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Motivation: Beyond Wiener filtering



Simple denoising experiment
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Noisy samples of a compound Poisson process (zoom)

 

 
original
noisy samples

Noisy samples of a Brownian motion (zoom)

 

 
original
noisy samples

Wiener process (Gaussian)

Compound Poisson process (Sparse)
Controlled experiment

Matched 2nd-order statistics (correlation function)

Generalized spectrum ∼ 1
ω

s(x): Continuously-defined process

n[k]: Discrete white Gaussian noise

Measurement model

g[k] = s(k) + n[k]

Three dominant paradigms
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Theoretical result:  MMSE solution = piecewise-linear smoothing spline (Blu-U., 2005)

Theoretical result:  Simple wavelet shrinkage algorithm (Chambolle et al., 2005)

Wiener solution (best linear estimator) = Smoothing spline

s̃spline(x) = argmin
s(x)

��

k∈Z
|g[k]− s(k)|2 + µ

�

R
|Ds(x)|2dx

�

= argmin
s(x)

�
�g − s�2�2 + µ�Ds�2L2(R)

�

Wavelet solution = sparse signal recovery

s̃wave(x) = argmin
s(x)

�
�g − s�2�2 +

�

i

µi�wi�p�p

�

with wi[k] =
�
s, 2i/2ψ(x/2i − k)

�
L2(R)



Three dominant paradigms (contʼd)
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Theoretical result                 [Mammen, Annals of Statistics, 1997]
Piecewise-constant spline with adaptive knots is a global minimizer

Total variation = non-quadratic regularization

s̃TV(x) = argmins(x)
�
�g − s�2�2 + µTV(s)

�

Denoising results
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Commonalities
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Wavelet as a smoothed derivative: ψHaar(x) = Dφ(x)

Central role of derivative operator

Quadratic spline energy: �Ds�2L2(R)

TV as an L1 norm: s ∈ W 1
1 ⇔ TV(s) = �Ds�L1(R)

φ(x)
L∗ =

d

dx

ψ(x) = L∗φ(x)

⇒ �f,ψ(·− x0)� = L(f ∗ φ∗)(x0) = − d
dx (f∗ ) (x0)

8

OUTLINE
! Motivation: beyond Wiener filtering !
! The spline connection

! L-splines and signals with finite rate of innovation
! Green functions as elementary building blocks

! Sparse stochastic processes
! Innovation model
! Gelfandʼs theory of generalized stochastic processes
! Distributional solution of operator equations

! Imposing (TSR) invariance
! Scale-invariant operators and their inverses
! Fractal random processes (Gaussian vs. sparse)
! Wavelet analysis of sparse processes

! B-spline conquest of fractal/sparse processes
! Fractional B-splines
! “Stationarization” and supression of long-range dependencies
! On the statistical optimality of TV
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The spline connection
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Splines: signals with finite rate of innovation

Spline theory: (Schultz-Varga, 1967)

(Vetterli et al., 2002)

L{·}: differential operator
δ(x): Dirac distribution

Definition
The function s(x) is a (non-uniform) L-spline with knots {xn} iff.

L{s}(x) =
N�

n=1

anδ(x− xn)

FIR signal processing: Innovation variables (2N)

Location of singularities (knots) : {xn}n=1,...,N

Strength of singularities (linear weights): {an}n=1,...,N

an

xn xn+1

L =
d
dx



Splines and Greenʼs functions
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ρ(x) δ(x)L{·} ρ(x)δ(x)
L−1{·}

(+ null-space component?)

L−1{·}

Formal integration

Definition
ρ(x) is a Green function of the shift-invariant operator L iff L{ρ} = δ

⇒

General (non-uniform) L-spline: L{s}(x) =
�

k∈Z
akδ(x− xk)

�

k∈Z
akδ(x− xk) s(x) = pL(x) +

�

k∈Z
akρ(x− xk)

Green function = Impulse response 

Translation invariance 

Linearity 

Example of spline synthesis
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δ(x)

δ(x− x0)

ρ(x)
L−1{·}

�

k∈Z
a[k]δ(x− k)

ρ(x− x0)

L−1{·}

L−1{·}

s(x) =
�

k∈Z
a[k]ρ(x− k)

L = d
dx = D ⇒ L−1: integrator
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Sparse stochastic
processes

Brownian motion vs. spline synthesis
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L−1{·}

Brownian motion

Cardinal spline (Schoenberg, 1946)

white noise
or

stream of Diracs

 

L = d
dx ⇒ L−1: integrator



Poisson; H = 0.50

Compound Poisson process (sparse)
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(Paul Lévy, 1934)

 

Random jumps with rate λ (Poisson point process)

Compound Poisson process

s(x)

L = d
dx ⇒ L−1: integrator

L−1{·}

random stream of Diracs

r(x) =
�

k

akδ(x− xk)

Jump size distribution: a � p(a)

Generalized stochastic processes
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Splines are in direct correspondence with stochastic processes 
(stationary or fractals) that are solution of the same partial differential 
equation, but with a random driving term.

References: stationary proc. (U.-Blu, IEEE-SP 2006), fractals (Blu-U., IEEE-SP 2007),
sparse processes (U.-Tafti, IEEE-SP in press)

non-empty null space of L, boundary conditions

Defining operator equation: L{s(·)}(x) = r(x)

r(x) =
�

k∈Zd

a[k]δ(x− k) ⇒ s(x) : Cardinal L-spline

r(x): white noise ⇒ s(x): generalized stochastic process

Specific driving terms

r(x) = δ(x) ⇒ s(x) = L−1{δ}(x) : Green function



w(x) s(x)

White noise
 (Gaussian or Poisson)

Generalized
stochastic process

L{·}

Shaping filter

(appropriate boundary conditions)

Whitening operator

L−1{·}

What is white noise ?

The problem: Continuous-domain white noise does not have a pointwise interpretation.

Standard stochastic calculus. Statisticians circumvent the difficulty by working with ran-
dom measures (dW (x) = w(x)dx) and stochastic integrals; i.e, s(x) =

�
R ρ(x, x�)dW (x�)

where ρ(x, x�) is a suitable kernel.

Innovation model. The white noise interpretation is more appealing for engineers (cf.
Papoulis), but is requires a proper distributional formulation and operator calculus.

Gelfandʼs distributional framework

18

Distributional interpretation

Ls = w ⇔ ∀ϕ ∈ S, �ϕ,Ls� = �ϕ, w�

s = L−1w ⇔ ∀ϕ ∈ S, �ϕ, s� = �ϕ,L−1w�

⇒ s(t) = W (t) =

� t

0
w(τ)dτ ???

Formal specification of Brownian motion (Wiener process)

d

dt
s(t) = w(t)

Concept

r(ϕ) = �ϕ, s� is a conventional scalar random variable whose probablity density
function (PDF) pr(ϕ)(r) can be specified

Getting back point values: s(t0) = �δ(· − t0), s�



Characteristic form
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(Kolmogorov 1935; Gelfand, 1955)

s is a generalized random process over S � (Schwartz’s space of tempered distributions)

r0 = �ϕ0, s� is a conventional random variable with characteristic function

p̂r0(ω) =
�
R pr0(r)e

−jωrdr = F{pr0}(ω) = E{e−j�s,ωϕ0�}.

Idea: Make ϕ0 generic and use it as a space/frequency domain index variable...

Characteristic form

Zs(ϕ) = E{e−j�s,ϕ�} =
�

R
e−jr(ϕ)pr(ϕ)(r)dr with r(ϕ) = �ϕ, s�

Infinite-dimensional generalization of the characteristic function (since ϕ is generic)

Uniquely defines the process while condensing all the statistical information

Example:

Zs

�
ω1δ(·− x1) + ω2δ(·− x2)

�
= E{ej(ω1s1+ω2s2)} = F{p(s1, s2)}(ω1, ω2)

with s1 = s(x1) and s2 = s(x2)

Complete functional characterization

20

Abstract formulation

Theory of measures on topological vector spaces

Generalized stochastic process defined by a probability measure µ(s) on S �

Zs(ϕ) =

�

S�
e−j�s,ϕ�dµ(s)

(Minlos, 1963)

Properties of the characteristic form

The characteristic form Zs(ϕ) of a generalized stochastic process over S � is a continuous,
positive-define functional on S such that Zs(0) = 1.

Bochner-Minlos theorem

Let Z(ϕ) be a continuous, positive-definite functional on S such that Z(0) = 1. Then Z

uniquely defines a generalized stochastic process whose characteristic form is Z(ϕ).

Moreover, one has the guarantee that all the finite dimensional probabilities densities that
can be derived from Z(ϕ) by setting ϕ = ω1ϕ1 · · ·+ ωNϕN are mutually compatible.
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Characteristic forms of white noises

Correlation form

E{�w,ϕ1� · �w,ϕ2�} = σ2
0 �ϕ1,ϕ2� ⇒ Rw(x) = σ2

0 δ(x)

White Gaussian noise

Zw(ϕ) = exp

�
−1

2
�ϕ�2L2

�
⇒ p̂r(ω) = e−

1
2ω

2σ2
with σ2 = �ϕ�2L2

White noise process: w

Scalar observation (random variable): r = r(ϕ) = �w,ϕ�

Characteristic function of r: p̂r(ω) = E{e−jω�w,ϕ�} = Zw(ωϕ)

Poisson noise

Amplitude distribution pa(a), Poisson rate λ

Zw(ϕ) = exp

�
λ

�

Rd

�

R
(ejaϕ(x) − 1)pa(a)da dx

�

Amplitude a with PDF pa(a)

Distributional solution of operator equation

22

s = L−1w ⇔ ∀ϕ ∈ S, �ϕ, s� = �ϕ,L−1w� = �L−1∗ϕ, w�

Ideally: L−1∗ϕ ∈ S

or at least �L−1∗ϕ�Lp < +∞ (continuity)

Technical aspect: functional analysis

Find an acceptable inverse of L such that the adjoint operator L−1∗

is well-defined over Schwartz’s class of test functions

Example: Lp-stable version of anti-derivative

D−1∗ϕ(x) F←→ ϕ̂(ω)− ϕ̂(0)
−jω
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Characteristic forms of generalized processes
s = L−1w ⇔ ∀ϕ ∈ S, �ϕ, s� = �ϕ,L−1w� = �L−1∗ϕ, w�

Generalized Gaussian process

Whitening operator L

Zs(ϕ) = Zw(L
−1∗ϕ) = exp

�
−1

2
�L−1∗ϕ�2L2

�
= exp

�
−1

2

�

Rd

|ϕ̂(ω)|2 1

|L̂(ω)|2
dω

(2π)d

�

Classical spectral power density

(U. & Tafti, IEEE-SP, in press)
Correlation form

E{�s, ϕ1� · �s, ϕ2�} = σ2
0 �L−1L−1∗ϕ1, ϕ2� ⇒ Rs(x) = ρL(x) ∗ ρL(−x)

Generalized Poisson process (sparse)

Amplitude PDF pa(a), Poisson rate λ, whitening operator L

Zs(ϕ) = Zw(L
−1∗ϕ) = exp

�
λ

�

Rd

�

R
(ejaL

−1∗ϕ(x) − 1) pa(a)da dx

�

Concrete example: (f)Brownian motion
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Ds = w

s = D−1
0 w ⇔ ∀ϕ ∈ S, �ϕ, s� = �D−1∗

0 ϕ, w�

(by Parseval)

L2-stable anti-derivative: D−1∗
0 ϕ(x) =

�

R

ϕ̂(ω)− ϕ̂(0)

−jω
ejωx dω

2π

(Blu-U., IEEE-SP 2007)

Dγs = w

Stabilization ⇔ non-stationary behavior

Characteristic form of fractional Brownian motion

Zs(ϕ) = exp

�
−1

2

�

R

����
ϕ̂(ω)− ϕ̂(0)

|ω|γ

����
2 dω

2π

�

Characteristic form of Wiener process

Zs(ϕ) = exp

�
−1

2
�D−1∗

0 ϕ�2L2

�

= exp

�
−1

2

�

R

����
ϕ̂(ω)− ϕ̂(0)

jω

����
2 dω

2π

�
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IMPOSING SCALE INVARIANCE
! Scale-invariant operators
! Inverse operators (fractional integrators)
! Fractal random processes

(Gaussian vs. Sparse)
! Wavelet analysis of fractal/sparse processes
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Scale-invariant operators
Definition: An operator L is scale-invariant iff it commutes with
dilation: i.e., ∀s(x),L{s(·)}(x/a) = Ca L{s(·/a)}(x).

(Unser & Blu, IEEE-SP, 2007)

Theorem
The complete family of real scale-invariant 1D convolution operators
is given by the fractional derivatives ∂γ

τ , whose frequency response is

L̂(ω) = (−jω)
γ
2−τ (jω)

γ
2 +τ

γ ∈ R+: order of the derivative (i.e., |L̂(ω)| = |ω|γ )

τ ∈ R: phase (or asymmetry)

28

Scale- and rotation-invariant operators

(Duchon, 1979)Invariant Green functions (a.k.a. RBF)

ρ(x) =

�
�x�γ−d log �x�, if γ − d is even
�x�γ−d, otherwise

Invariance theorem
The complete family of real, scale- and rotation-invariant
convolution operators is given by the fractional Laplacians

(−∆)
γ
2

F←→ �ω�γ

Definition: An operator L is scale- and rotation-invariant iff.

∀s(x), L{s(·)}(Rθx/a) = Ca · L{s(Rθ · /a)}(x)
where Rθ is an arbitrary d× d unitary matrix and Ca a constant



Inverse operators: fractional calculus
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(Sun-U., 2011)

(U.-Tafti, 2011)

L ρ = L−1δ L−1ϕ L−1∗ϕ

Dγ xγ−1
+

Γ(γ)

�

R

ejωx − 1

(jω)γ
ϕ̂(ω)

dω

2π

�

R
ejωx ϕ̂(ω)− ϕ̂(0)

(−jω)γ
dω

2π

∂γ
τ

|x|γ−1

Γ(γ)

�
Aγ,τ +Bγ,τ sign(x)

�
,

γ /∈ N

�

R

ejωx − 1

(−jω)
γ
2 −τ (jω)

γ
2 +τ

ϕ̂(ω)
dω

2π

�

R
ejωx ϕ̂(ω)− ϕ̂(0)

(jω)
γ
2 −τ (−jω)

γ
2 +τ

dω

2π

(−∆)
γ
2 Cγ�x�γ−d, γ − d /∈ 2N

�

Rd

ej�x,ω� − 1

�ω�γ ϕ̂(ω)
dω

(2π)d

�

Rd

ej�x,ω� ϕ̂(ω)− ϕ̂(0)

�ω�γ
dω

(2π)d

0 < γ < 1 + d/2

Theorem (Generalized Riesz potentials)

Unique left-inverse of L∗ = (−∆)
γ
2 that is Lp-stable and scale-invariant:

Iγpϕ(x) =

�

Rd

ej�x,ω� ϕ̂(ω)−
��γ−d+ d

p
�

|k|=0
ϕ̂(k)(0)ωk

k!

�ω�γ
dω
(2π)d = L−1∗ϕ(x)

∀ϕ ∈ S(Rd), �Iγpϕ�Lp(Rd) < C · �ϕ�Lp(Rd)

for γ ∈ R+\Z+ and 1 ≤ p ≤ +∞.

Self-similar processes (TS-invariant)
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fBm; H = 0.50

fBm; H = 0.75

fBm; H = 1.25

fBm; H = 1.50

Poisson; H = 0.50

Poisson; H = 0.75

Poisson; H = 1.25

Poisson; H = 1.50

H
=.5

H
=.75

H
=1.25

H
=1.5

L F←→ (jω)H+ 1
2 ⇒ L−1: fractional integrator

Sparse (generalized Poisson)Gaussian
Fractional Brownian motion (Mandelbrot, 1968)



Scale- and rotation-invariant processes
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H=.5 H=.75 H=1.25 H=1.75

Stochastic partial differential equation : (−∆)
H+1

2 s(x) = w(x)

Gaussian

Sparse (generalized Poisson)

Powers of ten: from astronomy to biology

32



2D generalization: the Mondrian process
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λ = 30

L = DxDy
F←→ (jωx)(jωy)

and Wavelets ...

34



35

Wavelet analysis of self-similar processes
White noise

Laplacian-like wavelet: ψ(x) = (−∆)ϕ(x) = (−∆)
γ
2 (−∆)

2−γ
2 ϕ(x)� �� �

ψ�(x)

Generalized stochastic process

Approximate white noises

(−∆)
γ
2

Multi-scale 
wavelet 
analysis

(Gaussian or impulsive)

1. Will approximately decorrelate fractal-like processes (fBm)
(Quality of whitening depends on spectral characteristics of ψ�)

2. Will yield sparse wavelet decomposition of generalized Poisson processes
(Extent of sparsity depends on decay property of ψ�)

Which signals are wavelet-sparse?

36

L−1{·}

FRI or Poisson
process

multiscale “whitening”spectral shaping

stochastic
spline

sparse wavelet
 transform

Operator-like
wavelet

 transform

■ Generalized argument

f(x)

ψ̃i,k(x) = 2−i/2L∗φi(x− 2ik)

wi[k] = �f, ψ̃i,k�

Wavelet footprints:

localized, lowpass kernel

Conventional wavelets are optimal for piecewise-smooth signals 
(i.e., nonuniform splines) or 1/!-like processes

�

n

anδ(x− xn)

∝
�

n

anφi(xn − 2ik)
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Finale
Finale: Using B-splines to  

conquer fractals
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Construction of piecewise-constant B-spline

■ Spline-defining operators

■ Cardinal D-spline

■ B-spline function

Continuous-domain derivative: D =
d
dx

←→ jω

Discrete derivative: ∆+{·} ←→ 1− e−jω

s(x) =
�

k∈Z
s[k]β0

+(x− k) D{s}(x) =
�

k∈Z

∆+s(k)
����
a[k] δ(x− k)

β0
+(x) = ∆+D−1{δ}(x) ←→ 1− e−jω

jω
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Generalization: fractional B-splines

Finite difference:

  Fractional finite differences:

Liouvilleʼs fractional derivative:

Derivative operator: D = ∂1
1
2

F←→ jω

Dγ = ∂γ
γ/2

F←→ (jω)γ

Spline degree: α = γ − 1

Continuous-domain operator: L̂(ω)

(1− e−jω)α+1

(jω)α+1

F−1

−→ βα
+(x)

∆γ
+

F←→ (1− e−jω)γ

∆+
F←→ 1− e−jω

Discrete version of operator

Causal fractional B-splines

40

Causal fractional B-splines

(Unser & Blu, SIAM Rev, 2000)

β0
+(x) = ∆+x0

+
F←→ 1− e−jω

jω

...
...

L = Dα+1 F←→ (jω)α+1 (Liouville’s fractional derivative)

βα
+(x) =

∆α+1
+ xα

+

Γ(α + 1)
F←→

�
1− e−jω

jω

�α+1

One-sided power function: xα
+ =

�
xα, x ≥ 0
0, x < 0

βα
+(x) = ∆α+1D−(α+1){δ}(x)



Sparsifying fractal processes
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�∆γ
+s,ϕ� = �βγ−1

+ ∗ w,ϕ�

= �w,βγ−1
− ∗ ϕ� with βγ−1

− (x) = βγ−1
+ (−x)

Dγs = w

s = D−γw

∆γ
+s = ∆γ

+D
−γw

= βγ−1
+ ∗ w

Generalized increment process

Fractional differential equation

=⇒ Z∆γ
+s(ϕ) = Zw(β

γ
− ∗ ϕ)

Statistical implications

∆γ
+s(x) is stationary with correlation function (βγ−1

+ ∗ βγ−1
− )(x)

∆γ
+s(x0) is sparse (mass distribution for 0) and nearly decorrelated

Integer case γ = n: ∆n
+s(x1) and ∆n

+s(x2) are independent if |x1 − x2| ≥ n

Back to the Compound Poisson process

42

Ds = w ⇒ ∆+s(x) = β0
− ∗ w

Laplace density

Is there a MAP estimator that is equivalent to TV ? Yes

Choice of Lévy density: λ · pa(a) =
e−|a|

|a|
Relevant Fourier identity:

exp

�

R
(ejaω − 1)

e−|a|

|a| da =
1

1 + ω2
= F

�
1

2
e−|r|

�
(ω)

Prior likelihood term: R(s) =
�

k

− log(p
�
∆+s(k)

�
∝

�

k

|s(k)− s(k − 1)|

Statistical characterization of sampled increment process

The samples values {r(k) = ∆+s(k)} are independent, identically distributed

Explicit form of PDF: p(r) = F−1

�
exp

�
λ

�

R
(ejaω − 1)pa(a)da

��
(r)
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CONCLUSION
! Unifying operator-based paradigm

! Backward compatibility with classical Gaussian theory
! Operator identification based on invariance principles (TSR)
! Characterization of stochastic processes (fractals)

Gaussian vs. sparse (generalized Poisson)
! Focus on non-stable PDEs ⇒ non-stationary, self-similar processes

! Wavelet analysis vs. regularization
! Central role of B-spline
! Sparsification via “operator-like” behavior

! Multi-resolution: wavelets
! Discrete-domain: finite-differences (generalized increments)

! Theoretical framework for sparse signal processing
! New statistically-founded sparsity priors
! Derivation of optimal estimators (MAP, MMSE)

Art of tempering Fourier-domain singularities ...

44

Correct noise integrator: adjoint of Lp-stable inverse

D−1w(x) =

�

R
ŵ(ω)

ejωt−1

jω

dω

2π

B-spline construction: β0
−(x) =

�

R

ejω − 1

jω
ejωx

dω

2π

Characteristic function(al) domain

exp

�

R
(ejaω−1)

e−|a|

|a| da =
1

1 + ω2
= F

�
1

2
e−|r|

�
(ω)

e
jz−1 = jz +O(z2)

Epilogue: it is the unstable character of the underlying PDE that makes the 
processes interesting (e.g., piecewise smooth, long range-dependencies)
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