A Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Stochastic models for sparse
m and piecewise-smooth signals

Michael Unser
Biomedical Imaging Group
EPFL, Lausanne, Switzerland

Sparse representations and efficient sensing of data, Dagstuhl, Feb, 2011

GOD BLESS
AMERICA

Motivation: Beyond Wiener filtering




Simple denoising experiment

original
+ noisy samples

m Measurement model

glk] = s(k) + n[k]

Wiener process (Gaussian)
= s(x): Continuously-defined process

= n[k]: Discrete white Gaussian noise

original
+ noisy samples
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Compound Poisson process (Sparse)
m Controlled experiment

= Matched 2nd-order statistics (correlation function)

= Generalized spectrum ~ L

Three dominant paradigms
m Wiener solution (best linear estimator) = Smoothing spline
Soin() = angmin{ 3 o1k = (91 + | ipsta)as)
= axgmin {lg = sl13, + uDsl}, x|

Theoretical result: MMSE solution = piecewise-linear smoothing spline (Blu-U., 2005)

m Wavelet solution = sparse signal recovery

Suave(¥) = argmin {Ilg —sllg, + > “z’“wi“?p}

K3

with — w;[k] = (5,22 (z/2" — k)>L2(]R)

Theoretical result: Simple wavelet shrinkage algorithm (Chambolle et al., 2005)




Three dominant paradigms (cont’d)

m Total variation = non-quadratic regularization

Stv(x) = argming(, {|lg — sl|7, + nTV(s)}

Theoretical result [Mammen, Annals of Statistics, 1997]
Piecewise-constant spline with adaptive knots is a global minimizer
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Commonalities

m Central role of derivative operator

= Quadratic spline energy: ||Ds||%2(R)
= TV as an Ly norm: seW, << TV(s)=|Ds|lr,®

= Wavelet as a smoothed derivative:  Yyaq, () = Do(x)

=L*
e "

= ([,¥(- —x0)) = L(f * ¢%)(w0) = —%(f* ) (o)

OUTLINE

= Motivation: beyond Wiener filtering ¢/

= The spline connection

L-splines and signals with finite rate of innovation
Green functions as elementary building blocks

= Sparse stochastic processes

Innovation model
Gelfand’s theory of generalized stochastic processes
Distributional solution of operator equations

= |mposing (TSR) invariance
Scale-invariant operators and their inverses
Fractal random processes (Gaussian vs. sparse)
Wavelet analysis of sparse processes

= B-spline conquest of fractal/sparse processes

Fractional B-splines
“Stationarization” and supression of long-range dependencies
On the statistical optimality of TV




Splines: signals with finite rate of innovation

L{-}: differential operator
d(x): Dirac distribution

Definition
The function s(z ) is a (non-uniform) L-spline with knots {z,, } iff.

L{S} Z a0 93 - xn

Spline theory: (Schultz-Varga, 1967) L=—

Tn Tn+1

m FIR signal processing: Innovation variables (2N) (Vetterli et al., 2002)

= Location of singularities (knots) : {x;, }n=1

.....

= Strength of singularities (linear weights): {an}n=1,...,N
10




Splines and Green’s functions

Definition
p(x) is a Green function of the shift-invariant operator L iff L{p} = ¢
p(x) 6(x) o(x) - p(x)

(+ null-space component?)

m General (non-uniform) L-spline: L{s}(x) = Z ard(x — )
ke
Formal integration

Zaké(a:—a:k) —_— L—l{.} __ s(a:):pL(a:)—l—Zakp(w—wk)

keZ kez
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Example of spline synthesis

L=<4 =D = L ! integrator

5(x) 1 o)
' T L_l{.} " A

>
! —

Green function = Impulse response

Translation invariance

‘ d(x — xp) p(z — o)
— L {} — :
I T I —>
S alkd(e — k) Linearity (@)=Y alklpl@— k)
' = . L_l{.} . kez
S [ = vy
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Sparse stochastic™
processes N

Brownian motion vs. spline synthesis
L=< = L~ integrator

white noise

or — L_1{°} —

I,

Brownian motion

™ o
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Compound Poisson process (sparse)

L=4 = L' integrator

r(@) = apd(w—z) — L7} — s(@)
k

Random jumps with rate A (Poisson point process)

Jump size distribution: a « p(a)

Generalized stochastic processes

Splines are in direct correspondence with stochastic processes
(stationary or fractals) that are solution of the same partial differential
equation, but with a random driving term.

Defining operator equation: L{s(:)}(x) = r(x)
m Specific driving terms
= 7(x) = d(x) = s(x) = L71{6}(=x) : Green function
r(x) = Z alk]o(x — k) = s(x) : Cardinal L-spline

kezd
= 7(x): white noise = s(x): generalized stochastic process

A non-empty null space of L., boundary conditions

References: stationary proc. (U.-Blu, IEEE-SP 2006), fractals (Blu-U., IEEE-SP 2007),
sparse processes (U.-Tafti, IEEE-SP in press) 16




Shaping filter

— L7} ——

White noise Generalized
(Gaussian or Poisson) . N stochastic process
(appropriate boundary conditions)
w(x) = — s(x)
|t I t —— L{} — W -

m What is white noise ?
= The problem: Continuous-domain white noise does not have a pointwise interpretation.

= Standard stochastic calculus. Statisticians circumvent the difficulty by working with ran-
dom measures (AW (x) = w(x)dz) and stochastic integrals; i.e, s(x) = [, p(x, z")dW (z')
where p(x,z’) is a suitable kernel.

= Innovation model. The white noise interpretation is more appealing for engineers (cf.
Papoulis), but is requires a proper distributional formulation and operator calculus.

Gelfand’s distributional framework

m Formal specification of Brownian motion (Wiener process)

%S(t):w(t) = s(t):W(t):/Otw(T)dT 277

m Distributional interpretation
Ls=w & Vpes, (pLs)=(p,w)

s=L7lw & VpeS, (ps)=(pL7 w)

m Concept

= 7(¢) = (p, s) is a conventional scalar random variable whose probablity density
function (PDF) p,.(,,)(r) can be specified

= Getting back point values:  s(tg) = (0(- — tp), s)

18




Characteristic form
m sis ageneralized random process over S’ (Schwartz’s space of tempered distributions)

m 79 = {po, ) is a conventional random variable with characteristic function
ﬁ”‘o (w) — fR pro (T)G_Jwrd’r — F{p?”o}(w) = E{e_]<’57w300>}.

m Idea: Make ¢ generic and use it as a space/frequency domain index variable...

] Characteristic form (Kolmogorov 1935; Gelfand, 1955)
Zs(p) = E{e9*#)} = / e "), (r)dr  with  r(p) = (g, s)
R

= Infinite-dimensional generalization of the characteristic function (since ¢ is generic)
= Uniquely defines the process while condensing all the statistical information
= Example:

Zs(wi10(- — 1) + wod (- — x2)) = E{eI@is1Hw252)} = Flp(sy, 59) Hwr,ws)

with s1 = s(z1) and sg = s(z2) 19

Complete functional characterization

m Properties of the characteristic form

= The characteristic form Z,(y) of a generalized stochastic process over S’ is a continuous,
positive-define functional on S such that Z;(0) = 1.

m Bochner-Minlos theorem (Minlos, 1963)

= Let Z(p) be a continuous, positive-definite functional on S such that Z(0) = 1. Then Z
uniquely defines a generalized stochastic process whose characteristic form is Z ().

Moreover, one has the guarantee that all the finite dimensional probabilities densities that
can be derived from Z () by setting ¢ = w11 - - - + wn N are mutually compatible.

m Abstract formulation
= Theory of measures on topological vector spaces

= Generalized stochastic process defined by a probability measure (s) on S’

2o = [ e auts)
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Characteristic forms of white noises

= White noise process: w
= Scalar observation (random variable): r = r(p) = (w, )

= Characteristic function of 7: p,.(w) = E{e 7w} = Z, (wy)
m White Gaussian noise

1 . 1,22 .
Zo@) =exo (3lel) = i) =B win o7 =l

m Poisson noise

Amplitude distribution p, (a), Poisson rate A

w () —exp( /Rd/ (e7*?®) — 1)p,(a)da daz) I I

m Correlation form

Amplitude a with PDF p,(a)
‘ t

I

Ef(w, 1) - (w,02)} =05 (¢1,02) = Ru(x)=0f ()

21

Distributional solution of operator equation
s=Lw & VoeS8, (ps) = (pLw)= (L1 w)

m Technical aspect: functional analysis

Find an acceptable inverse of L such that the adjoint operator L~ 1*
is well-defined over Schwartz’s class of test functions

Ideally: L~ peS

or at least L™ *¢||, < 400 (continuity)

Example: L, -stable version of anti-derivative

. @(w) — (0)
—jw

D~ p(x)

22




Characteristic forms of generalized processes
s=L7'w & VYpe8, (ps) = (p, L7 w)=(L""p,w)

m Generalized Gaussian process Classical spectral power density

Whitening operator L

1 1 1 dw
Zs(p) = Zy(L™ ) = —IL™™llZ, )] = =5 Pw)l” =
() = Zu(L~ %) exp( 5| 90||L2) eXp< 3 /. |6(w)] L) (QW)d>

m Generalized Poisson process (sparse)

Amplitude PDF p,(a), Poisson rate \, whitening operator L

2.9) = 2oL g) =exp (A [ [ (@874 1), a)da de

(U. & Tafti, IEEE-SP, in press)
m Correlation form

E{(s, 1) - (s,902)} = 08 (LT'L™01,02) = Ri(x) = pL(@) * pr(—2)

23

Concrete example: (f)Brownian motion
Ds =w D7s =w

s:Dglw &S Ve es, <g0,s>:<D0_1*cp,w>

? —¢(0) . .d
Lo-stable anti-derivative: Dy '*¢(x) :/Mewmi
R —Jjw 27

m Characteristic form of Wiener process

1, Stabilization < non-stationary behavior
29) = o (—5ID5 2, v

1
= €Xp —5 .

m Characteristic form of fractional Brownian motion

Zs(p) = exp <_%/R Mrdw)

|w| 2

p(w) — #(0)

Jw

2
dw
Z) (by Parseval)

(Blu-U., IEEE-SP 2007)
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IMPOSING SCALE INVARIANCE

= Scale-invariant operators

= |Inverse operators (fractional integrators)

= Fractal random processes
(Gaussian vs. Sparse)

= Wavelet analysis of fractal/sparse processes

26




Scale-invariant operators

Definition: An operator L is scale-invariant iff it commutes with
dilation: i.e., Vs(x), L{s(-) }(x/a) = C, L{s(-/a)}(x).

Theorem

The complete family of real scale-invariant 1D convolution operators
is given by the fractional derivatives 0, whose frequency response is

L(w) = (=jw)? =7 (jw)F*7

~ € R*: order of the derivative (i.e., | L(w)| = |w|)

T € R: phase (or asymmetry)

(Unser & Blu, IEEE-SP, 2007)
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Scale- and rotation-invariant operators

Definition: An operator L is scale- and rotation-invariant iff.
Vs(x), L{s(-)}(Rex/a) = Co - L{s(Ry - /a)}(x)

where Ry is an arbitrary d x d unitary matrix and C, a constant
Invariance theorem

The complete family of real, scale- and rotation-invariant
convolution operators is given by the fractional Laplacians

ol F
(—A)z — ]

Invariant Green functions (a.k.a. RBF) (Duchon, 1979)

= | el oglall, ity dis over
€Tr) —
g ||, otherwise
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Inverse operators: fractional calculus

L p=L"15 Ly L~ 0<y<1+44d/2
21t edwr — 1 dw o P(W) — §(0) dw

™ + 5 3¢ juwe PW) = 9(0) dw
b () |G IR ==
o i, (Ay - + B, ssign(z)) , / el —1 A(w)dﬂ / piwe pw) —¢(0)  dw

i () v¢N R (fjw)%*T(jw)%JrTW 2 Jw (jw) 2T (—jw)TTT 27

. ew) 1 dw o) (@) — $(0) dw

—-A)z C.llz||"~4, v —d ¢ 2N / ¢ H(w / el @)

=4) Aty -d¢ o Tl P [l @)

(U.-Tafti, 2011)

Theorem (Generalized Riesz potentials)

Unique left-inverse of L* = (—A)? that is L,-stable and scale-invariant:

d

R Ly—d+2) Wk
Ig(p(il:) = / ej<fc,w> w(w)izlk\ji)”i w(k)(o)? (%(7‘:)‘1 — L_l*go(:c)
Rd
Vo € S(RY), 1 ellz, @y < C-llell,®e

fory e RM\Z" and 1 < p < +oc.

(Sun-U., 2011)
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Self-similar processes (TS-invariant)

L < (jw)HJF% = L~1: fractional integrator

Fractional Brownian motion (Mandelbrot, 1968)

G/.'=H

G¢'I=H

H

S

Gaussian

30




Scale- and rotation-invariant processes

Stochastic partial differential equation : (—A)%s(w) = w(x)

i | 1
H=1.25 H=1.75
Sparse (generalized Poisson)

" )
.

Gaussian

31

Powers of ten: from astronomy to biology

o © ©1986 J'érry Lodriguss and John Martinez
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2D generalization: the Mondrian process
L=D,D, <= (jwa)(jw,)

33




Wavelet analysis of self-similar processes

Generalized stochastic process

White noise

(Gaussian or impulsive)

R

(=4)

Multi-scale
wavelet

: Approximate white noises
analysis

Laplacian-like wavelet: 1(z) = (—A)p(x) = (—A)F (—A) 7 p()

1. Will approximately decorrelate fractal-like processes (fBm)
(Quality of whitening depends on spectral characteristics of ')

2. Will yield sparse wavelet decomposition of generalized Poisson processes
(Extent of sparsity depends on decay property of 1)’)

35

Which signals are wavelet-sparse?

Conventional wavelets are optimal for piecewise-smooth signals
(i.e., nonuniform splines) or 1/w-like processes

= Generalized argument (@) = 272 gy (w — 2°k)

FRI or Poisson stochastic sparse wavelet
process spline transform

5(x -z, T Operator-like w;k] = (f, 1@;&
;a . x)—> L_l{-} — /() —] wavelet . i
transform

spectral shaping

Py gl
}

multiscale “whitening”

' Wavelet footprints: o< Zanqﬁi(xn —2'k)

/

localized, lowpass kernel

36




Finale: Using B-splines to
conquer fractals

Construction of piecewise-constant B-spline

= Spline-defining operators

d
Continuous-domain derivative: D:d— — Jw

X
Discrete derivative: A {-} «— 1—¢e7¥

= Cardinal D-spline

Ay s(k)
 5(2) = Y sz~ k) D{s}(x) = 3 alR sz~ k)
keZ kez
— I S S
I
= B-spline function
4 1—e ¥

B1(z) = A Do} (x)

Jw

>
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Generalization: fractional B-splines

Derivative operator: D= 6% < jw

Finite difference: JANPIC G s
Liouville’s fractional derivative: D7 = 83 /2 N (jw)”
Fractional finite differences: A Lo (1 —eivy

m Causal fractional B-splines

Discrete version of operator .
Spline degree: a« = v — 1

_ y,—Jjw\a+1 —
(1—e77%) F!

T (x
(jw)ot? Fle)
Continuous-domain operator: L(w) 5
Causal fractional B-splines
L =Dty (jw)*+! (Liouville’s fractional derivative)

F 1 —e I
Jjw

Aa—i—l o F 1—€_jw a+1
()

%, x>0

0, zz<0

One-sided power function: = = {

(Unser & Blu, SIAM Rev, 2000)

B3 (x) = A*FID™ T {5} (z)
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Sparsifying fractal processes

m Fractional differential equation D’s = w

s = D77w
m Generalized increment process

Als = AID w
= 51_1*10
(Als,p) = (B1 " xw,p)

= <w,51_1*gp> with Bz_l(:c): :,Y__l(—.%‘)

= Za7s(p) = Zu(BL x p)
m Statistical implications
= A7 s(x) is stationary with correlation function (67" % 877 1)(x)
= A7 s(xo) is sparse (mass distribution for 0) and nearly decorrelated

= Integercase v = n: A’ s(x1) and A’} s(x2) are independent if [z, — x2| > n .

Back to the Compound Poisson process

Ds=w = Ais(z)=p xw

m Statistical characterization of sampled increment process

= The samples values {r(k) = As(k)} are independent, identically distributed

= Explicit form of PDF: p(r) = F ! {eXp (A /R (e — 1)pa(a)da)} (r)

m Is there a MAP estimator that is equivalentto TV ? Yes

= Choice of Lévy density: A pala) = W Laplace density
= Relevant Fourier identity: /
. —lal 1 1
e
Jaw _ 1 da = = Fl = =
exp/R(e ) al a T {26 }(w)

= Prior likelihood term:  R(s) = —log(p(Ays(k)) o< Y _ |s(k) — s(k —1)]

k k 42




CONCLUSION

= Unifying operator-based paradigm
Backward compatibility with classical Gaussian theory
Operator identification based on invariance principles (TSR)

Characterization of stochastic processes (fractals)
VS.

Focus on non-stable PDEs = non-stationary, self-similar processes

= Wavelet analysis vs. regularization
Central role of B-spline
Sparsification via “operator-like” behavior
Multi-resolution: wavelets
Discrete-domain: finite-differences (generalized increments)

= Theoretical framework for sparse signal processing
New statistically-founded sparsity priors
Derivation of optimal estimators (MAP, MMSE)

43

Art of tempering Fourier-domain singularities ...

eI*—1 =jz+ O(z?)

w1 . .d
m B-spline construction: 3° (x) :/6 —el¥" -
R Jw 27

m Correct noise integrator: adjoint of L ,-stable inverse

edt 1 dw

D~ tw(x) :/Rw(w) :

Jw 2w

m Characteristic function(al) domain

. e_|a| 1 1
jaw 1 - - perd
exp/R(e ) al da o }"{26 } (w)

Epilogue: it is the unstable character of the underlying PDE that makes the
processes interesting (e.g., piecewise smooth, long range-dependencies)

44




References

= M. Unser, T. Blu, “Fractional Splines and Wavelets,” SIAM Review, vol. 42, no. 1, pp. 43-67, March
2000.

= M. Unser and T. Blu, “Generalized Smoothing Splines and the Optimal Discretization of the Wiener
Filter,” IEEE Transactions on Signal Processing, vol. 53, no. 6, pp. 2146—2159, June 2005.

= |. Khalidov and M. Unser, “From Differential Equations to the Construction of New Wavelet-Like
Bases,” IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1256—1267, April 2006.

= M. Unser and T. Blu, “Self-Similarity: Part |—Splines and Operators,” IEEE Transactions on Signal
Processing, vol. 55, no. 4, pp. 1352—-1363, April 2007.

s T. Blu, M. Unser, “Self-Similarity: Part II—Optimal Estimation of Fractal Processes,” IEEE Trans.
Signal Processing, vol. 55, no. 4, pp. 1364-1378, April 2007.

= P.D. Tafti, D. Van De Ville, M. Unser, “Invariances, Laplacian-Like Wavelet Bases, and the Whitening
of Fractal Processes,” IEEE Trans. Image Processing, vol. 18, no. 4, pp. 689-702, April 2009.

= M. Unser, P.D. Tafti, "Stochastic models for sparse and piecewise-smooth signals”, IEEE Trans.
Signal Processing, in press.

45

Acknowledgments

Many thanks to

= Pouya Tafti

= Prof. Thierry Blu

= Prof. Dimitri Van De Ville
Dr. lldar Khalidov
= Arash Amini

Annette Unser, Artist

= Preprints and demos: http:/bigwww.epfl.ch/




