction methods

= Development of more realistic simulators
both “ground truth” images + physical forward model

= True 3D CNN toolbox (still missing) 70
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General convex problems with gTV regularization

ML(R?) = {5:gTV(s) = [[L{s}|m = | S”up<1<L{8}a90> < oo}

= Linear measurement operator My,(R%) — RM : f s z = H{f}

= C: convex compact subset of RM

= Finite-dimensional null space N7, = {q € My (R?) : L{g} = 0} with basis {p, }2°,
Admissibility of regularization: H{q:} = H{g2} & ¢1 = ¢2 forall ¢1,¢q2 € N1,

Representer theorem for gTV regularization

The extremal points of the constrained minimization problem

V = arg mlr(le) IL{fHIm st H{f}eC

are necessarily of the form f(x Z agpL(x — xk) + Z bnpn () with K <

M — Ny; that is, non-uniform L- spllnes with knots at the :1:;C and [|[L{f}|m =
> k—1 |ax|- The full solution set is the convex hull of those extremal points.

(U.-Fageot-Ward, SIAM Review, in Press) 73




