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Variational formulation of image reconstruction
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linear
model

noise

H n

s? = argmin ⇥g �Hs⇥22| {z }
data consistency

+ �R(s)| {z }
regularization

Reconstruction as an optimization problem

Linear forward model

s

g = Hs+ n

Ill-posed inverse problem: recover s from noisy measurements g



Classical linear reconstruction 
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Formal linear solution: s = (HTH+ �LTL)�1HTg = R� · g

m L = C�1/2
s : Whitening filter

Quadratic regularization (Tikhonov)

R(s) = kLsk2

Statistical formulation under Gaussian hypothesis

Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

s? = argmin kg �Hsk22| {z }
data consistency

+ �R(s)| {z }
regularization

Signal covariance: Cs = E{s · sT }

sMAP = argmins
1

�2
kg �Hsk22

| {z }
Data Log likelihood

+ kC�1/2
s sk22| {z }

Gaussian prior likelihood

Sparsity-promoting reconstruction algorithms
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s? = argmin ⇥g �Hs⇥22| {z }
data consistency

+ �R(s)| {z }
regularization

Wavelet-domain regularization

Wavelet expansion: s = Wv (typically, sparse)

Wavelet-domain sparsity-constraint: R(s) = kvk`1 with v = W�1s

Iterated shrinkage-thresholding algorithm (ISTA, FISTA, FWISTA)

`1 regularization (Total variation)

R(s) = kLsk`1 with L: gradient

Iterative reweighted least squares (IRLS) or FISTA



Theory of compressive sensing

[Donoho et al., 2005
     Candès-Tao, 2006, ...]

Formulation of ill-posed recovery problem when 2K < Nu ⇤ Nv

(P0) min
v
⌅u�Av⌅22 subject to ⌅v⌅0 ⇥ K

Theoretical result

Under suitable conditions on A (e.g., restricted isometry), the solution is unique
and the recovery problem (P0) is equivalent to:

(P1) min
v
⇤u�Av⇤22 subject to ⇤v⇤1 ⇥ C1

Generalized sampling setting (after discretization)

Linear inverse problem: u = Hs+ n

Nu ⇥Nv system matrix : A = HWT

s = WTv

K-sparse

H

Key research questions

6

Generalized sampling
1 Discretization of reconstruction problem

Continuous-domain formulation

2 Formulation of ill-posed reconstruction problem

Sparse stochastic processes

Statistical modeling (beyond Gaussian) 
supporting non-linear reconstruction schemes 
(including CS)

3 Efficient implementation for large-scale imaging problem
FISTA, ADMM
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OUTLINE

! Variational formulation of inverse problems ✔
! Part I: Statistical modeling

An introduction to sparse stochastic processes
! Generalized innovation model
! Statistical characterization of signal

! Part II: Recovery of sparse signals
Reconstruction of biomedical images
! Discretization of inverse problem
! Generic MAP estimator (iterative reconstruction algorithm)
! Applications

Deconvolution microscopy
Magnetic resonance imaging
X-ray tomography
Phase-contrast tomography

EDEE Course 8

An
introduction
to sparse
stochastic
processes



Splines and Legos revisited
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Cardinal spline of degree 0: piecewise-contant

�0
+(t) =

(
1, for 0  t < 1

0, otherwise.

Notion of D-spline:

Df1(t) =
X

k2Z
a1[k]�(t� k)

f1(t) =
X

k2Z
f1[k]�

0
+(t� k)

B-spline and derivative operator

10

1 2 3 4 5

1

�0
+(t) = +(t)� +(t� 1)

�0
+(t) = DdD

�1�(t) = Dd +(t)

Finite difference operator

B-spline of degree 0

Derivative Df(t) =
df(t)

dt
D

F ! j!

Ddf(t) = f(t)� f(t� 1) Dd
F ! 1� e�j!

= (�0
+ ⇤Df)(t)

�̂0
+(!) =

1� e�j!

j!

l



Random spline: archetype of sparse signal
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0 2 4 6 8 10

Anti-derivative operators

Shift-invariant solution: D�1'(t) = ( + ⇤ ')(t) =
Z t

�1
'(⌧)d⌧

Scale-invariant solution: D�1
0 '(t) =

Z t

0
'(⌧)d⌧

non-uniform

cardinal

Ds(t) =
X

n

an�(t� tn) = w(t)

Random weights {an} i.i.d. and random knots {tn} (Poisson with rate �)

Impulse response 

Translation invariance 

Linearity 

Innovation-based synthesis
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L�1{·}

L�1{·}

L�1{·}

⇢ = L�1�

L = d
dt = D ) L�1

: integrator

�(t)

�(t� t0)

X

n

an�(t� tn)

⇢(t� t0)

s(t) =
X

n

an⇢(t� tn)



Compound Poisson process
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0 2 4 6 8 10

Stochastic differential equation

Ds(t) = w(t)

with boundary condition s(0) = 0

Innovation: w(t) =
X

n

an�(t� tn)

s(t) = D�1
0 w(t) =

X

n

anD
�1
0 {�(·� tn)}(t)

=
X

n

an
�

+(t� tn)� +(�tn)
�

(impose boundary condition)

Formal solution

Lévy processes: all admissible brands of innovations

14

(unstable SDE !)

0.0 0.2 0.4 0.6 0.8 1.0

0 0

0.0 0.2 0.4 0.6 0.8 1.0
0 0

0.0 0.2 0.4 0.6 0.8 1.0

0 0

Compound Poisson

Brownian motion

Integrator

Gaussian 

Impulsive Z t

0
d⌧

Lévy flight

s(t)w(t)

White noise (innovation) Lévy process

S↵S (Cauchy)

(Paul Lévy circa 1930)

(Wiener 1923)

Generalized innovations : white Lévy noise with E{w(t)w(t0)} = �2
w�(t� t0)

Ds = w

s = D�1
0 w , 8' 2 S, h', si = hD�1⇤

0 ', wi



Decoupling Lévy processes: increments
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u(t) = Dds(t) = DdD
�1
0 w(t) = (�0

+ ⇤ w)(t).

Increment process is stationary with autocorrelation function

Discrete increments

h , i
u[k] are i.i.d. because

{�0
+(·� k)} are non-overlapping

w is independent at every point (white noise)

*
⇤ ⇥� ⌅

Increment process:

u[k] = s(k)� s(k � 1) = hw, [k,k+1)i = hw, (�0
+)

_(·� k)i.

Ru(⌧) = E{u(t+ ⌧)u(t)} =
�
�0
+ ⇤ (�0

+)
_ ⇤Rw

�
(⌧)

= �2
w�

1
+(⌧ � 1)

with (�0
+)

_(t) = �0
+(�t)

Wavelet analysis of Lévy processes
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Haar wavelets

 Haar(t) =

8
><

>:

1, for 0  t < 1
2

�1, for 1
2  t < 1

0, otherwise.

 i,k(t) = 2�i/2 Haar

✓
t� 2ik

2i

◆

8
><

>:

 2,0

 1,0

 0,0  0,2

i = 0

i = 1

i = 2

8
><

>:

(



Wavelets as multi-scale derivatives
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 i,k = 2i/2�1D�i,k

D�1
0  i,k = 2i/2�1�i,k.

Yi,k = hs, i,ki / hs,D�i,ki

/ hD⇤s,�i,ki = �hw,�i,ki

8
><

>:

 2,0

 1,0
�1,0

 0,0  0,2 �0,2�0,0

i = 0

i = 1

i = 2

8
><

>:

(

8
><

>:

i = 0

i = 1

i = 2

8
><

>:

(
�2,0

Wavelet coefficients of Lévy process
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   KLT
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Brownian motion

Compound Poisson

Lévy flight (Cauchy)
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M-term approximation: wavelets vs. KLT

Gaussian

Finite rate of innovation

Even sparser ...
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Generalized innovation model

1 3White noise

Whitening operator

L�1

L

s = L�1w

w

2

Generic test function ' � S plays the role of index variable

Regularization operator vs. wavelet analysis

4 Analysis step

Solution of SDE

Proper definition of
 continuous-domain white noise

X = h', wi Y = h', si = hL�1⇤', wi

Theoretical framework: Gelfand’s theory of generalized stochastic processes

(Unser et al, IEEE-IT 2014)

innovation process sparse stochastic process

Short primer on probability theory

20

Random variable X

Probability measure and density function (pdf)

Prob(X 2 E) = PX(E) =

Z

E
pX(x)dx

l F

Example: Gaussian

Expectation: E{f(X)} =

Z

R
f(x)PX(dx) =

Z

R
f(x)pX(x)dx

p

X

(x) = 1p
2⇡

e�x

2
/2

Characteristic function

p̂

X

(!) = E{ej!X} =

Z

R
ej!x

p

X

(x)dx

Bochner’s theorem

Let bp
X

: R ! C be a continuous, positive-definite function such that bp
X

(0) = 1.

Then, there exists a unique Borel probability measure P
X

on R, such that

p̂

X

(!) =

Z

R
ej!xP

X

(dx) =

Z

R
ej!x

p

X

(x)dx

p̂X(!) = e�!2/2



Generalized innovation process
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X1 = h , i

X2 = h , i

Difficulty 1: w 6= w(x) is too rough to have a pointwise interpretation

Difficulty 2: w is an infinite-dimensional random entity;

its “pdf” can be formally specified by a measure Pw(E) where E ✓ S 0(Rd)

Axiomatic definition

(Gelfand-Vilenkin 1964)

( ! ! ' )
Characteristic functional

dPw(') = E{ejh',wi} =

Z

S0
ejh',giPw(dg)

1. Observability : X = h', wi is a well-defined random variable for any test

function ' 2 S(Rd).

2. Stationarity : X
x0 = h'(·� x0), wi is identically distributed for all x0 2 Rd

.

3. Independent atoms : X1 = h'1, wi and X2 = h'2, wi are independent

whenever '1 and '2 have non-intersecting support.

w is a generalized innovation process (or continuous-domain white noise) in S 0(Rd) if

26 Mathematical context and background

finite-dimensional theory (linear algebra) infinite-dimensional theory (functional
analysis)

Euclidean space RN , complexification CN function spaces such as the Lebesgue space
Lp (Rd ) and the space of tempered distribu-

tions S 0(Rd ), among others.

vector x = (x1, . . . , xN ) in RN or CN function f (r ) in S 0(Rd ), Lp (Rd ), etc.

bilinear scalar product
hx , yi=PN

n=1 xn yn h', g i=
R

'(r )g (r ) dr

' 2S (Rd ) (test function), g 2S 0(Rd ) (gen-
eralized function), or
' 2 Lp (Rd ), g 2 Lq (Rd ) with 1

p + 1
q = 1, for

instance.

equality: x = y () xn = yn various notions of equality (depends on the
space), such as

() hu, xi= hu, yi, 8u 2RN weak equality of distributions: f = g 2
S 0(Rd ) () h', f i = h', g i for all ' 2
S (Rd ),

() kx ° yk2 = 0 almost-everywhere equality: f = g 2
Lp (Rd ) ()

R

Rd | f (r )° g (r )|p dr = 0.

linear operators RN !RM continuous linear operators S (Rd ) !
S 0(Rd )

y = Ax ) ym =PN
n=1 amn xn g = A') g (r ) =

R

Rd a(r , s)'(s) ds for some

a 2S 0(Rd£Rd ) (Schwartz’ kernel theorem)

transpose adjoint
hx ,Ayi= hAT

x , yi h',Ag i= hA§', g i

Table 3.1 Comparison of notions of linear algebra with those of functional analysis and the

theory of distributions (generalized functions). See Sections 3.1-3.3 for an explanation.

finite-dimensional infinite-dimensional

random variable X in RN generalized stochastic process s in S 0

probability measure PX on RN probability measure Ps on S 0

PX (E) = Prob(X 2 E) =
R

E pX (x) dx (pX is
a generalized [i.e., hybrid] pdf)

Ps (E) = Prob(s 2 E) =
R

E Ps (dg )

for suitable subsets E ΩRN for suitable subsets E ΩS 0

characteristic function characteristic functional
cPX (!) = E{ejh!,X i} =

R

RN ejh!,xipX (x) dx ,
! 2RN

cPs (') = E{ejh',si} =
R

S 0 ejh',g iPs (dg ),
' 2S

Table 3.2 Comparison of notions of finite-dimensional statistical calculus with the theory

of generalized stochastic processes. See Sections 3.4 for an explanation.

S: Schwartz’ space of smooth (infinitely differentiable) and rapidly decaying functions

S 0
: Schwartz’ space of tempered distributions (generalized functions)
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Defining Gaussian noise: discrete vs. continuous
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Lévy exponent: log p̂X(!) = f(!) = � 1
2!

2

Characteristic functional:

dPw(') = E{ejh',wi} = e

� 1
2k'k2

L2
= exp

✓Z

R
f

�
'(x)

�
dx

◆

Continuous-domain white Gaussian noise

Infinite-dimensional entity w with generic observations Xn = h'n, wi

Characteristic function: p̂X(!) = E{ejh!,Xi
) = exp

� NX

n=1

f(!n)
�
= e

� 1
2k!k2

Discrete white Gaussian noise

X = (X1, . . . , XN ) with Xn i.i.d standardized Gaussian

p̂Xn(!) = E{ej!h'n,wi} = E{ejh!'n,wi} = cPw(!'n) = e�
1
2!

2k'nk2
L2

Infinite divisibility and Lévy exponents

24

Rectangular test function

1
n

1
n

1

Bottom line: There is a one-to-one correspondence between Lévy exponents and infinitely

divisible distributions and, by extension, innovation processes.

i.i.d.

Definition: A random variable X with generic pdf pid(x) is infinitely divisible (id) iff., for

any N 2 Z+
, there exist i.i.d. random variables X1, . . . , XN such that X

d

= X1+ · · ·+XN .

Xid = hw, recti = h , i
= h , i+ · · ·+ h , i

Proposition

The random variable Xid = hw, recti where w is a generalized innovation process is

infinitely divisible. It is uniquely characterized by its Lévy exponent f(!) = log p̂id(!).



Examples of infinitely divisible laws
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�4 �2 2 4

0.1

0.2

0.3

0.4

�4 �2 2 4

0.1
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0.3

0.4
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�4 �2 0 2 4

0.1
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0.4

0.5

0.6

0.7

�4 �2 2 4

0.05

0.10

0.15

0.20

0.25

0.30

(a) Gaussian

(b) Laplace

(c) Compound Poisson

(d) Cauchy (stable)

2000

�5

5

2000

�5

5

2000

�5

5

2000

�5

5

Sparser

pid(x)

pCauchy(x) =
1

⇡ (x2 + 1)

pGauss(x) =
1p
2⇡�2

e�
x

2

2�2

pLaplace(x) =
�

2
e��|x|

p

Poisson

(x) = F�1{e�(p̂A(!)�1)}

Characteristic function: bpid(!) =
Z

R
pid(x)e

j!xdx = ef(!)

Characterization of generalized innovation

26

X' = hw,'i = h , i , lim
n!1

h , i

= lim
n!1

h , i+ · · ·+ h , i

(Gelfand-Vilenkin 1964; Amini-U. IEEE-IT 2014)

Theorem

Let w be a generalized stochastic process such that Xid = hw, recti is well-

defined. Then, w is a generalized innovation (white noise) in S 0
(Rd

) if and

only if its characteristic form is given by

dPw(') = E{ejhw,'i} = exp

✓Z

Rd

f
�
'(r)

�
dr

◆

where f(!) is a valid Lévy exponent (in fact, the Lévy exponent of Xid).

Moreover, the random variables X' = hw,'i are all infinitely divisible with

modified Lévy exponent

f'(!) =

Z

Rd

f
�
!'(r)

�
dr



Canonical Lévy-Khintchine representation
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Definition

A (positive) measure µv on R\{0} is called a Lévy measure if it satisfies

Z

R
min(a2, 1)µv(da) =

Z

R
min(a2, 1)v(a)da < 1.

The corresponding Lévy density v : R ! R+
is such that µv(da) = v(a)da.

Theorem (Lévy-Khintchine)

A probability distribution pid is infinitely divisible (id) iff. its characteristic function can

be written as

bpid(!) =
Z

R
pid(x)e

j!x

dx = exp

�
f(!)

�

with

f(!) = log bpid(!) = jb

0
1! � b2!

2

2

+

Z

R\{0}

�
e

ja! � 1� ja! |a|<1(a)
�
v(a)da

where b

0
1 2 R and b2 2 R+

are some arbitrary constants, and where v is an admissible

Lévy density. The function f is called the Lévy exponent of pid.
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Steps 2 + 3: Characterization of sparse process

White noise

Whitening operator

L�1

L

s = L�1w

w

Abstract formulation of innovation model

s = L�1w � ⇤� ⇥ S, ⌅�, s⇧ = ⌅�,L�1w⇧ = ⌅L�1⇤�| {z }, w⇧

) cPs(') = E{ejhs,'i} =

dPw(L
�1⇤') = exp

✓Z

Rd

f
�
L

�1⇤'(x)
�
dx

◆

Sufficient condition for existence:

L�1⇤
continuous operator: S(Rd) ! Lp(Rd)

(U.-Tafti-Sun, IEEE-IT 2014)



Innovation model: statistical implications (id)
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) pY (y) = F�1{ef�(!)}(y) =
Z

R
ef�(!)�j!y d!

2⇡

Statistical description of white L

´

evy noise w (innovation)

Characterized by canonical (p-admissible) L

´

evy exponent f(!)

Generic observation: X = h', wi with ' 2 Lp(Rd
)

X is infinitely divisible with (modified) L

´

evy exponent

f'(!) = log bpX(!) =

Z

Rd

f
�
!'(x)

�
dx

=  explicit form of pdf

Linear observation of generalized stochastic process

s = L�1w , h , si = h ,L�1wi = hL�1⇤ | {z }, wi

If � = L�1⇤ 2 Lp(Rd) then Y = h , si = h�, wi is infinitely divisible
with L

´

evy exponent f�(!) =
R
Rd f

�
!�(x)

�
dx

Example 1: (f)Brownian motion
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Ds = w

s = D�1
0 w � ⇤� ⇥ S, ⌅�, s⇧ = ⌅D�1⇤

0 �, w⇧

(Blu-U., IEEE-SP 2007)

D�s = w

Characteristic form of fractional Brownian motion

cPs(') = exp

 
�1

2

Z

R

����
'̂(!)� '̂(0)

|!|�

����
2
d!

2⇡

!

(unstable SDE !)

(by Parseval)

Stabilization ⇔ non-stationary behavior

L2-stable anti-derivative: I⇤0'(t) =

Z

R

'̂(!)� '̂(0)

�j!
ej!t d!

2⇡

Characteristic form of Brownian motion (a.k.a. Wiener process)

cPW (') = exp

✓
�1

2

kI⇤0'k2L2

◆

= exp

 
�1

2

Z

R

����
'̂(!)� '̂(0)

�j!

����
2
d!

2⇡

!



Example in 1D: Self-similar processes
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fBm; H = 0.50

fBm; H = 0.75

fBm; H = 1.25

fBm; H = 1.50

Poisson; H = 0.50

Poisson; H = 0.75

Poisson; H = 1.25

Poisson; H = 1.50

H=.5
H=.75

H=1.25
H=1.5

L F ! (j!)H+ 1
2 ) L�1

: fractional integrator

Sparse (generalized Poisson)Gaussian
Fractional Brownian motion (Mandelbrot, 1968) (U.-Tafti, IEEE-SP 2010)

Aesthetic sparse signal: the Mondrian process

32

� = 30

L = DxDy
F�⇥ (j�x)(j�y)



Scale- and rotation-invariant processes
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H=.5 H=.75 H=1.25 H=1.75

Stochastic partial differential equation : (��)
H+1

2 s(x) = w(x)

Gaussian

Sparse (generalized Poisson)

(U.-Tafti, IEEE-SP 2010)

Powers of ten: from astronomy to biology

34



PART II: RECOVERY OF SPARSE SIGNALS
! 10.1 Discretization of inverse problem
! 10.2 MAP estimation and regularization
! 10.3 MAP reconstruction of biomedical 

images
■ Deconvolution of fluorescent micrographs
■ Magnetic resonance imaging
■ X-ray tomography

! 10.4 Quest for minimum error solution

35
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Generalized innovation model

1

3

Whitening operator

L�1

L

2

Regularization operator
vs. wavelet analysis

4 Analysis step

X = h', wi

Theoretical framework: Gelfand’s theory of generalized stochastic processes

innovation process sparse stochastic process
Very easy ! (after solving 1. & 2.)

 i = L⇤�iEasy when:

Characterization of continuous-domain white noise

Higher mathematics: generalized functions (Schwartz)
measures on topological vector spaces

Specification of inverse operator
Functional analysis solution of SDE

s = L�1ww

Lévy exponent: f(!)

= hL�1⇤', wiY = h', si

Minlos-Bochner and Lévy-Khintchine theorems
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Resolution of linear inverse problems
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linear
model

noise

H n

Reconstruction as an optimization problem

Linear forward model

s

Bayesian prior
� log pS(s)

Gaussian-noise likelihood



Recap on probability model

39

Discrete approximation of whitening operator: Ld

Discretization: s(k),k 2 Zd
(sampled values)

Generalized B-spline: �L(x) = LdL
�1�(x)

Continuous-domain model: s = L�1w

w = Ls: generalized white noise process with Lévy exponent f(!)

Discrete increment process:

u[k] = Lds(x)|
x=k

= (�L ⇤ w)(x)|
x=k

= h�L(k � ·), wi

Statistical properties

- u[k] are identically distributed and approximately independent

- Infinitely divisible with Lévy exponent fU (!) = log bpU (!) = log

cPw(!�L)

Characteristic functional:

dPw(') = E{ejh',wi} = exp

✓Z

Rd

f
�
'(r)

�
dr

◆

Discretization of reconstruction problem
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Innovation model

u = Ls (matrix notation)

Ls = w

s = L�1w
Discretization

pU is part of infinitely divisible family

Spline-like reconstruction model: s(r) =
X

k2⌦

s[k]�k(r)  ! s = (s[k])k2⌦

Physical model: image formation and acquisition

ym =

Z

Rd

s1(x)⌘m(x)dx+ n[m] = hs1, ⌘mi+ n[m], (m = 1, . . . ,M)

y = y0 + n = Hs+ n

[H]m,k = h⌘m,�ki =
Z

Rd

⌘m(r)�k(r)dr: (M ⇥K) system matrix

n: i.i.d. noise with pdf pN



Posterior probability distribution

41

pS|Y (s|y) =
pY |S(y|s)pS(s)

pY (y)
=

pN
�
y �Hs

�
pS(s)

pY (y)

=
1

Z
pN (y �Hs)pS(s)

(Bayes’ rule)

u = Ls ) pS(s) / pU (Ls)

(decoupling simplication)

Additive white Gaussian noise scenario (AWGN)

pS|Y (s|y) / exp

✓
�ky �Hsk2

2�2

◆ Y

k2⌦

pU
�
[Ls]k

�

pS|Y (s|y) / pN
�
y �Hs

�
pU (Ls) ⇡ pN

�
y �Hs

� Y

k2⌦

pU
�
[Ls]k

�

Statement of MAP reconstruction problem
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Sparser

Maximum a posteriori (MAP) estimator

sMAP = arg min
s2RK

 
1

2
ky �Hsk22 + �2

X

k2⌦

�U ([Ls]k)

!

Gaussian: p
U

(x) =

1p
2⇡�0

e

�x

2
/(2�2

0) ) �

U

(x) =

1
2�2

0
x

2
+ C1

Laplace: p
U

(x) =

�

2 e
��|x| ) �

U

(x) = �|x|+ C2

Student: p
U

(x) =

1

B

�
r,

1
2

�
✓

1

x

2
+ 1

◆
r+ 1

2

) �

U

(x) =

�
r +

1

2

�
log(1 + x

2
) + C3

Hypotheses

y = Hs+ n where n AWGN with variance �

2

Ls = u: i.i.d. with pdf pU and id potential function �U (x) = � log pU (x)
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pX (x) ©X (x) =° log pX (x) as x ! 0 ©X (x) as x !±1 Smooth Convex

Gaussian a0 +
x2

2æ2 a0 +
x2

2æ2 Yes Yes

Laplace (∏ 2R+) a0 +∏|x| a0 +∏|x| No Yes

Sym Gamma r 2R+
(

log(a0
0 +a0

r |x|2r°1 +O(x2)), r < 3/2

a0 + x2

4r°6 +O(|x|min(4,2r°1)), r > 3/2
b0 +|x|° (r °1)log |x| No No

Hyperbolic secant a0 +
º2x2

8æ2
0

+O
°

x4¢ ° logæ0 +
º

2æ0
|x| Yes Yes

Meixner r, s 2R+ a0 +
√(1)(r /2)

4s2 x2 +O
°

x4¢ b0 +
º

2s
|x|° (r °1)log |x| Yes No

Cauchy s 2R+ a0 + x2

s2 +O(x4) b0 ° log s +2log |x| Yes No

Sym Student r 2R+ a0 +
°

r + 1
2

¢

x2 +O
°

x4¢ b0 + (2r +1)log |x| Yes No

SÆS, Æ 2 (0,2], s 2R+ a0 +
°
° 3
Æ

¢

2s2°
° 1
Æ

¢ x2 +O
°

x4¢ b0 °Æ log s + (Æ+1)log |x| Yes No

°(z) and√(1)(r ) are Euler’s gamma and first-order poly-gamma functions, respectively (see Appendix C).

Table 10.1 Asymptotic behavior of the potential function ©X (x) for the infinite-divisible

distributions in Table 4.1.

`1-type regularizer; it is the preferred solution for solving deterministic compressed-
sensing and sparse-signal-recovery problems. If L is a first-order derivative operator,
then (10.12) maps into total-variation (TV) regularization which is widely used in
applications [ROF92]. The third log-based potential is interesting as well because
it relates to the limit on an `p relaxation scheme when p tends to zero [WN10]. The
latter has been proposed by several authors as a practical “debiasing” method for im-
proving the sparsity of the solution of a compressed-sensing problem [CW08]. The
connection between log and `p norm relaxation is provided by the limit

log x2 = lim
p!0

x2p °1
p

which is compatible with Student’s prior for x2 ¿ 1.

10.2.1 Potential function

In the present Bayesian framework, the potential function ©U (x) = ° log pU (x) is
determined by the Lévy exponent f (!) of the continuous-domain innovation w or,
equivalently, by the canonical noise pdf pid(x) in Proposition 4.12. Specifically, pU (x)
is infinitely divisible with modified Lévy exponent fØ̃§Ø_L

(!) given by (10.7). While the
exact form of pU (x) is also depends on the B-spline kernel ØL, a remarkable aspect of

Proximal operators
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Student potentials: r = 2, 4, 8, 32 (fixed variance)
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One-to-one mapping y 7! ũ when 1 + �2�00
U (u) � 0

) ũ(y) = (Id + �2�0
U )

�1(y)



Proximal operators (Cont’d)
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(shrinkage)

(soft-threshold)

(linear attenuation)

(identity)

Maximum a posteriori (MAP) estimation
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Auxiliary innovation variable: u = Ls

Constrained optimization formulation



Alternating direction method of multipliers (ADMM)
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Linear inverse problem:

Nonlinear denoising:

sk+1 � arg min
s�RN

LA(s,u
k,↵k)

sk+1 =
�
HTH+ µLTL

��1 �
HTy + zk+1

�

with zk+1 = LT
�
µuk+1 �↵

�

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

Sequential minimization

Proximal operator taylored to stochastic model

prox�U
(y;�) = argmin

u

1

2

|y � u|2 + ��U (u)

10.3 RECONSTRUCTION OF BIOMEDICAL IMAGES 
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! Deconvolution of fluorescent micrographs
! Magnetic resonance imaging
! X-ray tomography

! Common image model and numerical set-up

1
|!|� spectral decay  ! (��)

�
2
s = w (self-similar image model)

Robust localization/decoupling L: discrete gradient magnitude (rotation invariant)

Three flavors of potentials:

|x|2 (Gaussian), |x| (Laplacian), log(x

2
+ ✏) (Student)
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Relevance of self-similariy for bio-imaging
■ Fractals and physiology
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Deconvolution of fluorescence micrographs

50

Physical model of a diffraction-limited microscope

g(x, y, z) = (h3D ⇤ s)(x, y, z)

3-D point spread function (PSF)

h3D(x, y, z) = I0

��
p

�

�
x

M

,

y

M

,

z

M

2

���2

p�(x, y, z) =

Z

R2

P (!1,!2) exp

✓
j2⇡z

!

2
1 + !

2
2

2�f

2
0

◆
exp

✓
�j2⇡

x!1 + y!2

�f0

◆
d!1d!2

Optical parameters
�: wavelength (emission)

M : magnification factor

f0: focal length

P (!1,!2) = k!k<R0
: pupil function

NA = n sin ✓ = R0/f0: numerical aperture



2-D convolution model
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g(x, y) = (h2D ⇤ s)(x, y)s(x, y)

Thin specimen

Modulation transfer function

ˆh2D(!) =

8
><

>:

2
⇡

 
arccos

⇣
k!k
!0

⌘
� k!k

!0

r
1�

⇣
k!k
!0

⌘2
!
, for 0  k!k < !0

0, otherwise

Airy disk: h2D(x, y) = I0

���2J1(r/r0)
r/r0

���
2

with r =
p

x

2 + y

2
, r0 = �f0

2⇡R0
, J1(r): first-order Bessel function.

Radial profile

Cut-off frequency (Rayleigh): !0 = 2R0
�f0

= ⇡
r0

⇡ 2NA
�

2-D deconvolution: numerical set-up

52

Discretization

!0  ⇡ and representation in (separable) sinc basis {sinc(x� k)}k2Z2

Analysis functions: ⌘m(x, y) = h2D(x�m1, y �m2)

[H]m,k = h⌘m, sinc(·� k)i

= hh2D(·�m), sinc(·� k)i

=
�
sinc ⇤ h2D

�
(m� k) = h2D(m� k).

H and L: convolution matrices diagonalized by discrete Fourier transform

sk+1 =
�
HTH+ µLTL

��1 �
HTy + zk+1

�

with zk+1 = LT
�
µuk+1 �↵

�

Linear step of ADMM algorithm implemented using the FFT



Deconvolution experiments

53

10.3 MAP reconstruction of biomedical images 269

15

(a) (b) (c)

(a) (b) (c)

Figure 10.3 Images used in deconvolution experiments. (a) Stem cells surrounded by goblet
cells. (b) Nerve cells growing around fibers. (c) Artery cells.

where sinc(x) = sin(ºx)/(ºx). The entries of the system matrix in (10.9) are then
obtained as

[H]
m,k = h¥

m

, sinc(·°k)i
= hh2D(·°m),sinc(·°k)i
=

°

sinc§h2D
¢

(m °k) = h2D(m °k).

In effect, this is equivalent to constructing the system matrix from the samples of the
PSF since h2D is already band-limited as a result of the imaging physics (diffraction-
limited microscope).

An important aspect for the implementation of the signal-recovery algorithm is
that H is a discrete convolution matrix which is diagonalized by the discrete Fourier
transform. The same is true for the regularization operator L as well as for any linear
combination, product, or inverse of such convolution matrices. This allows us to
convert (10.23) to a simple Fourier-domain multiplication which yields a fast and
direct implementation of the linear step of the algorithm. The computational cost is
essentially that of two FFTs (one forward and one backward Fourier transform).

Experimental results
The reference data are provided by the three microscopic images in Figure 10.3

which display different types of cells. The input images of size (512£512) are blurred
with a Gaussian PSF of support (9 £ 9) and standard deviation æ0 = 4 to simulate
the effect of wide-field microscope with a low-NA objective. The measurements are
degraded with additive white Gaussian noise so as to meet some prescribed blurred
SNR (BSNR) defined as BSNR = var(Hs)/æ2.

For deconvolution, the algorithm is run for a maximum of 500 iterations, or until
the absolute relative error between the successive iterates is less than 5£10°6. The
results are summarized in Table 10.2. The first observation is that the standard linear
deconvolution (MAP estimator based on a Gaussian prior) performs remarkably well
for the image in Figure 10.3(a), which is heavily textured. The MAP estimator based
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Table 10.2 Deconvolution performance of MAP estimators based on different prior

distributions.

Estimation performance (SNR in dB)
BSNR (dB) Gaussian Laplace Student’s

Stem cells 20 14.43 13.76 11.86
30 15.92 15.77 13.15
40 18.11 18.11 13.83

Nerve cells 20 13.86 15.31 14.01
30 15.89 18.18 15.81
40 18.58 20.57 16.92

Artery cells 20 14.86 15.23 13.48
30 16.59 17.21 14.92
40 18.68 19.61 15.94

on the Laplace prior, on the other hand, yields the best performance for images hav-
ing sharp edges with a moderate amount of texture, such as those in Figures 10.3(b)-
(c). This confirms the general claim that it is possible to improve the reconstruction
performance through the promotion of sparse solutions. However, as the applica-
tion of Student’s prior to images typically encountered in microscopy demonstrates,
exaggeration in the enforcement of sparsity is a distinct risk. Finally, we note that
the Gaussian and Laplace versions of the algorithm are compatible with the meth-
ods commonly used in the field; for instance, `2-Tikhonov regularization [PMC93]
and `1/TV regularization [DBFZ+06].

10.3.3 Magnetic resonance imaging

Magnetic resonance refers to the property of atomic nuclei in a static magnetic
field to absorb and restitute electromagnetic radiation. This energy is re-emitted
at a resonance frequency that is proportional to the strength of the magnetic field.
The basic idea of magnetic resonance imaging (MRI) is to induce a space-dependent
variation of the frequency of resonance by imposing spatial magnetic gradients. The
specimen is then excited by applying pulsed radio waves that cause the nuclei (or
spins) in the specimen to produce a rotating magnetic field detectable by the receiv-
ing coil(s) of the scanner.

Here, we shall focus on 2-D MRI where the excitation is confined to a single plane.
In effect, by applying a proper sequence of magnetic gradient fields, one is able to
sample the (spatial) Fourier transform of the spin density s(r ) with r 2 R2. Specific-
ally, the mth (noise-free) measurement is given by

ŝ(!m) =
Z

R2
s(r )e°jh!m ,r i dr ,

where the sampling occurs according to some predefined k-space trajectory (the
convention in MRI is to use k =!m as the spatial frequency variable). This is to say
that the underlying basis functions are the complex exponentials ¥m(r ) = e°jh!m ,r i.

Magnetic resonance imaging (MRI)
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Physical image formation model (noise-free)

ŝ(!m) =

Z

R2

s(r)e�jh!m,ridr

Equivalent analysis function: ⌘m(r) = e�jh!m,ri

[H]m,n = h⌘m, sinc(·� n)i

= he�jh!m,·i, sinc(·� n)i = e�jh!m,ni

Discretization in separable sinc basis

Property: HTH is circulant (FFT-based implementation)

(sampling of Fourier transform)



Original SL Phantom Fourier Sampling Pattern
12 Angles

Student prior (log)

L : gradient

Optimized parameters

Laplace prior (TV)

MRI: Shepp-Logan phantom

Original Phantom
(Guerquin-Kern TMI 2012)

Gaussian prior (Tikhonov)
SER =17.69 dB

Laplace prior (TV)
SER = 21.37 dB

Student prior
SER = 27.22 dB

L : gradient

Optimized parameters
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MRI phantom: Spiral sampling in k-space



MRI reconstruction experiments
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15

(a) (b) (c)

(a) (b) (c)

Figure 10.4 Data used in MR reconstruction experiments. (a) Cross section of a wrist. (b)
Angiography image. (c) k-space sampling pattern along 40 radial lines.

Table 10.3 MR reconstruction performance of MAP estimators based on different prior

distributions.

Radial lines Estimation performance (SNR in dB)
Gaussian Laplace Student’s

Wrist 20 8.82 11.8 5.97
40 11.30 14.69 13.81

Angiogram 20 4.30 9.01 9.40
40 6.31 14.48 14.97

The basic problem in MRI is then to reconstruct s(r ) based on the partial know-
ledge of its Fourier coefficients which are also corrupted by noise. While the recon-
struction in the case of a dense Cartesian sampling amounts to a simple inverse Four-
ier transform, it becomes more challenging for other trajectories, especially as the
sampling density decreases.

For simplicity, we discretize the forward model by using the same sinc basis func-
tions as for the deconvolution problem of Section 10.3.2. This results in the system
matrix

[H]m,n = h¥m , sinc(·°n)i
= he°jh!m ,·i, sinc(·°n)i= e°jh!m ,ni

under the assumption that k!mk1 ∑ º. The clear advantage of using the sinc basis
is that H reduces to a discrete Fourier-like matrix, with the caveat that the frequency
sampling is not necessarily uniform.

A convenient feature of this imaging model is that the matrix HT H is circulant so
that the linear iteration step of the algorithm can be computed in exact form using
the FFT.
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X-ray tomography
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Figure 10.5 X-ray tomography and the Radon transform. (a) Imaging geometry. (b) 2-D
reconstruction of a tomogram. (c) Its Radon transform (sinogram).

In practice, the measurements correspond to the sampled values of the Radon
transform of the absorption map s(x) at a series of points (tm ,µm),m = 1, . . . , M . From
(10.32), we deduce that the analysis functions are

¥m(x) = ±
°

tm °hx ,µmi
¢

which represent a series of idealized lines inR2 perpendicular toµm = (cosµm , sinµm).

Discretization
For discretization purpose, we represent the absorption distribution as the weighted

sum of separable B-spline-like basis functions

s(x) =
X

k
s[k]Ø(x °k) ,

with Ø(x) = Ø(x)Ø(y) where Ø(x) is a suitable symmetric kernel (typically, a polyno-
mial B-spline of degree n). The constraint here is thatØ ought to have a short support
to reduce computations, which rules out the use of the sinc basis.

In order to determine the system matrix, we need to compute the Radon transform
of the basis functions. The properties of the Radon transform that are helpful for that
purpose are

x

y

�

r

R ✓
{s}

(t)

=

Z

R2

s(x)�(t� hx,✓i)dx

Projection geometry: x = t✓ + r✓?
with ✓ = (cos ✓, sin ✓)

Radon transform (line integrals)

R✓{s(x)}(t) =
Z

R
s(t✓ + r✓?)dr

sinogram

Equivalent analysis functions: ⌘m(x) = �
�
tm � hx,✓mi

�



Properties of Radon transform
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Projected translation invariance

R✓{'(·� x0)}(t) = R✓{'}(t� hx0,✓i)

Pseudo-distributivity with respect to convolution

R✓{'1 ⇤ '2}(t) = (R✓{'1} ⇤ R✓{'2}) (t)

Fourier central-slice theorem

Z

R
R✓{'}(t)e�j!tdt = '̂(!)|!=!✓

Proposition: Consider the separable function '(x) = '

1

(x)'

2

(y). Then,

R✓{'(·� x

0

)}(t) = '✓(t� t

0

)

where t

0

= hx
0

,✓i and

'✓(t) =

⇣
1

| cos ✓|'1

� ·
cos ✓

�
⇤ 1

| sin ✓|'2

� ·
sin ✓

�⌘
(t).

�p̂ �
(�

)

!1

!2

p̂✓(!) = \
R✓{'}(!) = '̂(! cos ✓,! sin ✓)

Discretization using polynomial B-splines
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Separable B-spline reconstruction model

s(x) =
X

k

s[k]�n(x� k) with �

n(x) = �

n(x)�n(y)

Centered polynomial B-spline: �

n(x) =
n+1X

k=0

(�1)k
✓
n+ 1

k

◆�
x� k + n+1

2

�n
+

n!

[H]m,k = h�(tm � h·,✓mi),�n(·� k)i

= R✓m {�n(·� k)} (tm) = �n
✓m(tm � hk,✓mi)

Justification:

t
n1
+

n1!
⇤ t

n2
+

n2!
=

t
n1+n2+1
+

(n1+n2+1)!

System matrix

Radon transform of B-spline

R✓ {�n(x)�n(y)} (t) = �

n
✓ (t)

=

n+1X

k=0

n+1X

k0=0

(�1)

k+k0
✓
n+ 1

k

◆✓
n+ 1

k0

◆�
t+

�
n+1
2 � k

�
cos ✓ +

�
n+1
2 � k0

�
sin ✓

�2n+1

+

| cos ✓|n+1 | sin ✓|n+1
(2n+ 1)!
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Figure 10.6 Images used in X-ray tomographic reconstruction experiments. (a) The
Shepp-Logan (SL) phantom. (b) Cross section of a human lung.

Table 10.4 Reconstruction results of X-ray computed tomography using different

estimators.

Directions Estimation performance (SNR in dB)
Gaussian Laplace Student’s

SL Phantom 120 16.8 17.53 18.76
SL Phantom 180 18.13 18.75 20.34

Lung 180 22.49 21.52 21.45
Lung 360 24.38 22.47 22.37

section of the lung of size (750£750). In the simulations of the forward model, we use
a standard parallel geometry with an angular sampling that is matched to the size of
the images. Specifically, the projections are taken along Mµ = 180,360 equiangular
directions for the lung image and Mµ = 120,180 directions for the SL phantom. The
measurements are degraded with Gaussian noise with a signal-to-noise ratio of 20
dB.

For the reconstruction, we solve the quadratic minimization problem (10.21) iter-
atively by using 50 conjugate-gradient (inner) iterations. The reconstruction results
are reported in Table 10.4.

We observe that the imposition of the strong level of sparsity brought by Student’s
priors is advantageous for the SL phantom. This is not overly surprising given that
the SL phanton is an artificial construct composed of piecewise-constant regions (el-
lipses). For the realistic lung image (true CT), we find that the Gaussian solution out-
performs the others. Similarly to the deconvolution and MRI problems, the present
MAP estimators are in line with the Tikhonov-type [WLLL06] and TV [XQJ05] recon-
structions used for X-ray CT.
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X-ray tomography reconstruction results
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10.4 QUEST FOR MINIMUM ERROR SOLUTION 
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! MMSE estimators for first-order processes
! Direct solution by belief propagation
! MMSE vs. MAP denoising of Lévy processes

How suitable are MAP estimators ?

➠  A detailed investigation of simpler denoising problem

MMSE estimators for first-order processes

64

Task: Recovery of non-Gaussian AR(1) and Lévy processes from noisy samples

independent noise contributions

Measurement model: p(Y1:YN |X1:XN )(y|x) =
NY

n=1

pY |X(yn|xn)| {z }

Discrete innovation model: un = xn � a1xn�1, u i.i.d. with pdf pU

Posterior distribution of signal

p(X1:XN |Y1:YN )(x|y) =
1

Z

NY

n=1

pY |X
�
yn|xn

� NY

n=1

pU

�
xn � a1xn�1| {z }

un

�

: optimal MMSE solution

Signal estimators

xMAP(y) = arg max

x2RN

�
p(X1:XN |Y1:YN )(x|y)

 

xMMSE(y) = E{x|y} =

Z

RN

x p(X1:XN |Y1:YN )(x|y)dx



X1 X2 X3
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(x)
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Introduction to BP algorithm

65

Estimation of a three-point Lévy process

Recursive evaluation of marginal distributions

p(X1:X3|Y1:Y3)(x|y)

/ pU (x1) pY |X(y1|x1) pU (x2 � x1) pY |X(y2|x2) pU (x3 � x2) pY |X(y3|x3)

p(X2|Y1:Y3)(x2|y) =
Z

R

Z

R
p(X1:X3|Y1:Y3)(x|y)dx1dx3

/
Z

R

µ

�
X1

(x1)
z }| {
p

U

(x1) p

Y |X(y1|x1) pU (x2 � x1)dx1

| {z }
µ

�
X2

(x2)

· p
Y |X(y2|x2) ·

Z

R
p

U

(x3 � x2) p
Y |X(y3|x3) ·

µ

+
X3

(x3)
z}|{
1 dx3

| {z }
µ

+
X2

(x2)

p(X3|Y1:Y3)(x3|y) =
Z

R

Z

R
p(X1:X3|Y1:Y3)(x|y)dx1dx2

/
Z

R
µ

�
X2

(x2) p
Y |X(y2|x2) pU (x3 � x2)dx2

| {z }
µ

�
X3

(x3)

· p
Y |X(y3|x3) · 1|{z}

µ

+
X3

(x3)

.
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Direct MMSE solution by belief propagation
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BP for Lévy and non-Gaussian AR(1) processes

10.4 The quest for the minimum-error solution 281

To evaluate the marginal with respect to x3, we take advantage of the previous integ-
ration over x1 encoded in the “belief” function µ°

X2
(x2) and proceed as follows:

p(X3|Y1:Y3)(x3|y) =
Z

R

Z

R
p(X1:X3|Y1:Y3)(x|y) dx1 dx2

/
Z

R
µ°

X2
(x2) pY |X (y2|x2) pU (x3 °x2) dx2

| {z }

µ°X3
(x3)

· pY |X (y3|x3) · 1
|{z}

µ+X3
(x3)

.

The emerging pattern is that the marginal distribution of the variable xn can be ex-
pressed as a product of three terms

p(Xn |Y1:YN )(xn |y) =µ°
Xn

(xn) · pY |X (yn |xn) ·µ+
Xn

(xn),

where the so-called belief functions µ°
Xn

and µ+
Xn

condense the statistical informa-
tion carried by the variables with indices below n and above n, respectively. This
aggregation mechanism is summarized graphically with arrows in Figure 10.7.

BP for Lévy and non-Gaussian AR(1) processes
The fundamental idea for extending the scheme to a larger number of samples is

that the beliefs µ°
Xn

(x) and µ°
Xn

(x) can be updated recursively. The algorithm below
is a generalization that is applicable to the MMSE denoising of the broad class of
Markov-1 signals. Since the underlying factor graph has no loops, it computes exact
marginals and terminates after one forward and backward sweep of message passing.

– Initialization: Set

µ°
X1

(x) = pU (x)

µ+
XN

(x) = 1

– Forward message recursion: For n = 2 to N , compute

µ°
Xn

(x) /
Z

R
µ°

Xn°1
(z) pY |X

°

yn°1|z
¢

pU
°

x °a1z
¢

dz (10.42)

– Backward message recursion: For n = (N °1) down to 1, compute

µ+
Xn

(x) /
Z

R
pU

°

z °a1x
¢

pY |X
°

yn+1|z
¢

µ+
Xn+1

(z) dz (10.43)

– Results: For n = 1 to N , compute

p(Xn |Y1:YN )(x|y) /µ°
Xn

(x) ·pY |X
°

yn |x
¢

·µ+
Xn

(x)

[xMMSE]n =
Z

R
x p(Xn |Y1:YN )(x|y) dx (10.44)

The symbol / denotes a renormalization such that the resulting function integrates
to one. The critical part of this algorithm is the evaluation of the convolution-like
integrals (10.42) and (10.43). The scalar belief functions

°

µ°
Xn

(x),µ+
Xn

(x)
¢N

n=1 that res-
ult from these calculations also need to be stored, which presupposes some form of
discretization.

Auxiliary belief functions µ

�
Xn

(x) and µ

+
Xn

(x)

Factorized representation: p(Xn|Y1:YN )(xn|y) = µ

�
Xn

(xn) · pY |X(yn|xn) · µ+
Xn

(xn)
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Experiment: Denoising of Lévy processes
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CONCLUSION
! Unifying continuous-domain stochastic model

! Backward compatibility with classical Gaussian theory
! Operator-based formulation: Lévy-driven SDEs or SPDEs
! Gaussian vs. sparse (generalized Poisson, student, SαS)

! Regularization
! Sparsification via “operator-like” behavior (whitening)
! Specific family of id potential functions (typ., non-convex)

! Conceptual framework for sparse signal recovery
! New statistically-founded sparsity priors
! Derivation of optimal estimators (MAP, MMSE)
! Principled approach for the development of novel algorithms

! Challenges
! Calculation of MMSE solution (belief propagation ?)
! Fast algorithms for solving large scale inverse problems with (more or 

less) structure
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