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! Importance of wavelets in #publications
! Overview articles:
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! Laine, Annual Rev Biomed Eng, 2000
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What about splines ?

3

470 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 2, FEBRUARY 2003
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Abstract—In this paper, we revisit wavelet theory starting from
the representation of a scaling function as the convolution of a
B-spline (the regular part of it) and a distribution (the irregular
or residual part). This formulation leads to some new insights on
wavelets and makes it possible to rederive the main results of the
classical theory—including some new extensions for fractional
orders—in a self-contained, accessible fashion. In particular, we
prove that the B-spline component is entirely responsible for five
key wavelet properties: order of approximation, reproduction
of polynomials, vanishing moments, multiscale differentiation
property, and smoothness (regularity) of the basis functions.
We also investigate the interaction of wavelets with differential
operators giving explicit time domain formulas for the fractional
derivatives of the basis functions. This allows us to specify a
corresponding dual wavelet basis and helps us understand why
the wavelet transform provides a stable characterization of the
derivatives of a signal. Additional results include a new peeling
theory of smoothness, leading to the extended notion of wavelet
differentiability in the -sense and a sharper theorem stating
that smoothness implies order.

Index Terms—Approximation order, Besov spaces, Hölder
smoothness, multiscale differentiation, splines, vanishing mo-
ments, wavelets.

I. INTRODUCTION

THE mechanics of the wavelet transform are usually well
understood by engineers working in signal processing. In

essence, the system boils down to a two channel filterbank as
shown in Fig. 1 [1], [2]. In the decomposition (or analysis) step,
the digital signal is split into two half-size sequences

and by filtering it with a conjugate pair of
lowpass and highpass filters ( and , respec-
tively) and down-sampling the results thereafter. The signal is
then reconstructed (synthesis step) by up-sampling, filtering,
and summation of the components, as shown on the right-hand
side of the block diagram; note that the analysis and synthesis
procedures are flow-graph transposes of each other. A standard
analysis shows that this kind of two channel decomposition
is one-to-one and reversible provided that the -transforms
of the filters satisfy the perfect reconstruction (PR) equations
also given in Fig. 1 [1], [3]. In the tree-structured wavelet
transform, the decomposition step is further iterated on the
lowpass component .
While the block diagram in Fig. 1 constitutes a valid descrip-

tion of the algorithm—different transforms simply correspond
to different sets of PR filters—it tells us little about wavelets
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Fig. 1. Block diagram of the two-channel filterbank that forms the basis for
the wavelet transform algorithm. From a purely digital signal processing point
of view, the only constraints on the choice of the filters are the two perfect
reconstruction equations.

per se and their fundamental properties. To gain a deeper
understanding, one needs to consider the continuous-time in-
terpretation of the transform that is favored by mathematicians
[4]–[6]. This representation involves continuously-defined
basis functions (wavelets) that are rescaled and shifted versions
of each other; it also gives rise to a filterbank implementation
that is equivalent to the block diagram in Fig. 1—Mallat’s
fast wavelet algorithm [4], [7]. However, one of the important
points of the continuous-time formulation is that the filters
cannot be completely arbitrary. A key constraint is that the
lowpass filter —also called the refinement filter—must
be factorizable as 2 , which is an
expression that involves some number of “regularity” factors
( ) as well as a stable residual term satisfying
the lowpass constraint . A nontrivial factor is
generally necessary for obtaining orthogonal or biorthogonal
wavelets that can be implemented by means of FIR filters [8],
[9]. The presence of the regularity term is essential
for theoretical reasons. It is responsible for a number of key
wavelet properties such as order of approximation, vanishing
moments, reproduction of polynomials, and smoothness of the
basis functions. If one excepts the vanishing moments, these
are aspects of wavelets that are often not so well understood by
signal processing practitioneers, mainly because the connection
with the digital filterbank interpretation is not obvious. This
is rather unfortunate as many consider these properties as the
very core of wavelet theory (cf. [6, Ch. 7]); they are almost
unavoidable if one wants to give precise explanations as to why
wavelets work so well for approximating piecewise-smooth
signals and why they are such a nice tool for characterizing
singularites [10].
The purpose of this paper is to demystify some of these con-

cepts by linking them to a factorization theorem involving the
convolution between a B-spline (the regular part of the wavelet)
and a distribution (the irregular or residual part). Indeed, we will
show that it is the B-spline part—and nothing else—that brings
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Wavelets are B-splines
      convolved by
(nasty) distributions

=

! 

"

CONTENT

4

! Wavelets and sparsity
■ Image denoising
■ Wavelet-regularized image reconstruction

! Wavelets revisited (in multiple dimensions)
■ Non-separable
■ Directional, steerable
■ Derivative-like (gradient, Hessian, ...)
■ Shape diversity, signal-adaptation
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Wavelet basis of L2
Family of wavelet templates (basis functions)

ψi,k(x) = 2−i/2ψ

�
x− 2ik

2i

�

⇔ W−1 = WT

Vector/matrix notation

Discrete signal: f = (· · · , c[0], c[1], c[2], · · · )

Wavelet coefficients: w = (· · · , w1[0], w1[1], · · · , w2[0], · · · )

Analysis formula: w = WT f

Synthesis formula: f = Ww =
�

n

wnψn

Orthogonal wavelet basis

�ψi,k, ψj,l� = δi−j,k−l

Analysis: wi[k] = �f, ψi,k� (wavelet coefficients)

Reconstruction: ∀f(x) ∈ L2(R), f(x) =
�

i∈Z

�

k∈Z
wi[k] ψi,k(x)

Sparsity of wavelet decomposition: example

6

Wavelet transform

Inverse wavelet transform

Discarding “small coefficients”

Space-domain representation: f Wavelet-domain representation: w = WT f

Thresholding: w→ wNReconstruction: fN = WwN



First published paper on biomedical applications
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Denoising by wavelet thresholding
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λ

2

Basic idea

Orthogonal WT: white noise→ white noise

Signal is concentrated in few coefficients, while noise is spread-out evenly

⇒ Noise attenuation is achieved by simple wavelet shrinkage/thresholding

Who gets credit ?

The celebrated statistician

D.L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Information Theory, vol. 41, no. 3,

pp. 613-627, May 1995. (> 2000 ISI citations)

The pioneers

B. Weaver, X. Yansun, D.M. Healy Jr., and L.D. Cromwell, “Filtering noise from images with

wavelet transforms,” Magnet. Reson. in Med., vol. 21, no. 2, pp. 288-295, 1991.

w̃ = Tλ(w)

w



Denoising and wavelet regularization
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Measurement model

Space domain Wavelet domain

y = f + n ⇔ wi[k] = si[k] + ni[k] (additive white noise)

Signal estimation

Reconstruction formula: f̃ = Ww̃ (inverse wavelet transform)

Data term: �y − f̃�2
2 = �w − w̃�2

2 (Parseval)

Regularization functional: R(f̃) = R(w̃) = �w̃��1 =
�

i

�

k

|w̃i[k]| ∼ �f̃�B1
1(L1(R2))

Optimization problem: w̃0 = arg min
w̃

�
�w − w̃�2

2 + λ�w̃��1

�

signal noise

Wavelet-domain solution
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Basic scalar optimization problem

minimize J(u, v) = (v − u)2 + λ|v|
λ

2

u

v = Tλ(u)

(Moreau, 1965; Chambolle et al., IEEE Trans. Image Proc., 1998; Combette, 2005)

Equivalent convex optimization problem (decoupled)

w̃0 = arg min
w̃

�
�

i

�

k

|wi[k]− w̃i[k]|2 + λi|w̃i[k]|
�

Soft-threshold solution

Moreau’s proximal operator: Proxϕ(u) = arg min
v∈R

�
1
2
(u− v)2 + ϕ(v)

�

v = Prox2λ|·|(u) = Tλ(u) =






u− λ/2, λ/2 < u

0, |u| ≤ λ/2
u + λ/2, u < −λ/2



BIG extension: SURE-LET
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SNR improvement: + 15.73 dB

SURE-LET Demo

(Luisier et al., IEEE Trans. Image Proc. , 2007)

2009 Young Author Best Paper Award
IEEE Signal Processing Society

Key features of SURE-LET wavelet denoising algorithm

Generalized non-linearities: Linear Expansion of Thresholds:

Tλ(u) →
�K

k=1 akfk(u)

Optimizes thresholding parameters ak from noisy data

using Stein’s Unbiased Risk Estimate (SURE)

Incorporates inter-scale dependencies via prediction tree

Improved performance:

- 1 to 1.5 dB better than basic soft thresholding

- Very close to oracle performance

- Outperforms standard Wiener filter

Standard Color Image

Input PSNR=18.59 dB



Denoised with OWT SURE-LET

Output PSNR = 31.91 dB

Denoised with UWT SURE-LET

Output PSNR = 33.27 dB



2D SURE-LET denoising (UWT): C-elegance embryo

2D SURE-LET denoising (UWT): Tobacco cells

Ground truth
(average over 500 acquisitions)



2D + time SURE-LET denoising (DWT) : C-elegance embryo

Wavelet-regularized image reconstruction
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Space-domain measurement model

y = Hf + n

Wavelet-regularized signal recovery

Wavelet expansion of signal: f̃ = Ww̃

Data term: �y −Hf̃�22 = �y −HWw̃�22

Wavelet-domain sparsity constraint: �w̃��1 ≤ C1

Convex optimization problem

w̃ = arg min
w

�
�y −Aw�2

2 + λ�w��1

�
with A = HW

or
f̃ = arg min

f

�
�y −Hf�2

2 + λ�WT
f��1

�

H: system matrix (e.g., convolution)

n: additive noise component



Sparsity and l1-minimization
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v1

v2

�2-ball: |v1|2 + |v2|2 = Constant

�1-ball: |v1| + |v2| = Constant

min
v

�
�u−Av�2�2 + λ �v��1

�
⇔ min

v
�u−Av�2�2 subject to �v��1 = C1

smallest “weighted” �2-distance to u

(ũ1, ũ2)

Prototypical inverse problem

min
v

�
�u−Av�2�2 + λ �v�2�2

�
⇔ min

v
�u−Av�2�2 subject to �v��2 = C2

Elliptical norm: �u−Av�2
2 = (v − ũ)T AT A(v − ũ) with ũ = A−1u

Alternating minimization: ISTA algorithm
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Special cases

Classical least squares: λ = 0 ⇒ f = (HT
H)−1

H
T
y

Landweber algorithm: fn+1 = fn + γH
T (y −Hfn) (steepest descent)

Pure denoising: H = I ⇒ f = W Tλ{WT
y}

Proof of convergence: (Daubechies, Defrise, De Mol, 2004)

Convex cost functional: C(f) = �y −Hf�2
2 + λ�WT

f�1

(Figueiredo-Nowak, 2003)
Iterative Soft Thresholding Algorithm (ISTA)

1. Initialization (n← 0), f0 = y

2. Landweber update: z = fn + γH
T (y −Hfn)

3. Wavelet denoising: w = W
T
z, w̃ = Tγλ{w} (soft threshold)

4. Signal update: fn+1 ←Ww̃ and repeat from Step 2 until convergence



Fast multilevel wavelet-regularized deconvolution
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(Vonesch-U., IEEE-IP, 2009)
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9/7 wavelets

Key features of multilevel wavelet deconvolution algorithm (ML-ISTA)

Subband adaptive steps (optimized for fast convergence)

Acceleration by one order of magnitude with respect to state-of-the art algorithm (ISTA)
(multigrid iteration strategy)

Applicable in 2D or 3D:
first wavelet attempt for the deconvolution of 3D fluorescence micrographs

Typically outperforms oracle Wiener solution (best linear algorithm)

3D fluorescence microscopy experiment

22

Confocal referenceML-ISTA 15 iterations
Input data

(open pinhole) ISTA 15 iterations

Maximum-intensity projections of 512×352×96 image stacks;

Zeiss LSM 510 confocal microscope with a 63× oil-immersion objective;

C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

each channel processed separately; computed PSF based on diffraction-limited model;

separable orthonormalized linear-spline/Haar basis.



3D deconvolution of widefield stack
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Maximum intensity projections of 384×448×260 image stacks;

Leica DM 5500 widefield epifluorescence microscope with a 63× oil-immersion objective;

C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

each channel processed separately; computed PSF based on diffraction-limited model;

Haar basis, 3 decomposition levels for X-Y, 2 decomposition levels for Z.

Reconstruction results with parallel MRI
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Simulated parallel MRI experiment
Shepp-Logan brain phantom
4 coils, undersampled spiral acquisition, 15dB noise

Backprojection

Sp
ac

e

�1 wavelet regularizationL2 regularization (CG)

(M. Guerquin-Kern, BIG) 

NCCBI collaboration with K. Prüssmann, ETHZ



Try at ISMRM reconstruction challenge
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L2 regularization (Laplacian) �1 wavelet regularization
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Part II: wavelets revisited



Beyond separable wavelet representations
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Limitations of separable wavelets

Limited amount of invariance
(in particular, to rotation)

Poor handling of directional features

Lack of proper differential interpretation

Multidimensional alternatives

Wavelet frames for better shift, scale and rotation invariance

Curvelets, bandelets, contourlets, . . .

Steerable pyramid

Steerable filters (Freeman & Adelson, 1991)

Fast filterbank implementation

Definition. A 2D filter h(x), x ∈ R2 is steerable of order M iff. there exist

some basis filters ϕm(x) and coefficients am(θ) such that

∀θ ∈ [−π,π], hθ(x) := h(Rθx) =
M�

m=1

am(θ) ϕm(x)

...f(x) f ∗ hθ(x)

a1(θ)

aM (θ)

ϕ1

ϕM

Optimized ridge detector (M=3)

(Jacob-U., IEEE-PAMI, 2004)



Simoncelliʼs steerable pyramid (1995)
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! Many successful applications
! Contour detection
! Image filtering and denoising
! Orientation analysis
! Texture analysis and synthesis

B(- ) B( )L0(- )

L1(- )

H0(- )

2D L1( )2U

L0( )

H0( )

recursive subsystem

Figure 2: System diagram for the radial portion of the steerable pyramid, illustrating the filtering and
sampling operations, and the recursive construction. Boxes containing “2D” and “2U” correspond to
downsampling and upsampling by a factor of 2. All other boxes correspond to standard 2D convolution.
The circles correspond to the transform coefficients. The recursive construction of a pyramid is achieved by
inserting a copy of the diagram contents enclosed by the dashed rectangle at the location of the solid circle
(i.e., the lowpass branch).

L0( ) H0( ) L1( ) B( )

Figure 3: Idealized depiction of filters satisfying the constraints of the block diagram in figure 2. Plots show
Fourier spectra over the range 0 .

3. IMPLEMENTATION

We have designed filters using weighted least
squares techniques in the Fourier domain to ap-
proximately fit the constraints detailed above.
The resulting filters are fairly compact (typically
9 9 taps) and accurate (reconstruction error on
the order of 45dB). Such filters may be designed
for different values of , depending on the appli-
cation. For example, a design with a single band
at each scale ( 1) serves as a (self-inverting)
replacement for the Laplacian pyramid. A design
with two bands ( 2) will compute multi-scale
image gradients, which may be used for computa-
tions of local orientation, stereo disparity or opti-
cal flow. Higher values of correspond to higher
order terms in a multi-scale Taylor series.

Figure 4 illustrates a 3-level steerable pyramid de-
composition of a disk image, with 1. Shown
are the bandpass images and the final lowpass
image (the initial highpass image is not shown).
As noted above, this pyramid may be used in
applications where the Laplacian pyramid has
been found useful, such as in image coding. The
advantage is that the steerable pyramid is self-
inverting, and thus the errors introduce by quan-
tization of the subbands will not appear as out-
of-band distortions upon reconstruction.

Figure 5 illustrates a 3-level steerable pyramid
decomposition with 3. The filters are

Figure 4: A 3-level 1 (non-oriented) steer-
able pyramid. Shown are the bandpass images
and the final lowpass image.

directional second derivatives oriented at
2 3 0 2 3 . Such a decomposition can be

used for orientation analysis, edge detection, etc.

We have explored the use of this decomposition
in a number of applications, including image en-
hancement, orientation decomposition and junc-
tion identification, texture blending, depth-from-
stereo, and opticalflow. Space limitationsprevent
full description of these applications here; some
previous results are described in [5, 6].

3

 

Figure 5: A 3-level 3 (second derivative)
steerable pyramid. Shown are the three band-
pass images at each scale and the final lowpass
image.
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Laplacian Pyramid Dyadic QMF/Wavelet Steerable Pyramid

self-inverting (tight frame) no yes yes
overcompleteness 4 3 1 4 3
aliasing in subbands perhaps yes no
rotated orientation bands no only on hex lattice [9] yes

Table 1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.

Figure 1: Idealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with 4. Frequency axes range from

to . The basis functions are related by
translations, dilations and rotations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

idealized frequency response of the subbands, for
4. We write the the Fourier magnitude of

the th oriented bandpass filter in polar-separable
form:

where tan 1 , 2 and . Be-
low, we describe the constraints on the two com-
ponents and .

1. ANGULAR DECOMPOSITION

The angular portion of the decomposition, ,
is determined by the desired derivative order. A
directional derivative operation in the spatial do-
main corresponds to multiplication by a linear
ramp function in the Fourier domain, which we
rewrite in polar coordinates as follows:

cos

(note thatwehave described aderivative operator
in the direction). We ignore the imaginary con-
stant, and the factor of , which is absorbed into
the radial portion of the function. The relevant
angular portion of the first derivative operator (in
the direction) is thus cos .

Higher-order directional derivatives correspond
to multiplication in the Fourier domain by the

ramp raised to a power, and thus the angular
portion of the filter is cos for an th-order
directional derivative. Knuttson and Granlund
have also developed polar-separable filters with
such angular components [10]. The steerability of
such functions hasbeen discussed in our previous
work [5, 6].

2. RADIAL DECOMPOSITION

The radial function, , is constrained by both
the desire to build the decomposition recursively
(i.e., using a “pyramid” algorithm), and the need
to prevent aliasing from occurring during sub-
sampling operations. The recursive system dia-
gram for is given in figure 23.

The filters 0 and 0 are necessary for pre-
processing the image in preparation for the recur-
sion. The recursive portion of the diagram corre-
sponds to the subsystem contained in the dashed
box. This subsystem decomposes a signal into
two portions (lowpass and highpass). The low-
pass portion is subsampled, and the recursion is
performed by repeatedly applying the recursive
transformation to the lowpass signal.

The constraints on the filters in the diagram are
as follows:

1. Bandlimiting (to prevent aliasing in the sub-
sampling operation):

1 0 for 2

2. Flat System Response:

0
2

0
2

1
2 2 1

3. Recursion:

1 2 2
1 2 2

1
2 2

Typically, we choose 0 1 2 , so that
the initial lowpass shape is the same as that used
within the recursion. An idealized illustration
of filters that satisfy these constraints is given in
figure 3. Note that 1 is strictly bandlimited,
and is power-complementary.

3This system diagram is modified from that of [6].
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! Limitations
! Fixed design
! Purely discrete framework 

(no functional counterpart)
! Does not extend to 

dimensions higher than two

Isotropic wavelet pyramid Multichannel polar filtering Directional wavelet 
coefficients

B(- ) B( )L0(- )

L1(- )

H0(- )

2D L1( )2U

L0( )

H0( )

recursive subsystem

Figure 2: System diagram for the radial portion of the steerable pyramid, illustrating the filtering and
sampling operations, and the recursive construction. Boxes containing “2D” and “2U” correspond to
downsampling and upsampling by a factor of 2. All other boxes correspond to standard 2D convolution.
The circles correspond to the transform coefficients. The recursive construction of a pyramid is achieved by
inserting a copy of the diagram contents enclosed by the dashed rectangle at the location of the solid circle
(i.e., the lowpass branch).

L0( ) H0( ) L1( ) B( )

Figure 3: Idealized depiction of filters satisfying the constraints of the block diagram in figure 2. Plots show
Fourier spectra over the range 0 .

3. IMPLEMENTATION

We have designed filters using weighted least
squares techniques in the Fourier domain to ap-
proximately fit the constraints detailed above.
The resulting filters are fairly compact (typically
9 9 taps) and accurate (reconstruction error on
the order of 45dB). Such filters may be designed
for different values of , depending on the appli-
cation. For example, a design with a single band
at each scale ( 1) serves as a (self-inverting)
replacement for the Laplacian pyramid. A design
with two bands ( 2) will compute multi-scale
image gradients, which may be used for computa-
tions of local orientation, stereo disparity or opti-
cal flow. Higher values of correspond to higher
order terms in a multi-scale Taylor series.

Figure 4 illustrates a 3-level steerable pyramid de-
composition of a disk image, with 1. Shown
are the bandpass images and the final lowpass
image (the initial highpass image is not shown).
As noted above, this pyramid may be used in
applications where the Laplacian pyramid has
been found useful, such as in image coding. The
advantage is that the steerable pyramid is self-
inverting, and thus the errors introduce by quan-
tization of the subbands will not appear as out-
of-band distortions upon reconstruction.

Figure 5 illustrates a 3-level steerable pyramid
decomposition with 3. The filters are

Figure 4: A 3-level 1 (non-oriented) steer-
able pyramid. Shown are the bandpass images
and the final lowpass image.

directional second derivatives oriented at
2 3 0 2 3 . Such a decomposition can be

used for orientation analysis, edge detection, etc.

We have explored the use of this decomposition
in a number of applications, including image en-
hancement, orientation decomposition and junc-
tion identification, texture blending, depth-from-
stereo, and opticalflow. Space limitationsprevent
full description of these applications here; some
previous results are described in [5, 6].
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Riesz transform

30

Definition: Rf(x) =




R1f(x)

...
Rdf(x)



 F←→ −j
ω

�ω� f̂(ω)

Multi-dimensional Fourier transform

f̂(ω) =
�

Rd

f(x)e−j�ω,x�dx1 · · · dxd

with ω = (ω1, . . . ,ωd) ∈ Rd

Multi-channel convolution

Rnf(x) = (hn ∗ f)(x) with hn = Rn{δ}
F←→ −j ωn

�ω�

“Smoothed version of gradient”

Riesz transform and partial derivatives

Rf(x) = (−1)(−∆)−
1
2 ∇f(x)

∇f(x) = −R(−∆)
1
2 f(x)



Reversibility of the Riesz transform
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Adjoint operator

R∗r(x) = R∗
1r1(x) + · · ·+R∗

drd(x) F←→ j
ωT

�ω� r̂(ω)

Self-reversibility

R∗Rf(x) =
d�

i=1

R∗
iRif(x) = f(x)

What about iterating ?

Combining N th-order components of the form Ri1Ri2 · · ·RiN f

with i1, · · · iN ∈ {1, · · · , d}

n-fold iteration: Rn
i = RiRn−1

i with R0
i = Id

Higher-order Riesz transform

32

Theorem (Decomposition of the identity)

�

n1, . . . , nd ≥ 0
n1 + · · · + nd = N

N !
n1!n2! · · ·nd!

(Rn1
1 · · ·Rnd

d )∗ (Rn1
1 · · ·Rnd

d ) = Id

(U. - Van De Ville, TIP 2010)

Proper definition of N th-order transform

M =
�N+d−1

d−1

�
distinct Riesz components with n1 + · · ·+ nd = N

R(N)f(x) =





R(N,0,··· ,0)f(x)
...

R(n1,··· ,nd)f(x)
...

R(0,··· ,0,N)f(x)





where R(n1,...,nd) =
�

N !
n1! · · ·nd!

Rn1
1 · · ·Rnd

d



Multi-index notation
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Decomposition of the identity: ∀ψ ∈ L2(Rd),
�

|n|=N

(Rn)∗Rnψ = ψ

Sum of components: |n| =
�d

i=1 ni = N

Factorial: n! = n1!n2! · · · nd!

Exponentiation of a vector z = (z1, . . . , zd) ∈ Cd: zn = zn1
1 · · · znd

d

R(n1,...,nd)ψ(x) = Rnψ(x) F←→
�

|n|!
n!

(−jω)n

�ω�|n| ψ̂(ω)

Multi-index: n = (n1, . . . , nd) with n1, . . . , nd ∈ Z+

Properties of higher-order Riesz transform
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Scale invariance: ∀a ∈ R+, R(N){f(·/a)}(x) = R(N){f(·)}(x/a)

Shift invariance: ∀x0 ∈ Rd, R(N){f(·−x0)}(x) = R(N){f(·)}(x−x0)

Parseval-like identity: ∀f, φ ∈ L2(Rd)

�R(N)f,R(N)φ�L2 =
�

|n|=N

�Rnf,Rnφ�L2

= �f, φ�L2

Energy conservation: �R(N)f�2
L2

=
�

|n|=N

�Rnf�2
L2

= �f�2
L2



Steerability of higher-order Riesz transform
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steering coefficients
unrotated impulse responses
 of nth-order Riesz transform

e.g., R =

�
cos θ − sin θ

sin θ cos θ

�
for d = 2

Rn{δ}(x): impulse response of n-component Riesz operator

R = (r1 · · · rd)T : d× d spatial rotation matrix

Explicit form of steering coefficients

sn,m(R) =
�

m!
n!

�

|k1|=n1

· · ·
�

|kd|=nd

δk1+···+kd,m
n!

k1! · · · kd!
rk1
1 · · · rkd

d

The steering coefficients specify a group of orthogonal matrices of size M =
�N+d−1

d−1

�

Steerability of N th-order Riesz transform

Rotated version of n-component impulse response

Rn{δ} (Rx) =
�

|m|=N

sn,m(R)Rm{δ}(x)

Visualization in the frequency domain
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N = 1N = 2N = 3



Frame = redundant extension of a basis
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Definition

A family of functions {ψk}k∈Zd is called a frame of L2(Rd) iff.

∀f ∈ L2(Rd), A �f�2
L2

≤
�

k∈Zd

|�ψk, f�L2 |
2 ≤ B �f�2

L2

Tight frame: A = B

Parseval frame: A = B = 1

Analysis/synthesis formula

∀f ∈ L2(Rd), f =
�

k∈Zd

�ψk, f�L2 ψ̃k

{ψ̃k}k∈Zd : dual frame (minimum-norm inverse)

Parseval frame: ψ̃k = ψk

Construction of steerable wavelet frames
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Wavelet frame of L2(Rd)

∀f ∈ L2(Rd), f(x) =
�

i∈Z

�

k∈Zd

�f, ψi,k�L2 ψ̃i,k(x)

Wavelet property: ψi,k(x) = 2− id
2 ψ0,k(x/2i)

Theorem
Let {ψi,k} be a primal wavelet frame of L2(Rd). Then, {ψn

i,k = Rnψi,k}|n|=N

and {ψ̃n
i,k = Rnψ̃i,k}|n|=N form a dual set of wavelet frames such that

∀f ∈ L2(Rd), f(x) =
�

i∈Z

�

k∈Zd

�

|n|=N

�f, ψn
i,k�L2 ψ̃n

i,k(x)

Justification

Inner product preservation ⇒ �ψi,k, ψi�,k��L2 = �R(N)ψi,k,R(N)ψi�,k��L2

Shift and scale invariance ⇒ Rnψi,k(x) = 2− id
2 ψn(x/2i − k) with ψn = Rnψ

(U. - Van De Ville, 2010)

Multi-index: n = (n1, . . . , nd)



Backbone: primal isotropic wavelet pyramid
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Radial wavelet filters

2D frequency view

Wavelet coefficients

no preferred directionPerfect isotropy

Frequency domain design of band-limited wavelets

Tight frame property:
�

i∈Z
|ψ̂(ω/2i)|2 = 1

ω

2π0 1 2 4

1.

0.5

ψ(x) = ψ(�x�)

Filtering 
and sub-
sampling/

up-
sampling

Differential interpretation of Riesz wavelets
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�f, ψn(· − x)� ∝ ∂N

∂xn1
1 · · · ∂xnd

d

(f ∗ φN )(x)

Frequency-domain wavelet formula:

�ψn(ω) =
�

N !
n!

(−jω)n

�ω�N
ψ̂(ω) ∝ (jω1)n1 · · · (jωd)nd

ψ̂(ω)
�ω�N

Isotropic smoothing kernel: φN (x) = (−∆)−N
2 ψ(x) = F−1

�
ψ̂(ω)
�ω�N

�

Space-domain wavelet formula:

ψn(x) = Rnψ(x) ∝ ∂N

∂xn1
1 · · · ∂xnd

d

φN (x),



First-order Riesz wavelet transform
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Riesz wavelet coefficients

vertical features 
selectivity

horizontal features 
selectivity

isotropic pyramid Riesz transform

×

2D frequency view

�
ψ(1,0) =

∂φ1

∂x1
, ψ(0,1)(x) =

∂φ1

∂x2

�

Steerable Gradient-like wavelets

Hessian-like Riesz wavelet transform
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Steerability

�
ψ(2,0) =

∂2φ2

∂x2
1

, ψ(1,1) =
√

2
∂2φ2

∂x1∂x2
, ψ(0,2) =

∂2φ2

∂x2
2

�

n = (2, 0) n = (1, 1) n = (0, 2)

Second-order Riesz wavelets



Generalized Riesz wavelets
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Special case: Simoncelli’s equiangular design (2-D only)

[USimon]m+1,n+1 =

��
N

m

�
cos

�
πn

N + 1

�m

sin
�

πn

N + 1

�N−m

Generalized Riesz wavelets

Parametrized by a M ×M non-singular shaping matrix U

Generalized n-component wavelet: ψ̃n
i,k =

�

|m|=N

un,mRmψi,k

Steerable wavelet subspace

ψ: primary isotropic bandlimited wavelet

The Riesz wavelets {Rnψ}|n|=N span a steerable subspace of dimension M =
�N+d−1

d−1

�

There are many other wavelet bases that spans the same subspace

m, n ∈ {0, . . . , N}

Equi-angular    vs.   Riesz wavelets
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Space domain

Frequency domain

Simoncelli’s 4-channel steerable pyramid Riesz wavelets (N = 3)



Riesz and equalized PCA wavelets
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(c) Lena (N=4)

72% 12% 6.3% 5% 4.7%

50% 15.6% 13.7% 11.4% 9.4%

(d) Texture D104 (N=4)
     D104 fragment

(f) Barbara (N=14)

75.6% 8.3% 4.9% 2.8% 1.8%

. . .

1.2% 0.9%

(a) Riesz wavelets (b) Equalized Riesz wavelets

Basic denoising benchmark
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Wavelet domain soft-thresholding with optimized λ for max SNR
Steering is the same in all cases

order Barbara Lena zoneplate
σ 10 20 30 10 20 30 10 20 30

initial PSNR 28.11 22.10 18.59 28.13 22.11 18.59 28.14 22.12 18.59
2 31.43 27.33 25.22 33.63 30.24 28.47 34.03 29.02 26.08

Equi- 3 31.57 27.47 25.38 33.68 30.30 28.54 34.56 29.54 26.58
Angular 4 31.72 27.60 25.50 33.77 30.37 28.58 34.92 29.86 26.91

5 31.81 27.69 25.57 33.76 30.38 28.58 35.08 30.10 27.14
2 31.68 27.44 25.29 33.68 30.27 28.47 35.06 29.83 28.47

Riesz 3 31.86 27.67 25.48 33.76 30.34 28.53 35.44 30.22 26.78
4 32.03 27.86 25.66 33.89 30.47 28.64 35.79 30.55 27.16
5 32.09 27.95 25.74 33.88 30.46 28.63 35.94 30.72 27.49
2 30.85 26.63 24.58 33.14 29.57 27.83 32.79 27.51 24.83

Equalized 3 31.09 26.94 24.64 33.25 30.06 28.19 33.18 27.76 24.74
Riesz 4 31.02 26.83 24.76 33.28 29.71 27.95 32.95 27.69 25.07

5 31.06 26.97 24.70 33.37 30.12 28.23 33.19 27.95 24.86
2 31.65 27.33 25.14 33.59 30.14 28.33 35.00 29.70 26.62

PCA 3 31.75 27.44 25.19 33.58 30.11 28.30 35.27 29.96 26.86
4 31.86 27.53 25.27 33.64 30.15 28.32 35.46 30.12 27.03
5 31.87 27.55 25.25 33.59 30.10 28.28 35.54 30.20 27.11

Max SNR 2 31.72 27.48 25.28 33.63 30.19 28.40 35.09 29.94 26.97
Equi- 3 31.85 27.69 25.53 33.72 30.30 28.50 35.68 30.45 27.57

Angular 4 31.93 27.81 25.66 33.80 30.38 28.55 35.93 30.79 27.79
5 31.96 27.86 25.72 33.78 30.37 28.57 35.78 30.96 27.81
2 31.80 27.61 25.41 33.75 30.32 28.50 35.32 30.07 27.03

Equalized 3 32.05 27.92 25.70 33.84 30.40 28.56 35.87 30.64 27.58
PCA 4 32.23 28.17 25.94 33.99 30.53 28.67 36.25 31.10 28.01

5 32.31 28.29 26.04 33.98 30.52 28.66 36.40 31.33 28.29

1

order Barbara Lena zoneplate
σ 10 20 30 10 20 30 10 20 30

initial PSNR 28.11 22.10 18.59 28.13 22.11 18.59 28.14 22.12 18.59
2 31.43 27.33 25.22 33.63 30.24 28.47 34.03 29.02 26.08

Equi- 3 31.57 27.47 25.38 33.68 30.30 28.54 34.56 29.54 26.58
Angular 4 31.72 27.60 25.50 33.77 30.37 28.58 34.92 29.86 26.91

5 31.81 27.69 25.57 33.76 30.38 28.58 35.08 30.10 27.14
2 31.68 27.44 25.29 33.68 30.27 28.47 35.06 29.83 28.47

Riesz 3 31.86 27.67 25.48 33.76 30.34 28.53 35.44 30.22 26.78
4 32.03 27.86 25.66 33.89 30.47 28.64 35.79 30.55 27.16
5 32.09 27.95 25.74 33.88 30.46 28.63 35.94 30.72 27.49
2 30.85 26.63 24.58 33.14 29.57 27.83 32.79 27.51 24.83

Equalized 3 31.09 26.94 24.64 33.25 30.06 28.19 33.18 27.76 24.74
Riesz 4 31.02 26.83 24.76 33.28 29.71 27.95 32.95 27.69 25.07

5 31.06 26.97 24.70 33.37 30.12 28.23 33.19 27.95 24.86
2 31.65 27.33 25.14 33.59 30.14 28.33 35.00 29.70 26.62

PCA 3 31.75 27.44 25.19 33.58 30.11 28.30 35.27 29.96 26.86
4 31.86 27.53 25.27 33.64 30.15 28.32 35.46 30.12 27.03
5 31.87 27.55 25.25 33.59 30.10 28.28 35.54 30.20 27.11

Max SNR 2 31.72 27.48 25.28 33.63 30.19 28.40 35.09 29.94 26.97
Equi- 3 31.85 27.69 25.53 33.72 30.30 28.50 35.68 30.45 27.57

Angular 4 31.93 27.81 25.66 33.80 30.38 28.55 35.93 30.79 27.79
5 31.96 27.86 25.72 33.78 30.37 28.57 35.78 30.96 27.81
2 31.80 27.61 25.41 33.75 30.32 28.50 35.32 30.07 27.03

Equalized 3 32.05 27.92 25.70 33.84 30.40 28.56 35.87 30.64 27.58
PCA 4 32.23 28.17 25.94 33.99 30.53 28.67 36.25 31.10 28.01

5 32.31 28.29 26.04 33.98 30.52 28.66 36.40 31.33 28.29

1

zoneplate

+0.2 - 0.6 dB +0.05 - 0.2 dB +1.0 - 1.3 dB



Examples of 3-D steerable wavelets
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iso-surface representation of wavelets in space domain

Third-order wavelets in 3-D

n = (3, 0, 0) n = (1, 2, 0) n = (1, 1, 1)

3-D work in progress

CONCLUSION
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! Sparsity as a powerful design paradigm
! Denoising by simple wavelet-domain processing (non-linear)
! Compressed sensing / sparse signal recovery
! Wavelet-regularized image reconstruction

! General operator-based design of steerable wavelets
! Decoupled multiresolution and multiorientation properties
! Simplicity of implementation (FFT, multirate filterbank)
! Tight frame property
! Extended class of partial derivative/Riesz wavelets
! Adaptivity

! Novel perspectives for wavelet-domain image processing
! Rotation-invariant processing/feature extraction
! Learning the wavelet dictionary
! Steerable wavelets in 3D

Good potential for biomedical imaging (MRI, confocal microscopy)
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First-order steering mechanism (max energy)
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Wavelet structure tensor

Ji,k0 =
�

k∈Zd

v[k − k0]wi[k]wT
i [k]

Pointwise orientation: u =
wi[k]

�wi[k]� ⇔ w2
u,i[k] maximum

Gradient-like wavelet transform

wi[k] =
�
�f, ψ(1,0,··· ,0)

i,k �, . . . , �f, ψ(0,··· ,0,1)
i,k �

�

Wavelet projection along unit vector u: wu,i[k] = �u,wi[k]�

Orientation within a neighborhood

Local Gaussian-like window: v[k] ≥ 0

Local wavelet energy at (i, k0) along direction u

Eu =
�

k∈Zd

v[k − k0] w2
u,i[k] = uT Ji,k0u

Max energy orientation: u1 = arg max
u∈Rd,�u�=1

�
uT Ji,k0u

�

⇒ u1 = first eigenvector of Ji,k0

Pointwise vs. tensor-based steering
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Orientation

Amplitude
Pointwise orientation tensor orientation

Psychedelic Lena


