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Variational formulation of image reconstruction

m Linear forward model noise

r‘\ g=Hs+n

—_—
D =

n

lll-posed inverse problem: recover s from noisy measurements g

m Reconstruction as an optimization problem

s* = argmin ||g — Hs||§ +  AR(s)
N ~~ o ~——
data consistency regularization




Classical linear reconstruction

s* = argmin ||g — Hs|2 + AR(s)
—_——— ——

data consistency regularization

m Quadratic regularization (Tikhonov)

R(s) = |[Ls||?

Formal linear solution: s = (H'H + AL'L)'H g =R, -g

§ L= C;l/z: Whitening filter

m Statistical formulation under Gaussian hypothesis

Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

.1 -
swmap = argming —[lg — Hs|3+  |C7's|;
D N——

A\

~"

Data Log likelihood Gaussian prior likelihood

Signal covariance: C; = E{s - s’}

Sparsity-promoting reconstruction algorithms

s* = argmin ||g — HS||§ +  AR(s)
N——— ——

data consistency  regularization

m Wavelet-domain regularization

Wavelet expansion: s = Wv  (typically, sparse)
Wavelet-domain sparsity-constraint:  R(s) = ||v|le, with v=W~!s

Iterated shrinkage-thresholding algorithm (ISTA, FISTA, FWISTA)

m /, regularization (Total variation)
R(s) = ||Ls||¢, with L: gradient

Iterative reweighted least squares (IRLS) or FISTA




Theory of compressive sensing

m Generalized sampling setting (after discretization)

= Linearinverse problem: u=Hs+n

= N, x N, system matrix: A =HW7
K-sparse

s=WTy

m Formulation of ill-posed recovery problem when 2K < N, < N,

(PO) min|u— Avl|j2 subjectto ||v|o <K

m Theoretical result

Under suitable conditions on A (e.g., restricted isometry), the solution is unique
and the recovery problem (PO0) is equivalent to:

[Donoho et al., 2005

P1 i — Av||2  subject to <C
(P1) HEDHU M ) vl < & Candes-Tao, 2006, ...]

Key research questions

(1) Discretization of reconstruction problem
Continuous-domain formulation Generalized sampling

@ Formulation of ill-posed reconstruction problem

Statistical modeling (beyond Gaussian)
supporting non-linear reconstruction schemes
(including CS)
Sparse stochastic processes

@ Efficient implementation for large-scale imaging problem
FISTA, ADMM




OUTLINE

= Variational formulation of inverse problems v

= Part I: Statistical modeling
An introduction to sparse stochastic processes

Generalized innovation model
Statistical characterization of signal

= Part Il: Recovery of sparse signals
Reconstruction of biomedical images

Discretization of inverse problem
Generic MAP estimator (iterative reconstruction algorithm)
Applications

Deconvolution microscopy
RS Magnetic resonance imaging
Herc X-ray tomography
e Phase-contrast tomography

An
introduction

to sparse
stochastic

processes




Splines and Legos revisited

m Cardinal spline of degree 0: piecewise-contant

%
0 2 4 6 8 10

1, for0<t<1

A=) AKBL(E- k) fa) = { 0, otherwise.

keZ

Notion of D-spline:

Dfi(t) =) ai[k]6(t — k)

kez

B-spline and derivative operator

Derivative Df(t) = %it) D < jw
Finite difference operator

Daf(t) = f(t) — f(t 1) Dy ¢ 1-e

= (B *Df)(t)

B-spline of degree 0 O(t) =1 (t) — 1 (t—1)

B (t) = DaD™16(t) = Dgl () '

I
3w = 1= —

Jw
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Random spline: archetype of sparse signal

cardinal
non-uniform
Ds(t) = Y and(t — t,) = w(t) L

Random weights {a,, } i.i.d. and random knots {¢,,} (Poisson with rate \)

m Anti-derivative operators
t
Shift-invariant solution: D™ p(t) = (14 * )(t) = / o(7)dr

t
Scale-invariant solution: Dy ' (t) = / o(T)dr
0
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Innovation-based synthesis

L=4%4 =D = L~!:integrator

Tp=L"1
6(t) — L_l{-} —
| .

Impulse response

Translation invariance
p(t —to)

>

‘ (5(t—t0) — L_l{'} |

Linearity

— LY} —
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Compound Poisson process

m Stochastic differential equation

with boundary condition s(0) = 0 j

Innovation: w(t) = Z and(t —ty)

m Formal solution
s(t) = Zan o {8( —tn)}(t)

_ Zan Ly (t—tn) — 1 (1))
" \

(impose boundary condition)
13

Lévy processes: all admissible brands of innovations
Generalized innovations : white Lévy noise with E{w(t)w(t')} = 025(t — t')
Ds =w (unstable SDE!)

s=Dylw o VYpeS, (ps) =Dy e w)

White noise (innovation) Lévy process
. 0 Brownian motion 0 (Wiener 1 923)
Gaussian
Integrator ' ' ' ' ' '
Impulsive w(t) t s(t) Compound Poisson
— dr —— 0
0 00 02 04 06 08 10
SaS (Cauchy) W

(Paul Lévy circa 1930) 4




Decoupling Lévy processes: increments

Increment process:  u(t) = Dgs(t) = DaDy 'w(t) = (B * w)(¢).

Increment process is stationary with autocorrelation function

Ru(r) = E{u(t + r)u(t)} = (B * (83)" * Ru)(7) | | * | |

:01205—1#(7__ 1) ~ ~ -

with  (5)"(t) = BY(—t)

Discrete increments
ulk] = s(k) = s(k = 1) = (w, L py1)) = (w, (B3)" (- — k).

u[k] are i.i.d. because
= {8(- — k)} are non-overlapping { ik , L)

= w is independent at every point (white noise)
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Wavelet analysis of Lévy processes

m Haar wavelets

1, for0<t<i - ] ]
YHaar(t) = ¢ —1, fors <t<1 o0 L Yoo L
0, otherwise. ’7
\ J J
/:i ﬁ
" t — 2Zk d)l,O 4’
wz,k(t) - 2_1/ wHaar <T)
\

P20
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Wavelets as multi-scale derivatives

i=0 ,_ ’7 =0

{ Yo,0 L Yo,2 L $0,0 bo,2

[ ]
L] L] »

i=1

{ 1,0 ] { P10

]

i=2 s i=T $2,0

{ -

m Wavelet coefficients of Lévy process
ik =22"1De;,
* * Yir = (s,%ix) o< (5,Di )

Dalwi,k = 2i/2_1¢i’k.

oc (D*s, ¢i ) = —(w, Pi )

17

M-term approximation: wavelets vs. KLT

Identity
Gaussian e Brownian motion
wel T L L L
0
10°
10°
. . . . Identit:
Finite rate of innovation — K
e - Haar
o

Identity
- KLT

Even sparser ...
10} | —_ Haar Lévy flight (Cauchy)

18




Generalized innovation model

Theoretical framework: Gelfand’s theory of generalized stochastic processes

Generic test function ¢ € S plays the role of index variable

Solution of SDE

@

innovation process sparse stochastic process
@ White noise s=L"1w — @
w —>-

X = <<p,w> 4 4 L L P Y = <9073> = <L_1*90’w>

@ Analysis step

Proper definition of
continuous-domain white noise Regularization operator vs. wavelet analysis

(Unser et al, IEEE-IT 2014)
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Short primer on probability theory Example: Gaussian

Random variable X /\

px(x) = \/;276_3”2/2
m Probability measure and density function (pdf) T F
E

Expectation: E{f(X)}:Af(x)@X(dx):/]Rf(a;)px(x)dx

m Characteristic function

Py (w) = E{e*X} = /R 7 () da

Bochner’s theorem
Let px : R — C be a continuous, positive-definite function such that px (0) = 1.
Then, there exists a unique Borel probability measure &y on R, such that

px@) = [ o Px(dn) = [ Mpx(ado

20




Generalized innovation process
m Difficulty 1: w # w() is too rough to have a pointwise interpretation l@

m Difficulty 2: w is an infinite-dimensional random entity;
its “pdf” can be formally specified by a measure Z,,(E) where E C S’(R9)

m Axiomatic definition

(Gelfand-Vilenkin 1964)

function € S(RY).

w is a generalized innovation process (or continuous-domain white noise) in S’ (R?) if

1. Observability : X = (p,w) is a well-defined random variable for any test

2. Stationarity : X, = (¢(- — o), w) is identically distributed for all z, € R.

3. Independent atoms : X, = (¢1,w) and Xy = (p2,w) are independent
whenever 1 and - have non-intersecting support.

X1=<www,_3f\>

m Characteristic functional (w — @)

() = E{ew,m} — el(9:9) P,(dg)

Xo = { oaw , A — ) 7.

S’
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finite-dimensional

infinite-dimensional

random variable X in RN

generalized stochastic process s in %’

probability measure &y on RN
Px(E)=Prob(X € E) = [ppx(x) dx (px is
a generalized [i.e., hybrid] pdf)

for suitable subsets E c RV

probability measure & on .+’
Ps(E) =Prob(s€ E) = [ Zs(dg)

for suitable subsets E c .’

characteristic function
Px(w) = H X)) = [on @ py (x) dx,
we RN

characteristic functional
Ps(p) = EeP9) = [, e P8 P (dg),
peS

Table 3.2 Comparison of notions of finite-dimensional statistical calculus with the theory
of generalized stochastic processes. See Sections 3.4 for an explanation.

S: Schwartz’ space of smooth (infinitely differentiable) and rapidly decaying functions

S’: Schwartz’ space of tempered distributions (generalized functions)




Defining Gaussian noise: discrete vs. continuous

Lévy exponent:  logpx (w) = f(w) = —Fw?

m Discrete white Gaussian noise R L

X = (Xy,...,Xn) with X, i.i.d standardized Gaussian
N

Characteristic function: px (w) = E{e/“*)) = exp (Z flwn)) = o zllwl?

n=1

m Continuous-domain white Gaussian noise

Infinite-dimensional entity w with generic observations X,, = (p,,, w)
Characteristic functional: 22, () = E{el®)) = ¢ 291, = exp (/ f(go(x))dx)
R

px, (w) = BE{el*(#nw)} = E{eilwenw)) = 2, (wipn) = o~ Fw?llenll?,

©
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Infinite divisibility and Lévy exponents

Definition: A random variable X with generic pdf p;q(x) is infinitely divisible (id) iff., for
any N € ZT, there exist i.i.d. random variables X1, ..., X such that X g X1+ -+ Xpy.

m Rectangular test function i.i.d.
Xiq = (w,rect) = l
= + (i ——L )
> €

Proposition
The random variable X;q = (w, rect) where w is a generalized innovation process is
infinitely divisible. It is uniquely characterized by its Lévy exponent f(w) = log pia(w).

Bottom line: There is a one-to-one correspondence between Lévy exponents and infinitely
divisible distributions and, by extension, innovation processes.

24




Examples of infinitely divisible laws

lasiedg

pia(z)
(a) Gaussian
/ 1 2
A pGauss(x) = We 207
(b) Laplace
A
pLaplace(x) == ae Al]

(c) Compound Poisson
A

pPOisson($> = F_l{eA(ﬁA(w)_l)}

E

(d) Cauchy (stabl

1

PcCauchy (1') = m

Characteristic function: piq(w) = /pid(x)ej“"”dx = of @)
R 25

Characterization of generalized innovation

Xp=(wp) = (wawwe, /N2 Tm (e ST )

n— oo

= Lim { i JI— Y e ——r )

n—oo

Theorem

Let w be a generalized stochastic process such that X;q = (w, rect) is well-
defined. Then, w is a generalized innovation (white noise) in S’(R?) if and
only if its characteristic form is given by

Fule) =B} —exp ([ f(otr)ar)

where f(w) is a valid Lévy exponent (in fact, the Lévy exponent of Xjq).
Moreover, the random variables X, = (w, o) are all infinitely divisible with
modified Lévy exponent

fol) = [ flaptr))ar

44

(Gelfand-Vilenkin 1964; Amini-U. IEEE-IT 2014) »e




Canonical Lévy-Khintchine representation

Definition
A (positive) measure 1, on R\{0} is called a Lévy measure if it satisfies

/R min(a2, 1)1, (da) = /R min(a2, 1)v(a)da < co.

The corresponding Lévy density v : R — R is such that y,(da) = v(a)da.

Theorem (Lévy-Khintchine)
A probability distribution p;q is infinitely divisible (id) iff. its characteristic function can
be written as

Did(w) = /Rpid(:r)ejw’”dx = exp (f(w))
with

b2w2
2

f(w) = log Pia(w) = jbiw — + /\{ } (6% — 1 — jawl|g)<1(a)) v(a)da
R\{0

where b} € R and b, € R™ are some arbitrary constants, and where v is an admissible
Lévy density. The function f is called the Lévy exponent of piq.
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Steps 2 + 3: Characterization of sparse process

—> L7t

-1 —
White noise s=L"w U

w —>—
—

>
L «— L Pa—

m Abstract formulation of innovation model

s=Llw & VpeS, (ps)=(p,L7w)= (L "pw)
——"

= Pi(p) =E{e/¥)} = P, (L7¢) = exp (/Rd f(L‘l*w(w))dw)

Sufficient condition for existence:
L~1* continuous operator: S(R?) — L, (R?)

(U.-Tafti-Sun, IEEE-IT 2014)
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Innovation model: statistical implications (id)

m Statistical description of white Lévy noise w (innovation)

= Characterized by canonical (p-admissible) Lévy exponent f(w)
= Generic observation: X = (¢, w) with p € L,(R%)

= X is infinitely divisible with (modified) Lévy exponent

fo(w) =logpx (w) = /Rd f(we(x))de

m Linear observation of generalized stochastic process
s=L"'w & (¢,5)=(,L7"w) = (L"), w)
N——

If ¢ = L% € L,(RY) then Y = (1, s) = (¢, w) is infinitely divisible

with Lévy exponent f,(w) = [o. f(wo(x))de @
_ rliefe@ () = [ ofew)—iwy W -
= vy =F{e }(y)—/Re o = explicit form of pdf

29

Example 1: (f)Brownian motion
Ds =w (unstable SDE ) D7s = w

s:Dglw &S Ve es, <g0,s>:<D0_1*g0,w>

P(w) = P(0) jur dw

Lo-stable anti-derivative:  Ijp(t) = / .
R —jw 2

m Characteristic form of Brownian motion (a.k.a. Wiener process)

ﬁw(@ — exp (—%HIS@H%Q) Stabilization & non-stationary behavior

B 1
= exp §/R
m Characteristic form of fractional Brownian motion

«@(‘P) = exp (—%/R ¢w) — () dw)

|w| on

Plw) — (0) ‘2 dw) (by Parseval)

—jw o

(Blu-U., IEEE-SP 2007)
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Example in 1D: Self-similar processes

L < (jw)H*t2 = L' fractional integrator

Gaussian Sparse (generalized Poisson)

G/.'=H

g¢'I=H

=H

b

Fractional Brownian motion (Mandelbrot, 1968) (U.-Tafti, IEEE-SP 2010) .

Aesthetic sparse signal: the Mondrian process

F . ;
L=D,D, «— (jwz)(jwy)
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Scale- and rotation-invariant processes

Stochastic partial differential equation : (—A)%s(w) = w(x)

s

H=1.25 H=1.75

(U.-Tafti, IEEE- SP 2010)

Gaussian

Sparse (generalized Poisson)
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Powers of ten: from astronomy to biology

o © ©1986 J'érry Lodriguss and John Martinez
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PART Il: RECOVERY OF SPARSE SIGNALS

= 10.1 Discretization of inverse problem

10.2 MAP estimation and regularization

10.3 MAP reconstruction of biomedical
images

= Deconvolution of fluorescent micrographs

= Magnetic resonance imaging

= X-ray tomography

= 10.4 Quest for minimum error solution

35

Generalized innovation model

Theoretical framework: Gelfand’s theory of generalized stochastic processes

@ Specification of inverse operator

Functional analysis solution of SDE @
Very easy ! (after solving 1. & 2.)
innovation process —> L' —— sparse stochastic process
—1
s=L"w
w —_»; O _/—\_F_

X = < ,’LU)
’ J_‘_l_" Y = (p,8)= (L™ p,w)
L — L Pa—

@ Analysis step

Lévy exponent: f(w)

@ Characterization of continuous-domain white noise Regularization operator
Higher mathematics: generalized functions (Schwartz) vs. wavelet analysis

measures on topological vector spaces
Easy when: v; = L*¢;

Minlos-Bochner and Lévy-Khintchine theorems

36
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Resolution of linear inverse problems

m Linear forward model noise

&

_—
\U ’i S —

n

y =Hs+n

>
>

lll-posed inverse problem: recover s from noisy measurements y

Bayesian prior

/- —logps(s)
s* = argmin |y — Hs|; + AR(s)

\

~\~ S——
/Zlata consistency  regularization

Gaussian-noise likelihood —log py|s(n) 38

m Reconstruction as an optimization problem




Recap on probability model

m Continuous-domain model: s = L~ 1w

w = Ls: generalized white noise process with Lévy exponent f(w)

Characteristic functional: 2, () = E{e/®™)} = exp (/ f(go(’r))dr)
Rd

m Discretization: s(k),k € Z? (sampled values)

Discrete approximation of whitening operator: Lg
Discrete increment process:
ulk] = Las(@)|p—p = (AL * w)(@)]pp = (OL(k =), w)

Generalized B-spline:  Br(z) = LqL. ™ '6(x)

m Statistical properties

- u[k] are identically distributed and approximately independent

- Infinitely divisible with Lévy exponent fi;(w) = log py(w) = log Py (wpL)
39

Discretization of reconstruction problem

Spline-like reconstruction model: s(r) = Z slk]Br(r) <+— s = (s[k])kea

kcQ
m Innovation model
Ls = w ] ] ] . .
Discretization u = Ls (matrix notation)
s = L 'w

py is part of infinitely divisible family
m Physical model: image formation and acquisition

s = / $1(2) 0 (@)dz + 0[] = (s1,7) +0lm], (m=1,..., M)
Rd

y=Yo+tn=Hs+n n: i.i.d. noise with pdf py

H]m k= (M, Bk) = / N (1) Br(r)dr: (M x K) system matrix
R4

40




Posterior probability distribution

oy = Pr1sIsps(s) _ pa(y — Hs)ps(s) (Bayes’ rule)
pS|Y( IY) - Dy (y) - Py (y)
= %pN(y — Hs)ps(s)

u=>Ls = ps(s) x py(Ls)

ps|y (sly) o< pi (y — Hs)pu (Ls) ~ pn (v — Hs) | [ pu([Lslk)
keQ

(decoupling simplication)
m Additive white Gaussian noise scenario (AWGN)

psiy (sly) o exp (—w) TT vo ([Lsle)

202
ke

41

Statement of MAP reconstruction problem

m Hypotheses

y = Hs + n where n AWGN with variance o

Ls = u: i.i.d. with pdf pyy and id potential function ®;;(x) = — log py ()

m Maximum a posteriori (MAP) estimator

, 1
SMApP = arg Sfélﬂlél( (5”3’ - HSH% +0° Z q)U([LS]k))

keQ
= Gaussian: py () = \/21 Oe_ﬁ/(zag) = Oy(z) = 5522+ O
TOo ()
= Laplace: py(z) = 3e Al =  Oy(r) = Nz|+ Cy

lasiedg

1 1\ 1
= Student: py(x) = B 1) <x2 n 1) = Py(z)=(r+ 5) log(1 + 22) + Cs
12

42




px(x) Dx(x)=—-logpx(x)asx—0 Dy (x) as x — oo Smooth Convex
Gaussi N N Y Ye
aussian ag+ — ag+ — es es
07 202 07 262
Laplace (A € R*) ap+ Al x| ap+ Alx| No Yes
Svm G R+ log(a6+a’,|x|2r’1+0(x2)), r<3/2 bo+ || — (r — Dlog|l N N
amma r € ; ) +|x|-(r—1log|x o o
ym g + g + O(|xminé2r-y 535 P 8
2.2
. n’x 4 n
Hyperbolic secant  ag+ —— +0 (x%) —logog+ —1|x| Yes Yes
80; 209
: + yr2) , 4 n
Meixner r, s € R ao+Tx +0(x*) b0+2—|x|—(r—1)log|x| Yes No
s s
Cauchy s e R* ap + f—j +0(xh by —log s +2log|x| Yes No
Sym Student r € R* ao+(r+%)x2+0(x4) bo+ 2r+1)log|x]| Yes No
3
SaS, a € (0,2],seR" ao+%‘il)x2+0(x4) bo—alogs+ (a+1)log|x] Yes No

I'(z) and Y (r) are Euler’s gamma and first-order poly-gamma functions, respectively (see Appendix C).

Table 10.1 Asymptotic behavior of the potential function ®x(x) for the infinite-divisible

distributions in Table 4.1.
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Proximal operators

1
C42) - 2, 2
proXg,, (y;0°) = argglel]%?y —ul® + 0Py (u)

u= PTOXQU(% 1)

20

Student potentials: r» = 2,4, 8, 32 (fixed variance)

Solution of functional equation: —y + @ + o2®}; () = 0

One-to-one mapping y — @ when 1 + o2®7;(u) > 0

=

u(y) = (Id + o*®7) ~*(y)

L L L
0 10 20 30

44




Proximal operators (Cont’d)

m Special cases: ®1(u) = A|u| (Laplace) and ®»(u) = |u|?/(202) (Gaussian)

Ti(y) = proxg, (y; 0%) = sign(y) (ly| — Ao?) (soft-threshold)
2 o . .
T5(y) = proxg, (y;0°) = Wy (linear attenuation)

m Asymptotics

Around origin when ®¢; is twice differentiable

Y

2\
(I)'U(u) = <I>’[}(O)u + O(u2) = pI‘OX<I>U (y,O' ) = 1+02—<I>’[}(0)

asy — 0

Exponential and sub-exponential category: lim,, o, ®7;(u) = b1 + O(1/u)
proxg, (y;0%) ~y —o°by as y — +oo (shrinkage)
Heavy-tailed category: lim,, o, @7 (u) = ba/u

proxg,, (V; o%) ~yasy — oo (identity)

45

Maximum a posteriori (MAP) estimation

m Constrained optimization formulation

Auxiliary innovation variable: u = Ls

(1 :
SMAP = arg min <§||y — Hs||3 + 02 Z @U([u]n)> subjectto u = Ls

n

m Augmented Lagrangian method

Quadratic penalty term: £ ||Ls — ul[3

Lagrange multipler vector: o

1
La(s,u,a) = - g — Hs[}+) (Z @p([u]a) — ol (Ls — w) + £ |Ls - u||§>

46




Alternating direction method of multipliers (ADMM)
Lals,m0) = 3 15— Hs|Z4+A (Z Py ([ul.) — o (Ls —u) + £ |[Ls - u||%>

Sequential minimization
sF*1 « arg min L4(s,u”, a®)
sERN

& oFtl = ok — M(Lsk—}—l _ uk)
uFt!  arg min £4(s*1, u, oY)

ucRN

Linear inverse problem:  s**+! = (HTH + MLTL)_1 (HTy 4 zF+1)

with 28T = LT (puht! — a)

Nonlinear denoising: uftl = proxg,, (Ls* + af; Ap™t)

m Proximal operator taylored to stochastic model

1
proxa, (y; A) = argmin -y — uf? + ADy (u)

TR 0 : e
Cauchy prior with increasing sg

10.3 RECONSTRUCTION OF BIOMEDICAL IMAGES

= Common image model and numerical set-up

= - spectral decay «+— (—A)

PR s =w (self-similar image model)

= Robust localization/decoupling L: discrete gradient magnitude (rotation invariant)

= Three flavors of potentials:

|z|? (Gaussian), |x| (Laplacian), log(x? + €) (Student)

= Deconvolution of fluorescent micrographs
= Magnetic resonance imaging

= X-ray tomography

48




Relevance of self-similariy for bio-imaging

49

Deconvolution of fluorescence micrographs

m Physical model of a diffraction-limited microscope

g(x,y,z) = (th*S)(x,y,Z) :)

3-D point spread function (PSF)

hsp(x,y,z) = Iy |p,\ (%’%,#”2 1

z

2 2
pale,y, 2) = / P(wy,ws) exp (j%zwl - ;"2> exp (—mw) dwydws
R2 2\ fg Ao

Optical parameters
= \: wavelength (emission)

= M : magnification factor

fo: focal length

P(w1,w2) = 1)y <R, pupil function
» NA = nsinf = Ry/ fo: numerical aperture

50




2-D convolution model

s(z,y) | 9(x,y) = (hop * s)(2,y)
Thin specimen lug';gj
Radial profile

B

with r = /22 +y2, rg = Q;RO ): first-order Bessel function.

m Airy disk:  hop(z,y) = Io ‘QJISZO)

m Modulation transfer function

2
2 <a,rccos (”“’”) — el fy (M> > , for0 < fjwl| < wo
s wo wo wo -

0, otherwise

hap (w) =

Cut-off frequency (Rayleigh): wo = 57 = -~ =5~
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2-D deconvolution: numerical set-up

m Discretization

wo < 7 and representation in (separable) sinc basis {sinc(x — &)}, -
Analysis functions: 7y, (x,y) = hop(z — m1,y — mo)
= (1), sinc(- — k))

= (hop(- — m), sinc(- — k))
= (sinc * th)(m — k) = hap(m — k).

[H]m k

)

H and L: convolution matrices diagonalized by discrete Fourier transform

m Linear step of ADMM algorithm implemented using the FFT

Sk+1 — (HTH + MLTL)*l (HTy + Zk+1)
with  zF T = LT (puht! — a)
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Deconvolution experiments

(b)

Figure 10.3 Images used in deconvolution experiments. (a) Stem cells surrounded by goblet
cells. (b) Nerve cells growing around fibers. (c) Artery cells.

Table 10.2 Deconvolution performance of MAP estimators based on different prior
distributions.

Estimation performance (SNR in dB)
BSNR (dB) Gaussian Laplace Student’s
Stem cells 20 14.43 13.76 11.86
30 15.92 15.77 13.15
40 18.11 18.11 13.83
Nerve cells 20 13.86 15.31 14.01
30 15.89 18.18 15.81
40 18.58 20.57 16.92
Artery cells 20 14.86 15.23 13.48
30 16.59 17.21 14.92
40 18.68 19.61 15.94
53
Magnetic resonance imaging (MRI)
m Physical image formation model (noise-free)
(W) :/ s(r)e Hwmn) qp (sampling of Fourier transform)
R2

Equivalent analysis function: 7, (r) = e~3{wm.m)

m Discretization in separable sinc basis

[H]m,n = <77m, sinc(- — n)>

= <e_j<“’m">,sinc(- —n)) = e I{wm.m)

Property: H' H is circulant (FFT-based implementation)
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MRI: Shepp-Logan phantom

Original SL Phantom Fourier Sampling Pattern
12 Angles

L : gradient
Optimized parameters

X

Laplace prior (TV) Student prior (log)

MRI phantom: Spiral sampling in k-space
L : gradient
Optimized parameters

Original Phantom Gaussian prior (Tikhonov)
(Guerquin-Kern TMI 2012) SER =17.69 dB

Laplace prior (TV) Student prior
SER =21.37 dB SER =27.22 dB 56




MRI reconstruction experiments

Figure 10.4 Data used in MR reconstruction experiments. (a) Cross section of a wrist. (b)
Angiography image. (c) k-space sampling pattern along 40 radial lines.

Table 10.3 MR reconstruction performance of MAP estimators based on different prior
distributions.

Radial lines  Estimation performance (SNR in dB)
Gaussian  Laplace Student’s
Wrist 20 8.82 11.8 5.97
40 11.30 14.69 13.81
Angiogram 20 4.30 9.01 9.40
40 6.31 14.48 14.97
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X-ray tomography

Projection geometry: « = t0 + r6= with @ = (cos 6, sin 6)

m Radon transform (line integrals)

Ry {s(x) (1) = / s(t0 + 10 )dr

R

:/ s(x)o(t — (x, 0))dx
R2

sinogram

Equivalent analysis functions: 7, () = 6 (¢, — (., 0.,))
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Properties of Radon transform

m Projected translation invariance

Ro{o(- — 20)}(t) = Ro{}(t — (x0,0))

m Pseudo-distributivity with respect to convolution -
po(w) = Re{pHw) = $(wcosh, wsin §)

Ro{w1 * @2}(t) = (Ro{p1} * Ro{p2}) (1) N W
©)
m Fourier central-slice theorem P '\9
/R Ro{ (e tdt = $(w)]o,_g Z

Proposition: Consider the separable function ¢(x) = ¢1(z)p2(y). Then,

Ro{p(- = 0)}(t) = @o(t —to)

where tg = (x(, 6) and

po(t) = (|colse|901(0080) * |si}19|902(sin8)) (t)-
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Discretization using polynomial B-splines
m Separable B-spline reconstruction model
s(@) =) sklf"(@—k) with f"(z)=p5"()5"(y)
k
n+1 n+1\"
. anlina- n . \k n+1 (x_k+T)+
Centered polynomial B-spline: 5" (z) = I;O( 1) < i ) o
m Radon transform of B-spline
Ro {8"(x)B"(y)} () = By (1)
T 1 fng 1Y (S R)eosd 4 (5 k) sing)
- ];”;:O(_l)k% < k )( K ) | cos @7+t | sin @+ (2n + 1)! .
Justification: f*—ll, * f*—:, = %
m System matrix H],, . = (0(tm — (,0m)), 8" (- — k))

=Ry, {8"(- = K)} (tm) = By, (tm — (K, Om))
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Spline flowers

61

(@)

Figure 10.6 Images used in X-ray tomographic reconstruction experiments. (a) The
Shepp-Logan (SL) phantom. (b) Cross section of a human lung.

Table 10.4 Reconstruction results of X-ray computed tomography using different

estimators.
Directions  Estimation performance (SNR in dB)
Gaussian  Laplace Student’s
SL Phantom 120 16.8 17.53 18.76
SL Phantom 180 18.13 18.75 20.34
Lung 180 22.49 21.52 21.45
Lung 360 24.38 22.47 22.37
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10.4 QUEST FOR MINIMUM ERROR SOLUTION

How suitable are MAP estimators ?

w A detailed investigation of simpler denoising problem

= MMSE estimators for first-order processes
= Direct solution by belief propagation

= MMSE vs. MAP denoising of Lévy processes
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MMSE estimators for first-order processes

Task: Recovery of non-Gaussian AR(1) and Lévy processes from noisy samples

m Measurement model:  p(y;.vy|x,:xx)(¥[X) = H Py |x (Un|Tn)
~———

independent noise contributions

m Discrete innovation model: u,, = x,, — a1x,_1, u i.i.d. with pdf pis

m Posterior distribution of signal

pu (@ — a13,-1)
—_———

Un

&EZ

N
P(X1:XN|Y1:YN) (xly) = HpY|X yn|117n
m Signal estimators
XMAP (Y) = arg 361%?]5 {p(X1:XN|Y1:YN)(X|Y)}
xvMse(Y) = E{x|y} = / X P(x,: Xy |v1:vy)(X|y)dx  :optimal MMSE solution
]RN
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Introduction to BP algorithm

pyix(wile)  Pyix(valz2) Py |x (ys|z3)
2 4 6
Hx, (x) 1k, (@)
m Estimation of a three-point Lévy process 1 Ag(), 3 _<f>_ 5 _<£_
P(x1:X3|v1:5) (X]Y) pu(z1) pu(rz —z1)  pulzs—x2)

x pu(x1) py|x (W1lr1) pu(ee — 21) py|x (y2|72) pU (T3 — 22) py|x (y3]|z3)
m Recursive evaluation of marginal distributions

P(Xa|vi:vs) (Z2]Y) I//p(xlzxgYI:YS)(X|Y)d$1d$3
R JR
bx, (#1) wk, (z3)

—— ~ =
OC/]?U($1) py|x Wilr1) pu(ze — 21)dz: - py|x (y2r2) '/pU(933—9€2)pY|X(y3\$3) -1 das
R R

~~

~~

My (T2) Miz(mz)
P(xs|v2:v3) (73]Y) =//p(X1:X3|Y1:Y3)(X!Y)dxldﬂfz
R JR

OC/M)_(2($2>pY|X(yz|$2)pU(903—xz)d9€2 pyx (ysles) - 1
JR —~-

~~ - A CE))
My, (23) 65

Direct MMSE solution by belief propagation
Factorized representation:  p(x,, |v:vw)(@nly) = ttx (Tn) -+ Py|x (Un|Ts) - u};n (zn)

Auxiliary belief functions 1y (z) and p§ ()

pyix(uilz)  Pyix(vales) py|x (yslzs)
P . 6
m BP for Lévy and non-Gaussian AR(1) processes 2 !
1y, (@) 1, (x)
— Initialization: Set 1 3 4@ 5
Bx, () = py(x) pu(z1) pu (e —21) pu(ws — z2)

K, (1) =1
— Forward message recursion: For n =2 to N, compute
b, 00 [ 103, prix(aala) pulx—ar2) dz
— Backward message recursion: For n = (N — 1) down to 1, compute
H, (x) o fRPU(Z— a1x) pyix(yn+112) px,,., (2) dz
— Results: For n=1to N, compute
P Yy (X1Y) o e, (0 pyix (¥nlx) - i, (x)

[(XMMSE] 2 = fo P (Xl v1:vy) (X1y) dx
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Experiment: Denoising of Lévy processes

mmmwwwwf“ﬂxm/wwwwf“”“”NWWMMWWWJMMKM“W%“w““ Gaussian

—A— MMSE = LMMSE = MAP
8H =»—Log
TV

A SNR [dB]

10°
AWGN o2

kgrL)AA\qvgi¥'ﬁ/J‘f,Iﬂ\kggggwlﬁlw Cauchy

—4— MMSE
=——Log = MAP
[| TV
LMMSE

w

A SNR [dB]

-
T

o
oC s
|

10°
AWGN o2

CONCLUSION

= Unifying continuous-domain stochastic model
Backward compatibility with classical Gaussian theory
Operator-based formulation: Lévy-driven SDEs or SPDEs
vs. sparse (generalized Poisson, student, SaS)

= Regularization
Sparsification via “operator-like” behavior (whitening)
Specific family of id potential functions (typ., non-convex)

= Conceptual framework for sparse signal recovery
New statistically-founded sparsity priors
Derivation of optimal estimators (MAP, MMSE)
Principled approach for the development of novel algorithms

= Challenges
Calculation of MMSE solution (belief propagation ?)

Fast algorithms for solving large scale inverse problems with (more or
less) structure 68
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