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= |mportance of wavelets in #publications

Overview articles:
Unser and Aldroubi, Proc IEEE, 1996
Laine, Annual Rev Biomed Eng, 2000
Special issue, IEEE Trans Med Im, 2003
Van De Ville et al., IEEE EMB Mag, 2006
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What about splines ?
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Wavelet Theory Demystified

Michael Unser, Fellow, IEEE, and Thierry Blu, Member, IEEE

Abstract—1n this paper, we revisit wavelet theory starting from
the representation of a scaling function as the convolution of a
B-spline (the regular part of it) and a distribution (the irregular
or residual part). This formulation leads to some new insights on
wavelets and makes it possible to rederive the main results of the -
classical theory—including some new extensions for fractional W I t B_ I
orders—in a self-contained, accessible fashion. In particular, we ave e S a re S p I n es
prove that the B-spline component is entirely responsible for five
key wavelet properties: order of approximation, reproduction
of polynomials, vanishing moments, multiscale differentiation I d by
property, and smoothness (regularity) of the basis functions. co nvo ve
We also investigate the interaction of wavelets with differential
operators giving explicit time domain formulas for the fractional = = H
derivatives of the basis functions. This allows us to specify a (nasty) d I St rI b utlo n S
corresponding dual wavelet basis and helps us understand why
the wavelet transform provides a stable characterization of the
derivatives of a signal. Additional results include a new peeling
theory of smoothness, leading to the extended notion of wavelet
differentiability in the L,-sense and a sharper theorem stating
that smoothness implies order.
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CONTENT

= Wavelets and sparsity
Image denoising
Wavelet-regularized image reconstruction

= Wavelets revisited (in multiple dimensions)
Non-separable
Directional, steerable
Derivative-like (gradient, Hessian, ...)
Shape diversity, signal-adaptation




Wavelet basis of L,

m Family of wavelet templates (basis functions)
wz,k(w) — 2—1’/2w (LL‘ —2i21k>

m Orthogonal wavelet basis

(ViksVj1) = 0izjrk—i s Wil=wT

Analysis: w;[k] = (f,vir) (wavelet coefficients)

Reconstruction: Vf(z) € Ly(R Z Z w; [k

1€L KEL

m Vector/matrix notation
Discrete signal: f = (--- , ¢[0], ¢[1],¢[2],-- )
Wavelet coefficients: w = (- -+ , w1 [0],wy[1], -+ ,wa[0],--+)

Analysis formula: w = WT'f

Synthesis formula: f = Ww = anwn
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Sparsity of wavelet decomposition: example
A AN
vv VvV VV
Space-domain representation: f Wavelet-domain representation: w = W7T'f

Wavelet transform

Inverse wavelet transform

0.00%

Discarding “small coefficients”

Reconstruction: fny = Wwy Thresholding: w — wy




First published paper on biomedical applications

MAGNETIC RESONANCE IN MEDICINE 21, 288-295 (1991)

COMMUNICATIONS

Filtering Noise from Images with Wavelet Transforms

J. B. WEAVER,* YANSUN XU,* D. M. HEALY, JrR.,} AND L. D. CROMWELL*

* Department of Radiology, Dartmouth-Hitchcock Medical Center; and + Department of Mathemalics,
Dartmouth College, Hanover, New Hampshire 03755

Received April 12, 1991

A new method of filtering MR images is presented that uses wavelet transforms instead
of Fourier transforms. The new filtering method does not reduce the sharpness of edges.
However, the new method does eliminate any small structures that are similar in size to
the noise eliminated. There are many possible extensions of the filter. @ 1991 Academic
Press, Inc.
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Denoising by wavelet thresholding
m Basic idea

= Orthogonal WT: white noise — white noise

= Signal is concentrated in few coefficients, while noise is spread-out evenly

W = T)\(w)
= Noise attenuation is achieved by simple wavelet shrinkage/thresholding
A w
/ 2

m Who gets credit ?

= The celebrated statistician
D.L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Information Theory, vol. 41, no. 3,
pp. 613-627, May 1995. (> 2000 ISI citations)

= The pioneers
B. Weaver, X. Yansun, D.M. Healy Jr., and L.D. Cromwell, “Filtering noise from images with
wavelet transforms,” Magnet. Reson. in Med., vol. 21, no. 2, pp. 288-295, 1991.




Denoising and wavelet regularization

m Measurement model
Space domain Wavelet domain
y=f+n & w;k] = s;[k] +ni[k] (additive white noise)

signal noise

m Signal estimation

= Reconstruction formula: f = Ww  (inverse wavelet transform)

« Dataterm: ||y — f||3 = |w — w||? (Parseval)

= Regularization functional: R(f) = R(W) = |[Wlle, = > > [@ilk]| ~ | Il 51z, @)
7 k

Optimization problem: Wwq = argmin {||w — W||3 + A[|[W||¢, }

Wavelet-domain solution

m Equivalent convex optimization problem (decoupled)

Wy = argmm{zzml — i [k]|? + Ni|ws[k ]|}

v ="Tx(u)

m Basic scalar optimization problem

minimize J(u,v) = (v — u)? + A|v| /

m Soft-threshold solution

N

1
Moreau’s proximal operator: Prox,(u) = arg m1ﬂr%1 {§<u _ U)g I (p(v)}
ve

u—A/2, N2<u
v = Proxgy.|(u) = Ta(u) = ¢ 0, lu| < A\/2
u+ A2, u<—\/2

(Moreau, 1965; Chambolle et al., IEEE Trans. Image Proc., 1998; Combette, 2005)

10




BIG extension: SURE-LET
m Key features of SURE-LET wavelet denoising algorithm

= Generalized non-linearities: Linear Expansion of Thresholds:
Th(u) — Yo anfr(u)

= Optimizes thresholding parameters a; from noisy data SURE-LET Demo
using Stein’s Unbiased Risk Estimate (SURE) S

= Incorporates inter-scale dependencies via prediction tree S

= Improved performance: e A~
- 1 to 1.5 dB better than basic soft thresholding \\ . o C I'."\
e ‘Bﬂm;‘?’
- Very close to oracle performance ~-. 5*,35‘~ NS
Y | W
- Outperforms standard Wiener filter — .’ﬂv

SNR improvement: + 15.73 dB

(Luisier et al., IEEE Trans. Image Proc. , 2007)

@ 2009 Young Author Best Paper Award
4 IEEE Signal Processing Society

IEEE
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Standard Color Image

Input PSNR=18.59 dB




Denoised with OWT SURE-LET

Output PSNR = 31.91 dB

Denoised with UWT SURE-LET

Output PSNR = 33.27 dB




2D SURE-LET denoising (UWT): C-elegance embryo

2D SURE-LET denoising (UWT): Tobacco cells

Ground truth
(average over 500 acquisitions)




2D + time SURE-LET denoising (DWT) : C-elegance embryo

Wavelet-regularized image reconstruction

m Space-domain measurement model

He H: system matrix (e.g., convolution)
y= +n

n: additive noise component

m Wavelet-regularized signal recovery

= Wavelet expansion of signal: f = Ww
« Dataterm: ||y — Hf||2 = |y - HWw/||2
= Wavelet-domain sparsity constraint: ||w||,, < C}

Convex optimization problem

w = argmin {[ly — Aw||3 + A|wll, } with A=HW
or
F = argmin {|ly — HE[3 + AW, }

18




Sparsity and /s--minimization

m Prototypical inverse problem

mjn{Hu — AVH%2 + A ||VH%2} & mvin |lu — AVH%2 subject to ||v||,, = C5

rrgn {llu—Av|7, + X ||vlle,} < mvin lu— Av||7, subjectto |[v|[,, = C)

smallest “weighted” /5-distance to u

N
N
. U1
‘S
‘\
s 2-ball: |111|2 + |vg|? = Constant

(1-ball: |v1| + |va2| = Constant

Elliptical norm: |[u — Av|j3 = (v—a)TATA(v—-1) with a=A"lu 19

Alternating minimization: ISTA algorithm
m Convex cost functional: C(f) = ||y — Hf||Z + A\[|[W™T||,

m Special cases

= Classical least squares: A\ =0 = f=H'H) 'H?y
Landweber algorithm: £, ., = f,, + yH” (y — Hf,,) (steepest descent)

= Puredenoisingg H=1 = f=WT){WTly}

m lterative Soft Thresholding Algorithm (ISTA)
1. Initialization (n < 0),fo = y (Figueiredo-Nowak, 2003)

2. Landweber update: z = f,, + YH” (y — Hf,,)

3. Wavelet denoising: w = W1z, w =T,{w} (softthreshold)

4. Signal update: f,, 11 «— Ww and repeat from Step 2 until convergence

Proof of convergence: (Daubechies, Defrise, De Mol, 2004)
20




Fast multilevel wavelet-regularized deconvolution

m Key features of multilevel wavelet deconvolution algorithm (ML-ISTA)

= Subband adaptive steps (optimized for fast convergence)

m Acceleration by one order of magnitude with respect to state-of-the art algorithm (ISTA)
(multigrid iteration strategy)

= Applicable in 2D or 3D:
first wavelet attempt for the deconvolution of 3D fluorescence micrographs

= Typically outperforms oracle Wiener solution (best linear algorithm)

8 ML-ISTA
ISTA

0 5 10 15 20 25
Time (sec)

(Vonesch-U., IEEE-IP, 2009)
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3D fluorescence microscopy experiment
Input data
(open pinhole) ML-ISTA 15 iterations  ISTA 15 iterations Confocal reference

Maximume-intensity projections of 512x352x 96 image stacks;

Zeiss LSM 510 confocal microscope with a 63 x oil-immersion objective;

C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

each channel processed separately; computed PSF based on diffraction-limited model;

separable orthonormalized linear-spline/Haar basis.
22




3D deconvolution of widefield stack

- '

Maximum intensity projections of 384 x448x260 image stacks;

Leica DM 5500 widefield epifluorescence microscope with a 63x oil-immersion objective;
C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

each channel processed separately; computed PSF based on diffraction-limited model;
Haar basis, 3 decomposition levels for X-Y, 2 decomposition levels for Z.

Reconstruction results with parallel MRI

Simulated parallel MRI experiment (M. Guerquin-Kern, BIG)

Shepp-Logan brain phantom
4 coils, undersampled spiral acquisition, 15dB noise

Space

\

Backprojection L, regularization (CG) ¢1 wavelet regularization

NCCBI collaboration with K. Priissmann, ETHZ

24




Try at ISMRM reconstruction challenge

/1 wavelet regularization

L, regularization (Laplacian)

25
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Beyond separable wavelet representations

Limitations of separable wavelets

= Limited amount of invariance
(in particular, to rotation)

= Poor handling of directional features

m Lack of proper differential interpretation

m Multidimensional alternatives
= Wavelet frames for better shift, scale and rotation invariance

m Curvelets, bandelets, contourlets, ...

27

Steerable filters (Freeman & Adelson, 1991)

Definition. A 2D filter h(x), = € R? is steerable of order M iff. there exist

some basis filters ¢,, () and coefficients a,,, () such that

M
VO € [—-m, 7], he(x):= h(Rpx) = am (0) om(x)
m=1
= Fast filterbank implementation
a1(0) - )
Optimized ridge detector (M=3)
» L1 —>®—
. f * h@(CIJ)

o oM _’é_ (Jacob-U., IEEE-PAMI, 2004)




Simoncelli’s steerable pyramid (1995)

Directional wavelet
coefficients

Isotropic wavelet pyramid Multichannel polar filtering

= Many successful applications = Limitations

Contour detection Fixed design

Image filtering and denoising Purely discrete framework
Orientation analysis (no functional counterpart)
Texture analysis and synthesis Does not extend to

dimensions higher than two
29

Riesz transform
le(w)

T i f(w)

m Definition: Rf(x) = w]|

Raf(x)
Multi-dimensional Fourier transform
) = / f@)e @™ dg; ... dag
Rd

. . with w = (wy,...,wq) € RY
m Multi-channel convolution

Rof(x) = (hy * f)(x) with h, =R, {6} ATl

m Riesz transform and partial derivatives
Rf(x) = (—1)(—A)_% V f(x) “Smoothed version of gradient”
V(@)= -R(-A): f(@)

30




Reversibility of the Riesz transform

m Adjoint operator

Rir(z) = Rir(x) + -+ Rira(x) oo jo

m Self-reversibility

d
R'Rf(z) = ZRfsz(w) = f(=)

m What about iterating ?

= Combining Nth-order components of the form R;, R, - - - Ri, f
with i1, ---iy € {1,--- ,d}

= n-fold iteration: R} = R;R? ™" with R? = Id

31

Higher-order Riesz transform

Theorem (Decomposition of the identity)

N! o
> (RY - Ry) (R - Ry%) = K

nilnag! -+ ng!

(U. - Van De Ville, TIP2010)

m Proper definition of Nth-order transform

M = (N1 distinct Riesz components with 11y + -+ + 14 = N

N!
nl'nd'

'R,(N)f(il?) = [ Rma) () where R(M1r-ma) _ R .. RN

RO 0N f(a)

32




Multi-index notation

Multi-index: n = (n1,...,nq) Withny,...,ng € Z*

= Sum of components: |n| = Zle n; =N

» Factorial: n! = ny!ns!--- ny!

= Exponentiation of a vector z = (21, ...,24) € C%: 2™ = 21" .. 21}

Decomposition of the identity: Vi) € Lo(R?), Z (R™)*R™p =
In|=N

Rena) () = RPp(x) s \/%ﬁgm},]’zﬁ(w)

33

Properties of higher-order Riesz transform

m Shift invariance: Vaz, e RY, RUW{f(-— o)} x) = RM{f()}x - x0)
m Scale invariance: Va e RT, RW{f(-/a)}(x) = RN {f()}(x/a)

m Parseval-like identity: Vf, ¢ € Ly(R?)

(R RNy, = Y (R, R*$)1,

In|=N

- <f7 ¢>L2

Energy conservation: [|[R™ |17, = > |R™fIIZ, = I /17,
In|=N

34




Steerability of higher-order Riesz transform

R™{d}(x): impulse response of n-component Riesz operator

R = (r;---rq)7: d x d spatial rotation matrix eg, R= C?Sa —sind ford =2
sin 6 cos 6

m Steerability of Nth-order Riesz transform

= Rotated version of n-component impulse response
RM6}(Rz) = ) snm(R)R™{5}(2)

|m|=N \
\ unrotated impulse responses

steering coefficients of nth-order Riesz transform

m Explicit form of steering coefficients

m! n! k k
Sn7m(R) = H Z tt Z 5k1+"'+kd,m mrll oo rdd
[k1]|=n1 |ka|=nq
= The steering coefficients specify a group of orthogonal matrices of size M = (V14"

35

Visualization in the frequency domain

36




Frame = redundant extension of a basis

m Definition

= A family of functions {1} <z is called a frame of Lo (R9) iff.

Vi€ LY, Alfl7, < D e Nrl” < BISIZ,

kezd
= Tight frame: A =B

= Parseval frame: A =B =1

m Analysis/synthesis formula

o Vf€LoRY), f= ) (¥r, f)r, r

kezd
s {91} geza: dual frame (minimum-norm inverse)

= Parseval frame: 5 = V%,

37

Construction of steerable wavelet frames

m Wavelet frame of LQ(Rd) (U. - Van De Ville, 2010)
vf € Lay(RY), ZZ (f, Vik) Lﬁblk(:c)
1€EL keZd

Wavelet property: 1; k. (x) = 2_%%7,@(:1:/21')
Multi-index: n = (nq,...,nq)

Theorem

Let {; » } be a primal wavelet frame of Ly(R?). Then, {47 = R"™®i & }nj=N
and {zﬁ{‘k = R™); k}|n|_N form a dual set of wavelet frames such that

VfELQ Rd ZZ Z f7 zk: L2 ’Lki(x)

1€Z keZd In|=N

Justification
Inner product preservation = <¢i,k;¢i',k’>L2:<R(N)¢i,kaR(N)wi',k’>L2

Shift and scale invariance = R™; (@) = 275 ™ (x/2" — k) with ™ = R™)
38




Backbone: primal isotropic wavelet pyramid

m Frequency domain design of band-limited wavelets
Radial wavelet filters

Tight frame property:
05 > lhw/2)P =1
iEL
Wavelet coefficients

Filtering
and sub-
<> sampling/
up-
sampling

Perfect isotropy U(x) = Y(||z||) no preferred direction
39

Differential interpretation of Riesz wavelets

= Frequency-domain wavelet formula:

( Jw)“
HwHN

(w)

()™ - Gwa)™ o

= Isotropic smoothing kernel: ¢ () = (—A) "2 4p(x) = F 1 { ﬁﬁfﬁ’])v}

= Space-domain wavelet formula:

V(@) =RU@) o on(e),

40
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First-order Riesz wavelet transform

2D frequency view

-. I | Riesz wavelet coefficients

isotropic pyramid Riesz transform

Steerable Gradient-like wavelets

(v00 =52, v = 52

1 Oz

vertical features horizontal features
selectivity selectivity
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Hessian-like Riesz wavelet transform

=(2,0) n=(1,1) n=(0,2)

. Steerability
= -

Second-order Riesz wavelets

42




Generalized Riesz wavelets

m Steerable wavelet subspace

= ): primary isotropic bandlimited wavelet

= The Riesz wavelets {R™9 }»—n span a steerable subspace of dimension M = (

= There are many other wavelet bases that spans the same subspace

m Generalized Riesz wavelets

s Parametrized by a M x M non-singular shaping matrix U

= Generalized n-component wavelet: ¢}, = Z Vi enlhe W75
|m[=N

m Special case: Simoncelli’s equiangular design (2-D only)

U ] = N cos [ 2 " sin | o
Simon|m+1,n+1 — m N +1 N +1

m,n € {0,..., N}

Equi-angular vs. Riesz wavelets

Frequency domain

Space domain

" % "
= ~ .-

Simoncelli’'s 4-channel steerable pyramid Riesz wavelets (N = 3)




Riesz and equalized PCA wavelets

(a) Riesz wavelets b) Equalized Riesz wavelets

(c) Lena (N=4)
72% 12% 6.3% 5% 4.7%

D104 fragment
(d) Texture D104 (N

50% 15.6% 13.7% 11.4% 9.4%

JTHT

18n

(f) Barbara (N=14)

W
X
)\

75.6% 8.3% 4.9% 2.8% 1.8% 1.2% 0.9%
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Basic denoising benchmark

Wavelet domain soft-thresholding with optimized A for max SNR
Steering is the same in all cases

order Barbara Lena zoneplate
o 10 20 30 10 20 30 10 20 30
initial PSNR 28.11 | 22.10 | 18.59 | 28.13 | 22.11 | 18.59 | 28.14 | 22.12 | 18.59
2 31.43 | 27.33 | 25.22 || 33.63 | 30.24 | 28.47 | 34.03 | 29.02 | 26.08
Equi- 3 31.57 | 27.47 | 25.38 | 33.68 | 30.30 | 28.54 | 34.56 | 29.54 | 26.58
Angular 4 31.72 | 27.60 | 25.50 || 33.77 | 30.37 | 28.58 | 34.92 | 29.86 | 26.91
5 31.81 | 27.69 | 25.57 | 33.76 | 30.38 | 28.58 || 35.08 | 30.10 | 27.14
2 31.68 | 27.44 | 25.29 | 33.68 | 30.27 | 28.47 || 35.06 | 29.83 | 28.47 N
Riesz 3 31.86 | 27.67 | 25.48 | 33.76 | 30.34 | 28.53 | 35.44 | 30.22 | 26.78 ) zoneplate
4 32.03 | 27.86 | 25.66 | 33.89 | 30.47 | 28.64 | 35.79 | 30.55 | 27.16
5 32.09 | 2795 | 25.74 | 33.88 | 30.46 | 28.63 || 35.94 | 30.72 | 27.49
2 30.85 | 26.63 | 24.58 | 33.14 | 29.57 | 27.83 | 32.79 | 27.51 | 24.83
Equalized 3 31.09 | 26.94 | 24.64 || 33.25 | 30.06 | 28.19 || 33.18 | 27.76 | 24.74
Riesz 4 31.02 | 26.83 | 24.76 | 33.28 | 29.71 | 27.95 | 32.95 | 27.69 | 25.07
5 31.06 | 26.97 | 24.70 | 33.37 | 30.12 | 28.23 | 33.19 | 27.95 | 24.86
2 31.65 | 27.33 | 25.14 | 33.59 | 30.14 | 28.33 || 35.00 | 29.70 | 26.62
PCA 3 31.75 | 27.44 | 25.19 | 33.58 | 30.11 | 28.30 || 35.27 | 29.96 | 26.86
4 31.86 | 27.53 | 25.27 || 33.64 | 30.15 | 28.32 || 35.46 | 30.12 | 27.03
5 31.87 | 27.55 | 25.25 || 33.59 | 30.10 | 28.28 | 35.54 | 30.20 | 27.11
2 31.80 | 27.61 | 25.41 || 33.75 | 30.32 | 28.50 || 35.32 | 30.07 | 27.03
Equalized 3 32.05 | 27.92 | 25.70 || 33.84 | 30.40 | 28.56 || 35.87 | 30.64 | 27.58
PCA 4 32.23 | 28.17 | 25.94 || 33.99 | 30.53 | 28.67 || 36.25 | 31.10 | 28.01
5 32.31 | 28.29 | 26.04 | 33.98 | 30.52 | 28.66 || 36.40 | 31.33 | 28.29

+0.2-0.6 dB +0.05-0.2dB +1.0-1.3dB
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Examples of 3-D steerable wavelets

m Third-order wavelets in 3-D

n = (3,0,0) n=(1,2,0) n=(1,1,1)

iso-surface representation of wavelets in space domain

3-D work in progress /31‘
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CONCLUSION

= Sparsity as a powerful design paradigm
Denoising by simple wavelet-domain processing (non-linear)
Compressed sensing / sparse signal recovery
Wavelet-regularized image reconstruction

= General operator-based design of steerable wavelets
Decoupled multiresolution and multiorientation properties
Simplicity of implementation (FFT, multirate filterbank)
Tight frame property
Extended class of partial derivative/Riesz wavelets
Adaptivity

= Novel perspectives for wavelet-domain image processing
Rotation-invariant processing/feature extraction
Learning the wavelet dictionary
Steerable wavelets in 3D

Good potential for biomedical imaging (MRI, confocal microscopy)
48
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First-order steering mechanism (max energy)

m Gradient-like wavelet transform
wilk] = (Lol ), (el )

Wavelet projection along unit vector u:  wy ;[k] = (u, w;[k])

. . . . Wi[k] 2 .
m Pointwise orientation: u = TRl & wi,;[k] maximum
W; ’

m Orientation within a neighborhood

S : Wavelet structure tensor
= Local Gaussian-like window: v[k| > 0

Jiko = vk — ko wilk]w] [K]

= Local wavelet energy at (i, k) along direction u kezd

E, = Z v[k — ko] wf”[k] = uTJi,kOu
kczd

= Max energy orientation: u; =arg max {u’J;x,u}
ueR?,||ul|=1

= uy = first eigenvector of J; 1,
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Pointwise vs. tensor-based steering

Psychedeh cLen

Orientation

Pointwise orientation tensor orientation
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