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Cellular microscopy & matters of contrast
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Zeiss/Abbe microscope 1880 

Bright-field microscopy

The good old days (much of the 20th century)

Confocal microscopy workstation 

The current state (colored revolution)

Phase contrast
[Zernike, circa 1940]

Differential Interference Contrast
[Normarski, 1955]



Cellular microscopy: the key (r)evolutions
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Transparent specimen,  flat (2D),  static,  qualitative
Traditional light microscopy

Modern light microscopy

1. Video microscopy: 2D + t
Colored (highly specific),   3D,   dynamic (time-lapse),    quantitative

2. Fluorescence
    - Labeling of specific proteins (multispectral)
3. Optical sectioning & localization
     - Confocal microscopy
     - Super-resolution microscopy
4. Signal processing
    - Digital optics
    - Bioimage informatics tubulin

Transparent specimen,  flat (2D),  static,  qualitativeTransparent specimen,  flat (2D),  static,  qualitative

Colored (highly specific),   3D,   dynamic (time-lapse),    quantitativeColored (highly specific),   3D,   dynamic (time-lapse),    quantitativeColored (highly specific),   3D,   dynamic (time-lapse),    quantitative

Transparent specimen,  flat (2D),  static,  qualitativeTransparent specimen,  flat (2D),  static,  qualitative

Related list of Nobel laureates
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Willard S. Boyle, George E. Smith
2009 Nobel Prize in Physics
"for the invention of an imaging semiconductor circuit – the CCD sensor"

2014 Nobel Prize in Chemistry 
“for the development of super-resolved fluorescence microscopy"

Eric Betzig, Stefan W. Hell, William E. Moerner 

2008 Nobel Prize in Chemistry 
"for the discovery and development of the green fluorescent protein, GFP".

Osamu Shimomura, Martin Chalfie, and Roger Y. Tsien, 

1953 Nobel Prize in Physics
"for the invention of the phase contrast microscope".

Frits Zernike 



OUTLINE
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■ Part 1: Basics of fluorescence microscopy

■ Part 2: Mathematical Imaging

■ Part 3: Tools for bioimage analysis

Functional imaging of living cells

The emergence of “digital optics”

The nascent field of
“bioimage informatics”

Physical principle of fluorescence
Excitation and emission spectra of GFP

Physical principle

S1

Jablonski diagram

S0

detector

dichroic mirror

emission filter

specimen

objective lens

excitation filter

Light paths in the microscope



Green fluorescent protein (GFP)
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Martin Chalfie

GFP cloned and 
expressed in 
C. elegans
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steps in the cells. Each of these steps requires a protein to control the chemical production. 
Many experts believed that a few different proteins were needed to produce the chromophore 
in GFP, but Chalfi e and Euskirchen’s experiment showed that this premise was wrong. No 
other protein than GFP was needed.

In the next step, Chalfi e placed the gene behind a promoter that is active in six touch receptor 
neurons in C. elegans. The results were published by Chalfi e and his colleagues in the scientifi c 
journal Science in February 1994. On the front cover, readers could see an image of C. elegans 
in which the touch receptor neurons were glowing bright green.

Using DNA-technology, Chalfi e placed the gene for GFP behind a gene switch, active in C. elegans’ six touch receptor neurons. 
He then injected the DNA-construct into the gonads of a mature worm (a). The worm is a hermaphrodite and can fertilise 
itself. The GFP gene is present in many of the eggs the worm then lays (b). The eggs divide, forming new individuals whose 
touch receptor neurons glow green in UV light (c and d). The illustration shows two of those neurons (e).

Tsien creates a palette with all the colours of the rainbow
This is where the third Nobel Prize laureate Roger Tsien makes his entry. His greatest con-
tribution to the GFP revolution was that he extended the researchers’ palette with  many new 
colours that glowed longer and with higher intensity. 

To begin with, Tsien charted how the GFP chromophore is formed chemically in the 238-amino-
acid-long GFP protein. Researchers had previously shown that three amino acids in position 65–67 
react chemically with each other to form the chromosphore. Tsien showed that this chemical reac-
tion requires oxygen and explained how it can happen without the help of other proteins. 

With the aid of DNA technology, Tsien took the next step and exchanged various amino acids in 
different parts of GFP. This led to the protein both absorbing and emitting light in other parts 
of the spectrum. By experimenting with the amino acid composition, Tsien was able to develop 
new variants of GFP that shine more strongly and in quite different colours such as cyan, blue 
and yellow. That is how researchers today can mark different proteins in different colours to see 
their interactions. 

One colour, however, that Tsien could not produce with GFP was red. Red light penetrates 
biological tissue more easily and is therefore especially useful for researchers who want to 
study cells and organs inside the body. 

At this point, Mikhail Matz and Sergei Lukyanov, two Russian researchers, became involved 
in the GFP revolution. They looked for GFP-like proteins in fl uorescent corals and found six 
more proteins, one red, one blue and the rest green.

a b c d e

Roger Y. Tsien

contrast, fusions of b-actin with mRFP1 or mCherry were both
successfully incorporated into the actin cytoskeleton (data not shown).
The dimer2 variant previously described7 possesses many desirable

properties, such as a faster and more complete maturation than
wild-type DsRed and a greater fluorescent brightness than the fast-
maturing mutant T1 (ref. 6) (DsRed-Express). Through five rounds of
directed evolution, we found the optimal combination of mutations

to be V22M, Q66M, V105L and F124M, which resulted in improved
maturation kinetics, a substantially reduced ‘dead-end’ green compo-
nent and a small red-shift. The final clone, designated dimer
(d)Tomato (Table 1 and Figs. 1 and 2b), contains GFP-type termini
similar to those of mCherry, which result in a higher tolerance of
N- and C-terminal fusions (data not shown). To construct a non-
aggregating tag from the extremely bright dTomato, we genetically

Table 1 Properties of novel fluorescent protein variants

Fluorescent

protein

Excitation

maximum (nm)

Emission

maximum (nm)

Extinction coefficient

per chaina (M!1cm!1)

Fluorescence

quantum yield

Brightness of fully mature

protein (% of DsRed) pKa

t0.5 for maturation

at 37 1C

t0.5 for

bleachb, s

DsRed 558 583 75,000 0.79 100 4.7 B10 h ND

T1 555 584 38,000 0.51 33 4.8 o1 h ND

Dimer2 552 579 69,000 0.69 80 4.9 B2 h ND

mRFP1 584 607 50,000 0.25 21 4.5 o1 h 6.2

mHoneydew 487/504 537/562 17,000 0.12 3 o4.0 ND 5.9

mBanana 540 553 6,000 0.70 7 6.7 1 h 1.4

mOrange 548 562 71,000 0.69 83 6.5 2.5 h 6.4

dTomato 554 581 69,000 0.69 80 4.7 1 h 64

tdTomato 554 581 138,000 0.69 160 4.7 1 h 70

mTangerine 568 585 38,000 0.30 19 5.7 ND 5.1

mStrawberry 574 596 90,000 0.29 44 o4.5 50 min 11

mCherry 587 610 72,000 0.22 27 o4.5 15 min 68

aExtinction coefficients were measured by the alkali denaturation method8,30 and are believed to be more accurate than the previously reported values for DsRed, T1, dimer2 and mRFP17.
bTime (s) to bleach to 50% emission intensity, at an illumination level that causes each molecule to emit 1,000 photons/s initially, that is, before any bleaching has occurred. See Methods for
more details. For comparison, the value for EGFP is 115 s, assuming an extinction coefficient of 56,000 M!1cm!1 and quantum efficiency of 0.60 (ref. 30). ND, not determined.
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Figure 1 Excitation and emission spectra for new RFP variants. Spectra are normalized to the excitation and emission peak for each protein. (a,b) Excitation
(a) and emission (b) curves are shown as solid or dashed lines for monomeric variants and as a dotted line for dTomato and tdTomato, with colors
corresponding to the color of each variant. (c,d) Purified proteins (from left to right, mHoneydew, mBanana, mOrange, tdTomato, mTangerine, mStrawberry,
and mCherry) are shown in visible light (c) and fluorescence (d). The fluorescence image is a composite of several images with excitation ranging from
480 nm to 560 nm.

1568 VOLUME 22 NUMBER 12 DECEMBER 2004 NATURE BIOTECHNOLOGY

L E T T E R S

©
2
0
0
4
 N

a
tu

re
 P

u
b

li
s
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
a
tu

re
.c

o
m

/n
a
tu

re
b

io
te

c
h

n
o

lo
g

y

GFP variants engineered 
to fluoresce in different 

colors

Shaner, N.C. Nat. Biotech. 22(12), 2004

Osamu Shimomura

Naturally occurring in jellyfish aequorea victoria

Making proteins of interest glow
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STEP 2. Insertion of
expression vector in “host” cell 
(“transfection” or “transduction”) STEP 3. Expression of

 GFP-tagged protein: same location 
and functionality as wild-type protein

example: GFP-tagged membrane receptor

STEP 1. Cloning of GFP-sequence in 
frame with the gene of the protein of 

interest in an expression vector
 (e.g., a plasmid)



Examples: Images of neurons
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Genetic (GFP): specific receptor protein (delta opioid)
Immunostaining (red): neuro-receptor (GABA) 
Dye (DAPI blue): DNA in cell nuclei

(images courtesy of Scherrer et al., IGBMC, Illkirch, France)

OUTLINE
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■ Part 1: Basics of fluorescence imaging ✔︎

■ Part 2: Mathematical Imaging

■ Part 3: Tools for bioimage analysis

The emergence of “digital optics”



Part 2: Mathematical Imaging
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■ Restoration/reconstruction algorithms
with the aim of:
■ Faster acquisition (less photons)
■ Signal enhancement and noise reduction
■ Improving spatial resolution

■ The new frontier: Digital optics

Denoising by wavelet thresholding
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�

2

w̃ = T�(w)

w

(Weaver et al. Magnet. Reson. Med. 1991;   Donoho IEEE Trans. Inf. Theory, 1995)

(Luisier et al. IEEE Trans. Im. Proc. 2007 & 2010)

Improved scheme (state-of-the-art in microscopy)

MMSE-optimized threshold (SURELET)

Use of redundancy

Explicit modelling of Poisson noise (PURELET) with autocalibration

2009 Best Paper Award IEEE SPS

Basic idea

Orthogonal WT: white noise ! white noise

Signal is concentrated in few coefficients, while noise is spread-out evenly

) Noise attenuation is achieved by simple wavelet shrinkage/thresholding



SURE-LET denoising                  (Poisson + Gaussian noise, UWT)
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PureDenoise (plugin for ImageJ)

http://bigwww.epfl.ch/algorithms/denoise/

(Luisier, Blu, U., Sig. Proc.  2010)

Ground truth
(average over 500 acquisitions)

2D + time SURE-LET denoising (DWT): C-elegance embryo
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State-of-the-art wavelet denoising in Poisson noise

(Luisier et al. IEEE Trans Imag Proc  2011)
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3D-deconvolution fluorescence microscopy
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Physical model of a diffraction-limited microscope

g(x, y, z) = (h3D ⇤ s)(x, y, z)

3-D point spread function (PSF)

h3D(x, y, z) = I0
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Optical parameters
�: wavelength (emission)

M : magnification factor

f0: focal length

P (!1,!2) = k!k<R0
: pupil function

NA = n sin ✓ = R0/f0: numerical aperture

Image formation: widefield vs confocal

Widefield microscopy

detector planeobject objective lens

Confocal microscopy

pinhole



Variational formulation of image reconstruction
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noise

n

Reconstruction as an optimization problem

Linear forward model

s

Ill-posed inverse problem: recover s from noisy measurements g

Integral operator

H

y = Hs+ n

srec = argmin ky �Hsk22| {z }
data consistency

+ �R(s)| {z }
regularization

Variational formulation of image reconstruction

18

noise

n

Reconstruction as an optimization problem

Linear forward model

s

Ill-posed inverse problem: recover s from noisy measurements g

Integral operator

H

y = Hs+ n

srec = arg min
s2RK

 
1

2
ky �Hsk22 + �2

X

n

�U

�
[u]n

�
!

subject to u = Ls

promotes sparsity of u



Alternating direction method of multipliers (ADMM)
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Linear inverse problem:

Nonlinear denoising:

sk+1 � arg min
s�RN

LA(s,u
k,↵k)

Sequential minimization

↵k+1 = ↵k + µ
�
Lsk+1 � uk

�

sk+1 =
�
HTH+ µLTL

��1 �
HTy + zk+1

�

with zk+1 = LT
�
µuk �↵k

�

LA(s,u,↵) =
1

2
kg �Hsk22 + �2

X

n

�U ([u]n) +↵T (Ls� u) +
µ

2
kLs� uk22

uk+1
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�
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+

1
µ↵

k+1
;
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Proximal operator taylored to potential function

prox�U
(y;�) = argmin

u

1

2

|y � u|2 + ��U (u)

(Bostan et al. IEEE Trans. Im. Proc. 2013)

3D deconvolution of widefield stack

20(Vonesch et al. IEEE Trans. Im. Proc. 2009)

Maximum intensity projections of 384⇥448⇥260 image stacks;

Leica DM 5500 widefield epifluorescence microscope with a 63⇥ oil-immersion objective;

C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

each channel processed separately; computed PSF based on diffraction-limited model;
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Resolution limit(s) in fluorescence microscopy
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Lateral resolution

Axial resolution

Practical limits:   180 nm (confocal) – 250 nm (brightfield) 

- With structured illumination:   ~100 nm 

- With multiplexing in time and/or localization (PALM or STED)  ~10-55 nm 

Can this be improved ?

Practical limits:     500 nm (confocal) – 1000 nm (brightfield) 

Abbe’s lateral resolution: dXY =
�

2NA

Abbe’s axial resolution: dZ =
2�

NA2

- With deconvolution:  250 nm → 180 nm 

Single-molecule localization microscopy
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Conventional fluorescence

Text

Activation of a single molecule: = PSF

raw data

localization

progressive reconstruction

PALM: Photo-activated localization microscopy
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Conventional fluorescence PALM super-resolution

Groundtruth in 3D
Simulated PALM reconstruction

Real data

Method of the Year 2008, Nature Methods

26

PALM (Eric Betzig)
Photo-Activation 
Localization Microscopy

STORM (Xiaowei Zhuang)
Stochastic Optical 
Reconstruction Microscopy

FPALM (Sam Hess)
Fluorescent Photo-Activation 
Localization Microscopy

Nobel prize 2014



MIP at 0.25 nm / pixel

■ Grand Challenge ISBI 2013

‣ More than 30 participants

‣ Run by the authors on the same datasets

‣ Assessment using the ground-truth

‣ Multiple decision criteria analysis

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley and M. Unser, 
“Quantitative evaluation of software packages for single-molecule localization microscopy,” 
Nature Methods 12, 2015.

Benchmarking of SMLM Software
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Benchmarking of SMLM Software

MIP at 0.25 nm / pixel

■ 6 criteria of assessment
‣ Accuracy (nm) of the localizations
‣ Jaccard index (%) on the localizations
‣ SNR (dB): comparison of rendering images
‣ Resolution FRC (Fourier ring correlation)
‣ Usability of the software (grade)
‣ Computation time (grade)

NATURE METHODS | ADVANCE ONLINE PUBLICATION | 3

ANALYSIS

We used two image-based criteria in our 
assessment: image quality (signal-to-noise 
ratio, SNR) and image resolution (Fourier 
ring correlation, FRC21). Methods afflicted 
by issues such as sampling artifacts or a low 
detection capacity at the image border are 
characterized by a low SNR. Conversely,  
a high SNR is often indicative of a  
successful tradeoff between detection  
rate and accuracy.

Software efficiency
In a retrospective analysis, we identified 
the five best methods, in terms of the 
tradeoff between accuracy and detection 
rate for each dataset, we defined a linear 
regression that fits the best methods in  
a plot of ACC versus JAC, and call it  
an efficiency line (Fig. 3). The distance of  
the (JAC, ACC) coordinate for each  
software to such a line indicates the  
performance of the software.

The level of difficulty increases from LS1 to LS3, as evidenced 
by the average performance (JAC, ACC), which was (79.58%, 
29.98 nm) for LS1, (55.64%, 41.91 nm) for LS2 and (35.64%, 55.82 
nm) for LS3. These findings are consistent with our engineering of 
the data to have increasing levels of noise, as the theory predicts 
that the presence of noise leads to an increase in the uncertainty 
of the location of a particle. Likewise, the detection rate is also 
affected by noise; single molecules with lower emission rate and 
deeper axial position are more difficult to detect.

Algorithms
Our study includes more than 30 packages (Table 1), covering 
a large proportion of the SMLM software currently available. 
Aside from a few that do not fit our validation framework because 
their SMLM reconstruction is based on deconvolution without 
explicit localization22, most packages have a similar architecture. 
However, a detailed analysis reveals fundamental differences.

Within the detection step, methods as diverse as low-pass  
filtering, band-pass filtering, watershed, and wavelet transform, to 
name a few, are deployed. The parameters of these preprocessing 
operations need to be determined in an ad hoc fashion. In some 
cases, we found that they cannot be set by the user; even when 

they can be, often there is no calibration procedure provided. 
Most algorithms isolate candidate pixels by applying a threshold 
to identify potential local extrema, but each software uses differ-
ent methods for determining the threshold value: level of noise, 
spot brightness, PSF size and/or particle density.

Over two-thirds of the participating packages carry out the 
localization step by means of a fitting with a Gaussian function. 
Other algorithms use an arbitrary PSF instead; DAOSTORM  
and SimpleSTORM use a measured PSF. Distinctively, the two 
packages MrSE and RadialSymmetry exploit the radial symmetry 
of the PSF.

We have identified three groups of localization methods 
and indicated their performance in Table 2. In Generation 1,  
the basic methods perform localization by means of center  
of mass (QuickPALM), triangularization (fluoroBancroft) or  
linear regression (Gauss2dcir). Although very fast, these methods  
often fail to reconstruct HD data. Generation 2 is the larg-
est group of methods, including about two-thirds of all soft-
wares submitted thus far. They are characterized by the use of  
iterative localization algorithms such as maximum-likelihood esti-
mators (MLE) or least-squares minimizers (LS). Previous works 
compare the LS or MLE algorithm in detail10,23. Generation 3  
comprises advanced methods, often unpublished. They improve 
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Figure 2 | Accuracy versus detection rate for 
each tested software. Scatter plots show high-
density (HD) data above and long sequence 
data below. Efficiency lines (Eff. lines) are 
computed from the five results at the boundary 
of the field with high JAC and/or low ACC. 
The length of the bars is proportional to the 
grade, from 0 (poor) to 5 (good). Grades above 
3.5 are written in the corresponding bar. The 
grades of the three data sets are given here 
for the detection rate, JAC1–JAC3; for the 
localization accuracy, ACC1–ACC3; for the image 
quality assessment, SNR1–SNR3; and for the 
image resolution, FRC1–FRC3. The grades of the 
computational time (TIME) and usability (USA) 
are reported in light gray bars.

High-density data
1. B-recs, Janelia Farm
2. WTM, Hamamastu
3. DAOSTORM, University of Oxford



Challenges for digital optics
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■ Realistic physical models (space-varying?)
■ Relating the PSF to the refractive index of the specimen
■ Identification & calibration

■ Better problem formulation
■ Semi-blind deconvolution
■ Regularization/sparsity based on statistical modeling
■ Beyond MAP and variational formulation

   ... belief propagation ...
■ New inverse problems

■ Space-varying deconvolution
■ Refractive-index tomography (with holography)
■ Alternative mode of acquisition (structured light, 

multi-spectral, multi-modal)

OUTLINE
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■ Part 1: Basics of fluorescence imaging ✔︎

■ Part 2: Mathematical Imaging  ✔

■ Part 3: Tools for bioimage analysis

The nascent field of
 “bioimage informatics”



Part 3: Tools for bioimage analysis
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■ Particle tracking
■ Study of yeast dynamics (D. Sage)

■ Cells: shape and motility (R. Delgado-Gonzalo)

■ Filaments
■ Neuron tracing (E. Meijering)

■ Extraction of gene expresion
profiles

Making microscopy quantitative, 
handling large data sets in 3D + time ...
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EDITORIAL

The quest for quantitative microscopy
With the aid of informatics, microscopy is in the midst of a crucial evolution into a more 
quantitative and powerful technique.

Microscopy has historically been a qualitative technique, 
but the transition to digital microscopy and advances in 
camera technology, coupled with new labeling and imag-
ing methods, are making it easier to extract meaningful 
quantitative data from images. Computational techniques 
are central to this process. The transition of microscopy 
into a more quantitative technique will bring important 
scientific benefits in the form of new applications and 
improved performance and reproducibility.

Current limitations in bioimage-informatics techniques 
are preventing sophisticated optical methods from realiz-
ing their full potential. For example, the algorithms neces-
sary to localize individual fluorophores in super-resolution 
microscopy data are still in their infancy, and the lack of 
tools to automatically reconstruct neuronal networks from 
3D image stacks is hindering progress in neuroscience.

More researchers are developing computational solu-
tions to bioimaging challenges; these projects are increas-
ingly part of collaborative open-source community efforts. 
To promote dialogue between computational tool develop-
ers and microscopy users, and to broaden awareness of the 
computational challenges in bioimaging and the needs of the 
informatics community, this issue contains a special focus 
on bioimage informatics. In an introductory Commentary 
(p659), a central figure in early genome bioinformatics, 
Gene Meyers, remarks on how the current climate in bioim-
age informatics resembles the early days of that field.

In spite of the prevalence of microscopy and image anal-
ysis in biology, persuading the larger research community 
to recognize bioimage informatics as a distinct scientific 
discipline entails profound challenges (p661). The kind of 
effort required to create a successful bioimage-informatics 
tool is different from that needed for success in conven-
tional biological research.

The primary users of bioimage-informatics tools are 
biologists with little or no programming or informatics 
training and who are operating their own microscopes 
and analyzing their own data. They require usable, well- 
engineered and well-supported tools that are flexible 
enough to easily adapt to their particular needs (p666). 
But developing and providing ongoing support for user-
friendly tools, although essential for bioimaging, presents 
challenges to funders and institutions.

Many in the community recognize the importance of 
developing these tools. This is highlighted in this issue in 
articles describing algorithm solutions to imaging chal-
lenges or presenting generalist image-analysis platforms 
that can be used to distribute such algorithm solutions to 

biologists in user-friendly packages.
Encouragingly, some institutions are devoting substan-

tial resources in support of major open-source software 
tools. Funders are also making efforts: the US National 
Institutes of Health runs a ‘Continued Development and 
Maintenance of Software’ program, and the US National 
Science Foundation recently announced the ‘Software 
Infrastructure for Sustained Innovation’ program.

With sufficient support for bioimage informatics, 
we expect that the days of manually chosen ‘representa-
tive’ images are numbered. Not only will such images be 
replaced by quantitative measures based on the underly-
ing image data, but even the example images shown in 
research articles will be either computed representations or 
computationally chosen representative images. As a result, 
the level of trust placed in imaging results should increase.

In such a scenario, however, statistical rigor and clear 
reporting are critical. In their absence, quantification has 
limited value, and there is the risk that the mere act of 
such  quantification could lead to false confidence in the 
results. It is crucial that uncertainties be communicated 
alongside absolute numbers or computationally generated 
representations. The community should start discussing 
what efforts are needed to standardize and statistically 
assess image data. There is a strong foundation of statisti-
cal methods for testing and reporting the significance of 
simple numerical data, and if these methods cannot be 
translated to more complex image data—perhaps some-
thing comparable to a P value for a representative image—
alternatives must be implemented or developed.

The statistical rigor required in drug discovery or clini-
cal studies can often be used to inform data analysis and 
reporting practices in basic research, but even though 
pharmaceutical companies use high-throughput imaging 
data, they typically transform the image data into simple 
numerical values representative of the outcome of each 
assay condition. In contrast, imaging experiments intend-
ed for biological insight must often retain complex infor-
mation. Now is the time to start tackling these challenges, 
and doing so requires a strong community of bioimage 
informaticians and biologists working together.

Microscopy is in the midst of a period of remarkable 
technological development as researchers—genomes 
in hand—strive to understand the interplay between a 
genome and the living physical organism with all its spatial 
and temporal complexities. Bioimage informatics will play 
an increasingly important role in bringing the necessary 
quantitative rigor to these studies.

Nascent field of bioimage informatics

32

Why bioimage informatics matters

Gene Myers

Driven by the importance of spatial and physical factors in cellular processes and the size and complexity 

of modern image data, computational analysis of biological imagery has become a vital emerging  

sub-discipline of bioinformatics and computer vision.

B y  t h e  e n d  o f  2 0 0 1 ,  t h e  h u m a n complex set of nanoscale machines that self-

aggregate and dissolve according to phase 
to-noise ratios and limited resolution, off-

set to some extent by the fact that the scene 

is generally very simple and there is often 



■ Public-domain, open-source, platform independent
■ Beautiful, widely-accepted software: ImageJ

(thanks to Wayne Rasband)
■ Crucial component of scientific imaging projects

(quantitation, analysis)
■ Committed population of developers

JAVA + interoperability
■ Huge, growing community of users

Making algorithms available to biologists

34http://rsb.info.nih.gov/ij/
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cient for a necessary application and users 
need to add new functionality. In 1993, 
Rasband saw the great utility of plug-ins 
being used by Photoshop (Adobe) to add 
new functionality to that software and 
decided to add these modular software 
elements to NIH Image. NIH Image was 
one of the first scientific image-processing 
tools to have plug-ins and the first with 
such a large user base. Example plug-ins 
included facilities for three-dimensional 
rendering of images and particle analy-
sis. ImageJ has had plug-in support from 
its inception, and the number of plug-ins 
has increased rapidly, with over 500 (May 
2012) plug-ins that cover a wide range of 
functions available on the ImageJ website 
(Fig. 2). Some of these plug-ins are dis-
tributed with the core ImageJ and most 
are available for separate download and 
install by the user. Rasband’s philoso-
phy of limiting complexity drove how he 
decided what functionality to integrate 
into the program directly in the menus, 
distribute as core plug-ins that come pre-
packaged with ImageJ or make available as 
downloads from the ImageJ website. Many 
of the plug-ins built into ImageJ are from 
outside contributors, and the decision to 
include a plug-in in the base distribution 
was based on whether Rasband thought 
it would have widespread use. Additional 
ImageJ plug-ins are available at third-party 
websites with links to these resources from 
the ImageJ website.

It is important to note that Rasband 
never sought to replace commercial 
image-analysis solutions. In part, this is 
because a good part of the functionality 
of NIH Image or ImageJ was created as 
a result of there not being another solu-
tion, commercial or open-source, to do 
it. Of course, out of necessity to be a full-

of Java support on different operating 
systems. But over time, as the Java runtime 
environments improved and coding 
problems were solved, porting NIH Image 
to Java set the stage for ImageJ to achieve 
even greater success.

D u r i n g  R a s b a n d ’s  m a n y  y e a r s 
developing NIH Image and ImageJ at 
NIH, occasionally a concerned lawyer or 
administrator would come see him with 
questions or concerns about the open 
nature of ImageJ and its commercial 
p otent ia l .  Not hing  came of  t hes e 
infrequent meetings, and Rasband was 
left unfettered to develop the program as 
he wanted.

A driving design criterion of both 
NIH Image and ImageJ was to keep the 
program simple with no complex user 
interfaces. Upon opening ImageJ, just 
a single toolbar appears, and it is from 
this straightforward interface that all of 
the capabilities of ImageJ can be found 
and used. The ImageJ toolbar has stayed 
essentially the same for 15 years, similar 
to how NIH Image has remained largely 
the same (Fig. 1). Rasband wanted a stable 
program interface that would not change, 
but he also needed a way to add new 
functionality based on user needs. This 
philosophy of limiting complexity also 
drove how he decided what functionality 
to integrate into the program directly or 
distribute as plug-ins.

Plugins and macros 
To facilitate community input into NIH 
Image and ImageJ, Rasband established 
a community-driven development model 
with several key elements: (i) user-driven 
need and request for Rasband to address;
(ii) user-driven need that another member 
of the community can address; (iii) user 
developer can create a solution to his or 
her own need but then share it with the 
community, and (iv) user feedback can 
be provided on an existing feature to 
either improve functionality or add new 
functionality. 

A single developer–driven model such 
that all code is developed by one person 
would have resulted in a monolithic pro-
gram. Although this would provide the 
simplicity of having only one way of doing 
things, the breadth and depth of the solu-
tions would be greatly attenuated. Rasband 
instead chose a more flexible approach 
that would allow users to add functionality 
on their own, but in a manner that would 

allow the functionality to be shared with 
others. This was accomplished through 
the use of macros and plug-ins.

Macros are simple, custom program-
ming scripts that automate tasks inside a 
large piece of software. Because of macros’ 
rather basic programming format, general 
users can create macros with no formal 
programming experience. Rasband added 
a macro language to NIH Image in 1989 
after he saw an article titled “Building your 
own C interpreter.” He realized he could 
use the source code that was included 
in the article to create a Pascal language 
interpreter for NIH Image. 

When Rasband later developed ImageJ, 
he based the macro language on the one 
in NIH Image. Similar to how the Pascal-
based macro language remained very con-
stant in NIH Image, ImageJ’s macro lan-
guage has remained very stable over the 
last 15 years. Many new commands have 
been added, but the early commands all 
still work. Although macros are used by 
programmers, they are especially useful 
to the bench biologist, with ~325 macros 
currently available on the ImageJ website. 

The use of macros requires little or no 
programming experience. New features 
such as the macro recorder directly facili-
tate this, allowing users to record any 
actions they manually do. This recording 
is put into a macro syntax that users can 
execute for future application of this work-
flow, modify it as necessary and share it 
with others. ImageJ has since evolved in its 
scripting capabilities and now allows other 
scripting environments to be harnessed, 
such as JavaScript, or other languages to be 
called, such as Python, through an ImageJ 
Jython Bridge.

In many cases, linking together exist-
ing functionality using macros is insuffi-

a b

Figure 1 | Appearance of NIH Image and ImageJ. (a,b) Screenshots of NIH Image 1.62, released in 
1999 (a), and ImageJ 1.45, released in 2011 (b). Although the look is slightly different, the overall 
feature layout and menu structure is basically the same.
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Maryland graduate program that would 
allow him to pursue his master’s degree 
in computer science and thus leave the 
service early. One day in 1970, in the 
commons at the University of Maryland, 
College Park, he saw a notice for a part-
time programming position at the NIH in 
Bethesda, Maryland, USA, to work on the 
laboratory instrument computer (LINC) 
created at the Massachusetts Institute 
of Technology. Rasband applied for this 
position, was hired and worked at the NIH 
until he retired in 2010.

NIH Image: image analysis on the Mac
When Rasband began working at the 
Research Services Branch at the National 
Institute of Mental Health, part of the 
intramural campus of the NIH, most 
scientific data processing was done on 
mainframe computers, and the personal 
computer revolution was just beginning. 
There was no image-analysis program for 
the Macintosh computer, and Rasband 
had just obtained one of the first Apple 
Macintosh (Mac) II computers. Rasband 
realized that it  had the appropriate 
hardware and low-level software to be 
an ideal base for a small, low-cost image-
analysis system; all it needed was some 
software for image analysis. Rasband 
decided to write that software in support 
of the imaging analysis needs he saw at the 
time: chiefly, better access in terms both of 
ease of adoption and cost.

It was his goal to have a low-cost 
image-analysis system that the average 
bench scientist could afford and deploy. 
Rasband wanted to create a system that 
was smaller and more affordable than 
his earlier software systems that required 
the $150,000 PDP-11 minicomputers 

NIH Image to ImageJ: 25 years of image analysis
Caroline A Schneider, Wayne S Rasband & Kevin W Eliceiri

For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the 
analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, 
and how their history can serve to advise and inform other software projects. 

The last 50 years have seen tremendous 
technological advances, few greater 
than in the area of scientific computing. 
One of the fields in which scientific 
computing has made particular inroads 
has been the area of biological imaging. 
The  modern computer  coupled  to 
advances in microscopy technology is 
enabling previously inaccessible realms 
in biology to be visualized. Although the 
roles of optical technologies and methods 
have been well documented, the role 
of scientific imaging software and its 
origins have been seldom discussed in any 
historical context. This is due in part to the 
relative youth of the field, the wide variety 
of imaging software tools available, sheer 
diversity of subfields and specialized tools, 
and the constant creation and evolution of 
new tools. 

In this great diversity and change, one 
software tool has not only survived but 
thrived. The scientific image-analysis pro-
gram, ImageJ1,2, known in previous incar-
nations as NIH Image3, was an early pio-
neer in image analysis. Twenty-five years 
after its introduction the program not only 
persists but continues to push and drive 
the field. It does so not by continuously 
reinventing itself but by sticking to a core 
set of design principles that have allowed 
it to become a modern image-processing 
platform and yet retain an interface that a 
user from over 20 years ago would recog-
nize and readily use.

Given the great success and impact 
of ImageJ, one would expect that this 
application was a software initiative with 
official backing and formal planning by a 
central funding body. Despite its original 
name, NIH Image, and its home at the US 
National Institutes of Health (NIH) for 
over 30 years in some form, ImageJ is a 
product of need, user-driven development 
and collaboration—rather than a specific 
plan by the NIH to create it at the onset. 

ImageJ became what it is through years 
of collaborative effort, and NIH nurtured 
it by providing the resources to support 
the primary programmer, Wayne Rasband, 
throughout this period. In this current 
age of careful oversight and scrutiny from 
administrative bodies, the story of ImageJ 
and the independent track that Rasband 
had in its development is both interesting 
and telling for other projects. To best 
understand this, one needs to look at how 
ImageJ started.

Rasband created NIH Image,  the 
predecessor to ImageJ, at the NIH in 
1987, but the foundation for this program 
was laid even earlier at the beginning 
of Rasband’s career. Rasband received 
his bachelor’s degree in math from the 
University of New Mexico, Albuquerque, 
in 1965. He was involved early on with 
the IBM computer punch card systems 
while still in school. He leveraged this 
expertise to get a job with the State of 
New Mexico’s Department of Automated 
P r o c e s s i n g ,  w h e r e  h e  p e r f o r m e d 
common business-oriented language 
(COBOL) programming and general 
systems programming. Shortly thereafter, 
Rasband was drafted by the US Army and 
assigned to the Pentagon. While there, 
Rasband became aware of a University of 

Caroline A. Schneider and Kevin W. Eliceiri are 
at the Laboratory for Optical and Computational 
Instrumentation, University of Wisconsin at Madison, 
Madison, Wisconsin, USA. Wayne S. Rasband is at the 
Section on Instrumentation, US National Institutes of 
Health, Bethesda, Maryland, USA. 
e-mail: eliceiri@wisc.edu
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the VPT automatically detects missing blocks and installs them as 
well, such that the full protocol becomes immediately ready to use, 
modify, and be included into larger workflows and published again, 
thus implementing extended reproducible research.

Error report. Software packages that allow third-party con-
tributions are subject to many uses that often cannot all be 
anticipated. Troubleshooting is therefore 
of major importance to ensure that errors 
are properly caught, identified and submit-
ted for correction. Icy contains a proactive 
error-reporting system that permanently 
monitors the execution of all components. 
When an error occurs, the system automati-
cally generates a comprehensive report that 
can be anonymously submitted online in a 
single click from within the application. The 
error report is highly targeted, such that Icy 
automatically detects the cause of the error 

and submits the report online and via e-mail to the appropriate 
developers. This mechanism minimizes the time needed to fix 
errors in subsequent releases.

A community hub for bioimage informatics resources. All the 
necessary resources and information related to Icy are made avail-
able through a single, comprehensive platform (Supplementary 
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Figure 1 | Icy graphical user interface. (a) Ribbon 
menu. (b) Navigation view. (c) Histogram editing 
look-up-table/false color map editing and channel-
visibility switch. (d) In-app plug-in browser.  
(e) ImageJ bar integrated into the Icy ribbon.  
(f) Two-dimensional view with widget interaction. 
(g) Three open polyline ROIs: one is selected 
with its control points visible. (h) Closed polyline 
segmenting a cell. (i) Sequence represented 
in three-dimensional ray cast and displaying 
augmented tracks. (j) Six mask ROIs. (k) Repre-
sentation of the same sequence in four different 
viewers. (l) Combination of a cell mask and  
enclosed spot detections.

Table 2 | Research features in Icy and in other non-commercial open-source software packages
Reproducible research Extended reproducible research

Code 
accessibility

Public plug-in 
repository

Plug-in publication 
process

Plug-in 
installation

Private plug-in 
repositories

Protocol 
development

Public 
protocols 
repository

Protocols 
publication 

process
Dependencies 
management

Icy Core and  
plug-ins

Open access Open access Manual, in-app Yes Graphical 
workflows

Open access Open access Yes

ImageJ Core and some 
plug-ins

NA NA Manual NA Text-based 
scripting

NA NA NA

Fiji Core and  
plug-ins

Project-owned 1. Submission to 
project owners  
2. Upload on  
project repository

Manual, in-app 
(after restart)

Yes ImageJ macros, 
Jython, JRuby, 
BeanShell and 
Clojure

NA NA Yes

ImageJ2 Core and  
plug-ins

Project-owned 1. Submission to 
project owners  
2. Upload on  
project repository

Not found Not found Graphical 
pipelines

NA NA Yes

BioImageXD Core and  
plug-ins

NA 1. Submission to 
project owners  
2. Inclusion in  
software release

Manual NA NA NA NA NA

Cell Profiler Core and  
plug-ins

NA 1. Submission to 
project owners  
2. Inclusion in  
software release

Manual NA Graphical 
pipelines

NA NA NA

The information in the table was collected from the websites of the respective projects. Commercial packages were not considered as they do not comply with the open-source philosophy.  
NA, not available. Not found, information not found.
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■ Study of yeast nuclear dynamic

■ Global optimization (DP): past + future

■ Cost-function tradeoffs: 
■ Favors bright (or spot-like) structures
■ Imposes continuity constraints and penalizes large jumps

■ Automatic or semi-automatic mode

http://bigwww.epfl.ch/sage/soft/spottracker/ [Sage, IEEE IP, 2005]

Single particle tracking over noisy image sequence

Data: Susan Gasser
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■ Study of yeast nuclear dynamic

■ Global optimization (DP): past + future

■ Cost-function tradeoffs: 
■ Favors bright (or spot-like) structures
■ Imposes continuity constraints and penalizes large jumps

■ Automatic or semi-automatic mode

http://bigwww.epfl.ch/sage/soft/spottracker/ [Sage, IEEE IP, 2005]

Data: S. Gasser, Dept. Molecular 
Biology, University of Geneva

Single particle tracking over noisy image sequence

 Multi-particle tracking challenge
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Data courtesy of
 E. Crowell, INRA



When E-splines meet snakes: active cells
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control points number of control points

(Delgado-Gonzalo et al. IEEE Trans. Image Processing  2012)

Ellipse-reproduction B-spline

40

Exponential spline with parameter ↵ = (0, j
2⇡

M
,�j

2⇡

M
)

Shortest basis function (size N = 3) satisfying:

Partition of unity (affine invariance)

Riesz basis (stability and unicity)

Reproduction of ellipses

Continuity (+ differentiable twice)

(Delgado-Gonzalo et al. CAGD 2012)



Active cells - Icy demo
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Tracking of cell crowds

42
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Data courtesy of Prof. Sebastian Maerkl (EPFL)

Phase contrast Fluorescence

Gene expression profile

44
(Sage et al. Cell Division 2010)



Primary challenge for bioimage informatics
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■ Design of improved segmentation tools
■ Dealing with complicated shapes
■ Handling of cell division
■ Introducing models of time evolution
⇒ Global optimization in space + time

■ Crowded images, touching cells:
⇒ introducing repelling forces

■ High throughput constraint 
(huge numbers of cells and images)

■ Fast, reproducible and easy-to-use algorithms
■ Extension to 3D and 3D + time

46

3D spline-based snake: (best ICIP’15) paper by Schmitter et al.

Text



CONCLUSION
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■ Invaluable role of fluorescence (GFP)
■ Plethora of experimental techniques
■ Molecular biology/biochemistry

■ Advances in optics: confocal, localization, ...
■ Trend towards non-linear techniques 

■ Increasing role of signal processing
■ Deconvolution, imaging software
■ Digital optics
■ Quantitative image analysis

Creation of bioimaging centers 

48
Shared resources, including specialists in image analysis



CONCLUSION (2)
■ On-going challenges for bio-imaging

■ Computed imaging: reconstruction, deconvolution, ...
■ 3D + time data: storage, processing, and analysis
■ Quantitative image analysis

■ Bio-photonics and signal/image processing
■ Imaging software is becoming part of modern systems

■ Emerging inter-disciplinary fields
■ Digital optics & Bioimage informatics

■ Making algorithms available
■ Plateform independence (Java)
■ Web, plugins for ImageJ or Icy

49

Global, integrative view of bioimaging

50

Biology and 
Medicine

Optics Signal 
processing

- physics
- electronics

- molecular biology

Biochemistry
 (markers)

- mathematics
- informaticsGFP

Special issues on topic: 
IEEE Sig. Proc. Magazine, May 2006;

Nature Methods, July 2012; 
IEEE Sig. Proc. Magazine, January 2015;

IEEE Selected Topics in Signal Processing, to appear 2016
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