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OUTLINE

= Brief history of inverse problems in imaging
Classical linear reconstruction methods
The sparsity (r)evolution

= Think analog: the spline connection
gTV and new optimality results

= Think analog & statistical
Introduction to sparse stochastic processes

= Act digital: Algorithm design
Reconstruction of biomedical images
Specific examples:

Deconvolution microscopy
Computed tomography

Differential phase-contrast tomography

Inverse problems in bio-imaging

m Linear forward model

Integral operator

Problem: recover s from noisy measurements y

m The easy scenario

Inverse problem is well  Basie limitations

Y H_ly ;)) 'lquerent noise amplification
ifficulty to invert H (too lar

o j ) Inv ge or non-square

m Backprojection (¢ 3) All Interesting inverse problems are ill-gosec:
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Linear inverse problems (20th century theory)

m Dealing with ill-posed problems: Tikhonov regularization

R(s) = ||Ls||3: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

min ||y — Hs||? subjectto R(s) < Cp

m Equivalent variational problem Andrey N. Tikhonov (1906-1993)

s* = argmin [ly — Hs|3 + A||Ls|?
——— N——

data consistency  regularization
. L . T Ty \—1yg7T, —
Formal linear solution: s=(H H+ AL'L) H'y=R) -y

Interpretation: “filtered” backprojection

Statistical formulation (20th century)

m Linear measurement model: y = Hs +n

S

o e
;@

n : additive white Gaussian noise (i. i. d.) g’l’\}

&

s : realization of Gaussian process with zero-mean 74 y
and covariance matrix E{s - s} = C, |
Norbert Wiener (1894-1964)

m Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

1 —
swap = argming — [y —Hs[5+  [C7'/s|3
., H—/

A

~"

Data Log likelihood Gaussian prior likelihood

{ L= C:"?: Whitening filter

m Quadratic regularization (Tikhonov)
STik = arg min (ly — Hs||3 + AR(s)) with R(s) = ||Ls||3

Linear solution: s = (H"H+ AL'L)"'H”y =R, -y




Linear inverse problems: The sparsity (r)evolution

(20th Century) p=2 — 1 (21st Century)
Srec = arg min (|ly — Hs |3 + AR(s))

m Non-quadratic regularization regularization

R(s) = |[Ls|l7, — [[Ls|[f, — [ILs],

m Total variation (Rudin-Osher, 1992)
R(s) = ||Ls||¢, with L: gradient

= Wavelet-domain regularization (Figuereido et al., Daubechies et al. 2004)

v = W ls: wavelet expansion of s (typically, sparse)
R(s) = [[v]les

m Compressed sensing/sampling (Candes-Romberg-Tao; Donoho, 2006)
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Inverse problems in imaging: Current status

m Higher reconstruction quality: Sparsity-promoting schemes almost sys-
tematically outperform the classical linear reconstruction methods in MR,
x-ray tomography, deconvolution microscopy, etc... (Lustig et al. 2007)

= Increased complexity: Resolution of linear inverse problems using ¢,
regularization requires more sophisticated algorithms (iterative and non-
linear); efficient solutions (FISTA, ADMM) have emerged during the past

decade. (Chambolle 2004; Figueiredo 2004; Beck-Teboule 2009; Boyd 2011)

m The paradigm is supported by the theory of compressed sensing
(Candes-Romberg-Tao; Donoho, 2006)

m Outstanding research issues

m Beyond ¢; and TV: Connection with statistical modeling & learning
m Beyond matrix algebra: Continuous-domain formulation

m Guarantees of optimality (either deterministic or statistical)




Sparsity: Continuous-domain formulation

m Compressed sensing (CS)

m Generalized sampling and infinite-dimensional CS  (Adcock-Hansen, 2011)

m Xampling: CS of analog signals (Eldar, 2011)

m Splines and approximation theory

m L splines (Fisher-Jerome, 1975)
m Locally-adaptive regression splines (Mammen-van de Geer, 1997)
m Generalized TV (Steidl et al. 2005; Bredies et al. 2010)

m Statistical modeling

m Sparse stochastic processes (Unser et al. 2011-2014)

Think analog:




Splines are analog and intrinsically sparse

L{-}: admissible differential operator
§(- — xp): Dirac impulse shifted by zy € R¢

Definition
The function s : R? — R is a (non-uniform) L-spline with knots (x )%, if
K
L{s} = Zaké(- —x) =ws : spline’s innovation
k=1
L d
Spline theory: (Schultz-Varga, 1967) = 9.
y g o1 dx
Lk Th+1

m FRI signal processing: Innovation variables (2/K’) (Vetterli et al., 2002)
= Location of singularities (knots) : {zy }£ |

= Strength of singularities (linear weights): {ax }5_,
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Spline synthesis: example
d

T dx

pp(z) = D71{6}(x) = 1, (z): Heaviside function

L=D Null space: ANp =span{p1}, pi(z)=1
T ws(x) = Zakﬁ(x — Tk)
k

1 0\ z
1 **

r s(x)=bipr(x) + Z arply(x — xp)
k

o}
¥ g

V&
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Spline synthesis: generalization
L: spline admissible operator (LSI)
pL(xz) = L=1{d}: Green’s function of L

Finite-dimensional null space: A1, = span{p,}.2,

Spline’s innovation:  ws(x) = Z ard(x — x)
k

=  s(x) = Z arpL(x — k) + Z bnpn ()
k n=1

\

1 Requires specification of boundary conditions

a11

V&
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New optimality result: universality of splines
L: spline-admissible operator
MLRY) = {f : gTV(f) = |[L{fH|Tv = sup (L{f} ¢) < oo}

lplloo <1
Generalized total variation : ¢TV(f) = |L{f}||z, when L{f} € L;(R%)

Linear measurement operator M1, (R) — R : f s z = H{f}

Theorem: The generic linear-inverse problem

] 2
somin (Ily = H{FHB + AL{SHirv)

K No
admits global solution(s) of the form f(x) = Y " appr(@ — &) + > _ bupn()
k=1 n=1

with K < M — Ny, which is a non-uniform L-spline with knots (wk)le.

(U.-Fageot-Ward, ArXiv 2016)
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OUTLINE

= Brief history of inverse problems in imaging v/
= Think analog & deterministic v/
Optimality of splines for gTV

= Think analog & statistical
Introduction to sparse stochastic processes

= Act digital: Algorithm design
Reconstruction of biomedical images

Specific examples:

Deconvolution microscopy
Computed tomography
Differential phase-contrast tomography
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An
Introduction

to sparse
stochastic
ProCesses

16




Random spline: archetype of sparse signal

non-uniform spline of degree 0

0 2 4 6 8 10

= and(t—t,) = w(t)

Random weights {a,, } i.i.d. and random knots {¢,,} (Poisson with rate \)

m Anti-derivative operators
t
Shift-invariant solution: D™ (t) = (14 * ¢)(t) = / p(T)dr

t
Scale-invariant solution: Dy ' (t) :/ o(r)dr
0
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Compound Poisson process

m Stochastic differential equation
Ds(t) = w(t)

with boundary condition s(0) = 0

Innovation: w(t) = Z and(t —ty) 4 4

m Formal solution

s(t) = Zan “HO( )} (1)

:Zan]l+t—tn —
n

18




Lévy processes: all admissible brands of innovations

Generalized innovations : white Lévy noise with E{w(t)w(t')} = o25(t —t)

Ds =w (perfect decoupling!)

White noise (innovation) Lévy process

Brownian motion

Gaussian * | (Wiener 1923)

Integrator

Compound Poisson

Impulsive w(t) ¢ s(t)
S dr ——
0

SaS (Cauchy) jw

0.0 02 04 0.6 08 10

(Paul Lévy circa 1930) o

Generalized innovation model

Theoretical framework: Gelfand’s theory of generalized stochastic processes

Generic test function ¢ € S plays the role of index variable

Solution of SDE (general operator)

©)

innovation process sparse stochastic process

L—l

-1 ml
@ White noise s=Llw — || @

w —>-

X = <907w> J% L «— L «— Y = <9078> = <907L_1w> - <L_1*<P,w>

@ Approximate
decoupling

_ Proper definition of Regularization operator vs. wavelet analysis
continuous-domain white noise

Main feature: inherent sparsity

U t al, IEEE-IT 2014 o .
(Unser et a ) (few significant coefficients)
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Probability laws of innovations are infinite divisible

w is a generalized innovation process (or continuous-domain white noise) in 8’(Rd) if

1. Observability: X = (o, w) is an ordinary random variable for any ¢ € S(R%).
2. Stationarity : X,, = (©(- — xo), w) is identically distributed for all o € R

3. Independent atoms : X; = (¢, w) and X2 = (2, w) are independent
whenever ; and - have non-intersecting support.

Theorem (under mild technical conditions) (Amini-U., IEEE-IT 2014)
w is an innovation process in S’ (R?)

= X = (p,w) is well defined and infinitely divisible for any ¢ € L,(R%)

Definition: A random variable X with generic pdf piq(z) is infinitely divisible (id) iff., for
any N € Z*, there exist i.i.d. random variables X1, ..., X such that X 4 X1+ +Xn.

X = (w,rect) =

21

Probability laws of innovations are infinite divisible
m Canonical observation through a rectangular test function
Xia = (w,rect) = (i ,-L—L)
w innovation process < Xjq = (w, rect) infinitely divisible
with canonical Lévy exponent f(w) = log pia(w)

m Statistical description of white Lévy noise w (innovation)

= Generic observation: X = (p, w) with ¢ € L,(R?)

X =(w,g) = (e N2 lim g S )

n—oo

= HIEEO<WMWM,{I,—>++<WWWW,—}[>

= X is infinitely divisible with (modified) Lévy exponent

fo(w) =logpx (w) = /Rd f(we(x))de

22




X Probability laws of sparse processes are id

m Analysis: go back to innovation process: w = Ls

= Generic random observation: X = (p,w) with ¢ € S(RY) or ¢ € L,(R?) (by extension)

—
= Linear functional: Y = (1, s) = (¢, L= 'w) = (L™, w)

If ¢ =L~ € L,(RY) then Y = (1, 5) = (¢, w) is infinitely divisible
with (modified) Lévy exponent f,(w) = [pu f(wo(x))de

dw

= py(y) = F e @) (y) :/ef¢(w)—jwy2_
R ™

= explicit form of pdf

oo o] TS An Introduction to CAnBRIDOE

Sparse Stochastic Processes

23
Examples of infinitely divisible laws
pid()
(a) Gaussian 1 m22

(b) Laplace

(c) Compound Poisson
y

A
pLaplace(x = Ee Ale]

DPPoisson (:E) = .7:71{6)‘(1314 (w)*l)}

Jasiedg

=

(d) Cauchy (stable)

Characteristic function: pig(w) = /pid(a;)ej“"””dx = of @)
R

1
PcCauchy ($) = m

24




Examples of id noise distributions
pia(7) Observations: X, = (w, rect(- — n))

(a) Gaussian

(b) Laplace

(c) Compound Poisson
y

Jasiedg

n

(d) Cauchy (stable)

Complete mathematical characterization: 22, (¢) = exp (/ f(go(w))dw)
Rd

25

Aesthetic sparse signal: the Mondrian process

F . ;
L=D,D, +— (jwz)(jwy)

26




Scale- and rotation-invariant processes

Stochastic partial differential equation : (—A)%s(w) = w(x)

s

H=1.25 H=1.75

(U.-Tafti, IEEE- SP 2010)

Gaussian

Sparse (generalized Poisson)

27

Powers of ten: from astronomy to biology

© ©1986 J'érry Lodriguss and John Martinez
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High-level properties of SSP

= Infinite divisible probability laws: broadest class of distributions
preserved through linear transformation.

m Explicit calculations: Analytical determination of transform-domain
statistics (including, joint pdfs).

= Unifying framework: includes all traditional families of stochastic
processes (ARMA, fBm), as well as their non-Gaussian generalizations.

m Sparsifying transforms / ICA: SSP are (approximately) decoupled in a
matched operator-like wavelet basis. (Pad-U., I[EEE-SP 2015)

m N-term approximation properties: SSP are truly “sparse” as described
by their inclusion in (weighted) Besov spaces. (Fageot et al., ACHA 2015)

o o T An Introduction to CAnmRICE

Sparse Stochastic Processes
29

OUTLINE

= Brief history of inverse problems in imaging v/

= Think analog & deterministic v/
Optimality of splines for gTV

= Think analog & statistical v/
Sparse stochastic processes

= Act digital: Reconstruction of biomedical images
Discretization of reconstruction problem
Signal reconstruction algorithm (MAP)

Examples of image reconstruction

30




Discretization of reconstruction problem

Spline-like reconstruction model: s(r) = Z slk|Pe(r) <+— s =(s[k])kea
ke
m Innovation model

ks = w Discretization u = Ls (matrix notation)
s = Llw

py is part of infinitely divisible family

m Physical model: image formation and acquisition

i = [ 1@ (@)da + nlm] = (s1,0) + nfml, (= 1,..., M)

y=yot+tn=Hs+n n: ii.d. noise with pdf px

H] ok = (7m, Br) = /Rd N (P) B (r)dr: (M x K) system matrix

31

Posterior probability distribution

psiy(sly) = PY1S18IPs () _ b (y — Hs)ps(s) (Bayes’ rule)
S py(y) Py (y)
= ~only — He)ps(s)

u=>Ls = ps(s) < pu(Ls) ~ [lpeqpu([Lsk)

m Additive white Gaussian noise scenario (AWGN)

PS|Y(S‘Y) OCGXp( ly — HSH ) Hp [LS

kc

.. and then take the log and maximize ...

32




General form of MAP estimator

suap = argmin (§ [ly - Hs|} + 0% Y2, @u/(([Ls]))

= Gaussian: py(z) = \/%UO =22/ (203) = Op(r) = sha? + O
= Laplace: py(z) = 5e Al = dy(z) = Nz| + Oy
student: pu(e) = —— (1) 5 eu@) = (r+ D log(l 14t €
" : x) = x)=(r+=)lo x
bu B(r ) \2+1 v 3/ %8 3

N
e
)
l Potential: &y (z) = — log py (z)

33

Proximal operator: pointwise denoiser

1
Ca2) — : 2 2
proxg, (y;0°) = arg min §\y —u|* + oc*Py(u)

@ = proxg,, (y; 1) 2By ()

linear attenuation /5 minimization
® soft-threshold ¢1 minimization
® shrinkage function ~ {, relaxation for p — 0

34




Maximum a posteriori (MAP) estimation

m Constrained optimization formulation

Auxiliary innovation variable: u = Ls

: 1 .
Suap = arg min <§||Y — Hs||3 + o* ; @U([u]n)> subject to u = Ls

m Augmented Lagrangian method

Quadratic penalty term: 4 ||Ls — ul|3

Lagrange multipler vector: o

1
Lals,u,e) =5 lly — Hs; + 0> Y @u([ul.) + o (Ls — u) + J[[Ls — u}

35

Alternating direction method of multipliers (ADMM)
Lals,m o) = 3 lly —Hsl3 + 023 ®u([ul,) + o (Ls — ) + & Ls — ul3

Sequential minimization i

sF1 < arg min £4(s, u”, a®)
seRN
k af+l — ok 1 M(Lsk—l—l _ uk)
uFt! « arg min L4(s"T! u, o)
ueRN

Linear inverse problem: s*t' = (H"H + uLTL)_1 (HTy + z"1)
with  zFH = LT (pu* — o)

2

Nonlinear denoising:  u**! = proxg,, (Ls*** + %ak-i—l; %)

m Proximal operator taylored to stochastic model

1
prox.y, (5 \) = argmin -y — ul® + \@y (u)

S 0 : 36
Cauchy prior with increasing sg




Deconvolution of fluorescence micrographs

m Physical model of a diffraction-limited microscope

g(xayaz) = (th*S)(LC,y,Z) j

3-D point spread function (PSF)

han (2,,2) = Io |pa (&, &, 2=)|°

z

2 2
pale,y,2) = / P(wr,ws) exp (j%z“’l . “’2) exp (—jzw“"“l“’”?) dewr dusy
R2

2N Mo

Optical parameters
= A: wavelength (emission)
= M : magnification factor
= fo: focal length
s P(wi,wa) = 1jju|<r,: Pupil function

= NA =nsinf = Ry/ fo: numerical aperture

37
(b)
Figure 10.3 Images used in deconvolution experiments. (a) Stem cells surrounded by goblet
cells. (b) Nerve cells growing around fibers. (c) Artery cells.
Table 10.2 Deconvolution performance of MAP estimators based on different prior
distributions.
Estimation performance (SNR in dB)
BSNR (dB) Gaussian Laplace Student’s
Stem cells 20 14.43 13.76 11.86
30 15.92 15.77 13.15
40 18.11 18.11 13.83
Nerve cells 20 13.86 15.31 14.01 L: discrete gradient
30 15.89 18.18 15.81
40 18.58 20.57 16.92
Artery cells 20 14.86 15.23 13.48
30 16.59 17.21 14.92
40 18.68 19.61 15.94
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3D deconvolution with sparsity constraints

Maximum intensity projections of 384 x448 <260 image stacks;
Leica DM 5500 widefield epifluorescence microscope with a 63 x oil-immersion objective;
C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

(Vonesch-U. IEEE Trans. Im. Proc. 2009)

Computed tomography (straight rays)

Projection geometry: @ = t0 + r@ with @ = (cos 0, sin 0)

<

m Radon transform (line integrals) P T

r
9

Ry {s(x)}(t) = /]R S(t0 + r0-)dr \\
_ / s(2)5(t — (@, 0))da \\
R2

x
—

(applicable to
, tomographic phase microscopy
sinogram with plane wave illumination)

Equivalent analysis functions: 7, () = 0 (tm — (x, 0,))

40




Computed tomography reconstruction results

(a) (b)

Figure 10.6 Images used in X-ray tomographic reconstruction experiments. (a) The
Shepp-Logan (SL) phantom. (b) Cross section of a human lung.

Table 10.4 Reconstruction results of X-ray computed tomography using different

estimators.
Directions  Estimation performance (SNR in dB)
Gaussian  Laplace Student’s
SL Phantom 120 16.8 17.53 18.76 . .
L: discr radien
SL Phantom 180 18.13 18.75 20.34 discrete gradient
Lung 180 22.49 21.52 21.45
Lung 360 24.38 22.47 22.37
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Cryo-electron tomography (real data)

{1
|

Standard Fourier-based High-resolution Fourier-based High-resolution
reconstruction reconstruction reconstruction with sparsity

slice 34 slice 35 slice 36 slice 34 slice 35 slice 36

slice 50 slice 51 slice 52 slice 52

slice 66 slice 67 slice 68 slice 66 slice 67 slice 68 42




SUMMARY: Sparsity in infinite dimensions

= Continuous-domain formulation seX
Linear measurement model s —y = H{s}
Linear signal model: PDE Ls=w

L-splines = signals with “sparsest” innovation = s=L"1tw

= Deterministic optimality result gTV(s) = ||Ls[rv
gTV regularization: favors “sparse” innovations
Non-uniform L-splines: universal solutions of linear inverse problems

= Statistical model that supports sparsity

Statistical decoupling:
Gaussian vs. sparse innovations (Poisson, student, SaS)

Unifying framework: “sparse stochastic processes” s=L"1w
MAP enforces sparsity through non-quadratic regularization
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