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20th century statistical signal processing

Hypothesis: Signal = stationary Gaussian process

Karhunen-Loéve transform (KLT) is optimal for compression

Log (R(D)) in lognats

DCT asymptotically equivalent to KLT
(Ahmed-Rao, 1975; U., 1984)
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Fig. 5. Rate versus dis

tortion for various transforms for a second-order Gauss—
Markov process (p = 0.95, N = 256).

(Pearl et al., IEEE Trans. Com 1972)




20th century statistical signal processing (cont’d)
Hypothesis: Signal = Gaussian process
y = Hs +n Noise: i.i.d. Gaussian with variance o2
Signal covariance: C, = E{s - s’}
Wiener filter is optimal for restoration/denoising

SLMMSE = CSHT (HCSHT + 021)_1 Yy = FWiener y

Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP
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Data Log likelihood Gaussian prior likelihood

& quadratic regularization (Tikhonov)

Then came wavelets ... and sparsity
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Fact 1: Wavelets can outperform Wiener filter

MAGNETIC RESONANCE IN MEDICINE 21, 288-295 (1991) ﬁ-
COMMUNICATIONS

Filtering Noise from Images with Wavelet Transforms

J. B. WEAVER,* YANSUN XU,* D. M. HEALY, JR.,} AND L. D. CROMWELL*

* Department of Radiology, Dartmouth~Hitchcock Medical Center; and t Department of Mathematics,
Dartmouth College, Hanover, New Hampshire 03755

Received April 12, 1991 /
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A new method of filtering MR images is presented that uses wavelet transforms instead /

of Fourier transforms. The new filtering method does not reduce the sharpness of edges.
However, the new method does eliminate any small structures that are similar in size to
the noise eliminated. There are many possible extensions of the filter. @ 1991 Academic
Press, Inc,

Fact 2: Wavelet coding can outperform jpeg
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Wavelet transform

{ Inverse wavelet transform
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Discarding “small coefficients”

(Shapiro, IEEE-IP 1993) o8
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Fact 3: /1 schemes can outperform /> optimization

* = argmin ||Y—HS||§ +  AR(s)
——— N——

data consistency  regularization

m Wavelet-domain regularization

Wavelet expansion: s = Wv  (typically, sparse)
Wavelet-domain sparsity-constraint:  R(s) = ||v]|¢, with v = s

Iterated shrinkage-thresholding algorithm (ISTA, FISTA)
(Nowak et al., Daubechies et al. 2004)

m /; regularization (Total variation)
R(s) = ||Ls||¢, with L: gradient (Rudin-Osher, 1992)

Iterative reweighted least squares (IRLS) or FISTA

Quest for a unifying framework: the precursor

680 PROCEEDINGS OF THE IEEE, VOL. 58, NO. 5. MAY 1970

The Innovations Approach to Detection
and Estimation Theory

THOMAS KAILATH, FELLOW, IEEE

m Gaussian stationary processes as a filtered white noise

s(t) = (hxw)(?) Dy (w) = [H(w)|* Pu(w) o [H(w)[?

Frequency response (shaping filter): H(w) = / h(t)e 7«tdt
R

m Whitening operator
1

Innovation: Ls(t) = w(t) Lw) = H(w)

w is Gaussian stationary and independent at every point




Continuous-domain innovation model

Shaping filter

— L_l{.} —_—
Stochastic process

Generalized white noise . N
(appropriate boundary conditions)

w(x) ¢ — s(z),z € R’

L L{} —

Our work: the non-gaussian part of this story

Main finding: it is necessarily sparse (infinitely divisible)

Why? ... as explained by our current research ...

(invoking powerful theorems in functional analysis:
Bochner-Minlos, Gelfand, Schoenberg & Lévy-Khinchine)

Innovation-based synthesis of splines

L=24 =D = L~ ! integrator

5(x) [p=L7"
— L} —
I ] Impulse response .
Translation invariance
d(xz — xo) p(x — o)
T - L_l{.} - A
I > | >
Linearity s(z) = Za[k]p(x — k)
Z alk]é(x — xi) 1 ke
kGZ — L_l{.} B
) £
t t s
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OUTLINE

= Sparse stochastic processes
Generalized innovation model
Gelfand’s theory of generalized stochastic processes
Statistical characterization of sparse stochastic processes
Lévy processes and their generalization
Fractal processes: Gaussian vs. sparse

= Applications
Modeling of signals (audio)
Algorithms for sparse signal recovery as MAP estimators
Optimal denoising (MMSE)

Sparse representations, optimal transforms
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Road map for theory of sparse processes

@ Specification of inverse operator

. ] ) @ Characterization of
Functional analysis solution of SDE ) )
generalized stochastic process

Very easy ! (after solving 1. & 2.)
L~ 1

g = L_lw _IT g
. . Mixing operator
White noise —
—_— > 0
w Multi-scale
wavelet
3 4 ‘ L — analysis

B Wil

@ Characterization of continuous-domain white noise o
@ Characterization of

Higher mathematics: generalized functions (Schwartz) transform-domain statistics

measures on topological vector spaces .
Easy when: v; = L*¢;

Gelfand’s theory of generalized stochastic processes

Infinite divisibility (Lévy-Khintchine formula)
13

Generalized innovation process
m Difficulty 1: w # w(x) is too rough to have a pointwise interpretation @

m Difficulty 2: w is an infinite-dimensional random entity;
its “pdf” can be formally specified by a measure &,,(F) where E C S'(R?)

m Axiomatic definition (Gelfand-Vilenkin 1964)

w is a generalized innovation process (or continuous-domain white noise) over S’(R?) if

1. Observability : X = (w, ) is a well-defined random variable for any test
function ¢ € S(R?).

2. Stationarity : X, = (w, o(- — x0)) is identically distributed for all xy € R®.

3. Independent atoms : X, = (w, ;) and Xo = (w, p-) are independent
whenever ¢, and > have non-intersecting support.

X1:<MW,—;-{\—>

m Characteristic functional (w — ¢)

Sl

Xo = { Wi, A ) Pulp) =E{e} = | &9 2, (ds)
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Defining Gaussian noise: discrete vs. continuous

Lévy exponent:  logpx (w) = f(w) = —Fw?

m Discrete white Gaussian noise pot loe 10T 1]

. I
® o 5 10 ® 5 . 20

X = (Xq,...,Xn) with X, i.i.d standardized Gaussian

Characteristic function: Py (w) = g(w) = exp (X0, f(wn)) = e zlI”

m Continuous-domain white Gaussian noise | /\

" m [ 20

Infinite-dimensional entity w with generic observations X,, = (w, ¢,,)

Characteristic functional: 2, () = G(g) = ¢ 2192 = exp (/ f(c,o(a:))dw)
R

Px, (@) = B{er o)} = B{e/m e} = P, (wp,) = o7 2 10y

15

Characterization of generalized innovation

Xo=(w,0) = (wowt,d \_-) 2 lim <w~m )

n—oo

= lim (i, ——) -+ (o ———r )

n— 00 - i
n

3=

Theorem

Let w be a generalized stochastic process such that Xiq = (w, rect) is well-defined.
Then, w is a generalized innovation (white noise) over S’'(R%) if and only if its char-
acteristic form is given by

P (p) = E{e!*9)} = exp </Rd f(@(w))dw>

where f(w) is a valid Lévy exponent (in fact, the Lévy exponent of Xiq).
Moreover, the random variables X, = (w, ¢) are all infinitely divisible with modi-
fied Lévy exponent

fol) = [ flop@)de

(Gelfand-Vilenkin 1964; Amini-U. under review)
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Examples of id noise distributions
pia(z) Observations: X, = (w, rect(- — n))

(a) Gaussian

(b) Laplace

(c) Compound Poisson

lasiedg

E

(d) Cauchy (stable)

Complete mathematical characterization: @(gp) = exp ( / f (go(m))da:)
R4

17

Steps 2 + 3: Characterization of sparse process

L—l N

—1 .
White noise s=L"w _,—\_‘

w —>—
—4

J_Ll—'A—‘—L‘—

m Abstract formulation of innovation model

s=Lw & VpeS, (ps)=(p,L7w)=(L""p w)
——"

= Pi(p) =E{e/¥)} = P, (L7¢) = exp </R f(L‘l*w(w))dw>

d

Sufficient condition for existence:
L~1* continuous operator: S(R?) — L, (R?)

(U.-Tafti-Sun, preprint ArXiv 2011)
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Example 1: Lévy processes
Ds =w (unstable SDE !)

s=Dy'w & VoeS, (ps)=(Dy"p w)

Dy lp(t) = / o(r)dr

White noise (innovation) Lévy process
0 Brownian motion 0 (Wiener 1 923)
Gaussian
Integrator ' ' ' ' ' '
Impulsive w(t) t S(t) Compound Poisson
—5 [ dr —— :
O 010 02 014 06 018 1 ‘,0
Sa$S (Cauchy) jw

(Paul Lévy circa 1930) o

Example 2: Self-similar processes

L < (jw)H*tz = L' fractional integrator
= e

Gaussian Sparse (generalized Poisson)

Fractional Brownian motion (Mandelbrot, 1968) (U.-Tafti, IEEE-SP 2010) 20




Scale- and rotation-invariant processes

Stochastic partial differential equation : (—A)%s(w) = w(x)

i

H=.75 H=1.25 H=1.75

F |

(U.-Tafti, IEEE-SP 2010) 21

Gaussian

Sparse (generalized Poisson)

A brief panorama of applications

What can we inv@ént for you?




A1. Signal modeling (Audio)

d” dn-t d
m Sparse, bandpass processes L= g Py Tt aol
poles = [—.05 +jn/2, —.05 — jn/2], zeros =[]
(a) Gaussian (b) Alpha stable a=1.2

m Mixed sparse processes: Spix = S1 + -+ Su

M
sm,x(sﬁ = H 323 (p) = exp (/ Z fm L_l*go(t dt)

e a b

Gaussian (Am) generalized Lévy (Am, SasS)

23

A2. Biomedical imaging: MAP reconstruction

m Innovation model of the signal Ly = @

s = L7'w

m Signal decoupling: discrete version of operator

Generalized B-spline
u(x) = Lgs(x) < wu=Ls (matrix notation) B = LyL-15

m Statistical characterization
- X = [u], identically distributed (approx. independent)
- Probability density function:  py (z) = F~H{ P (wpi)}(z)

- Potential function: ®x(z) = —logpx(x)

m Maximum a posteriori (MAP) estimator for AWN
* = argmin (% g — HS||§ +02y, @X([Ls]n))

(Bostan et al., IEEE-IP 2013)
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MAP estimator: special cases

s* = argmin <% g — HSH; + o2 Zn ‘I)X([Ls]n)>

= Gaussian: px (z) = ﬁ;mo@—w?/(?a%) = Dy
= Laplace: px (z) = %e—/\\xl = Dy
[72)
IS 1 1 \'"?
= Student: x) = =
§ o= gy () :

L L L L
=30 -20 -10 0 10 20 30

Student potentials: r» = 2, 4, 8, 32 (fixed variance)

(1) = 52522
() = Alz]

1 2
()= (r+ 5) log(1 + x°)

25

MRI: Shepp-Logan phantom

Fourier Sampling Pattern

Original SL Phantom
12 Angles

N\

Laplace prior (TV) Student prior (log)

L : gradient
Optimized parameters




MRI reconstruction

Real T2 Brain Image MR Angiography Image k-space sampling pattern

40 radial lines

L : gradient

Reconstruction results in dB Optlmlzed parameters

Gaussian Estimator | Laplace Estimator | Student’s Estimator
T2 brain Image 8.71 16.08 15.79
MR Angiography Image 6.31 14.48 14.97

27

2D deconvolution experiment

Astrocytes cells bovine pulmonary artery cells human embryonic stem cells

Disk shaped PSF (7x7)

L : gradient
Deconvolution results in dB Optimized parameters
Gaussian Estimator Laplace Estimator | Student’s Estimator
Astrocytes cells 12.18 10.48 10.52
Pulmonary cells 16.90 19.04 18.34
Stem cells 15.81 20.19 20.50

(Bostan et al., IEEE-IP 2013)




A3. Optimal denoising: MMSE formulation

m Measurementmodel: y =x+n

n: additive white Gaussian noise
X: sparse first-order process (e.g., Lévy flight)
u = Ls: discrete innovation (i.i.d. and infinite divisible)

pyix(wile)  Prix(yelze) py|x (yslzs)
. . 2 4 6
Optimal estimator: xymMmse = E{x|y}
1, (%) 1, ()
N N
1 1 3 l[:)— 5
p(X‘Y) == H pY|X (yn‘xn) H pU(xn — Tp-1 )
Z n=1 - pu(z1) pu(ze—z1)  pules—2)
Belief propagation algorithm
N A VMSE "Lévy process with Cauchy increments
=»—Log = MAP

— 3 —Tv
e}
T, LMMSE
o2
b4
n
<

1

‘ <‘

0 L i i i i i i | i i i i i i i i

107" 10° 10'

AWGN o2

(Kamilov et al., IEEE-SP 2013)

A4. Sparse representations, optimal transforms

m Innovation model (SDE) Ls = w

s = L tw
m Admissible basis function: ;5 = L*¢; ; with ¢; , € L,(R?)

m Signal expansion = equivalent white-noise analysis
Y = (g, 8) = (L* i, L7 w) = (¢, w)

—_—

— Py (W) = Py(woi k)

m Statistical implications

= Transform-domain pdfs are infinitely divisible

= Quality of decoupling depends upon support of wavelet/smoothing kernel ¢; ;.

30




Operator-like wavelets for sparse AR(1) processes

Innovation model: Ls=w < s=L"'w with L= (D-al)

Operator-like wavelet: 1, = L*¢; with  ¢;: smoothing kernel
(Khalidov-U., 2006)

Wavelet analysis: (s, 1;(- —to)) = (L™ w, L*¢; (- — to)) = (w, ¢;(- — to))

wHaar
o = L ¢ ap — 0
¢()
1
1
Y1 =L"¢
(a) (b)
31
Orthogonal expansion of a SaS Lévy process
o’ -
Z
3
i
o
E
EDD” -
g L
—— 00000000
—e— 000000
—=— 000000000000
—— 0000000000000
o0
0 00 00 00 00§ 00 00 o0 oo
sparser Gaussian

(Pad-U. ICASSP’13, SPARS’13)




Orthogonal expansion of a SaS AR(1) process

—»—Identity
_ —©—DCT/KLT

10 E A —%—Haar Wavelet
—H—Operator-like Wavelet ]
—+—Optimal (ICA)

10° |

Mutual Information

107

sparser Gaussian

(Pad-U. ICASSP’13, SPARS’13) et =09, M =64

CONCLUSION

= Unifying continuous-domain innovation model
Backward compatibility with classical Gaussian theory
Operator-based formulation: Lévy-driven SDEs
vs. sparse (generalized Poisson, student, SaS)
Focus on unstable SDEs = non-stationary, self-similar processes

= Wavelet analysis vs. regularization
Central role of B-spline (see papers)
Sparsification/decoupling via “operator-like” behavior

= Theoretical framework for sparse signal recovery
Analytical determination of PDF in any transformed domain
Predictive power: transform coding/denoising (facts 1, 2, 3)
New statistically-founded sparsity priors

Derivation of estimators (MAP vs. MMSE): link with LASSO and
1 methods for sparse signal recovery (Compressed sensing)
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