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INTRODUCTION

m Fundamental issue in biomedical imaging

Acquisition
Linking the discrete and the continuous

Algorithm design

m Mismatch between theory and practice

Theory : Shannon’s sampling theorem
Practice: nearest neighbor, linear interpolation

m Limitations of Shannon sampling theory

Ideal lowpass filters do not exist
Incompatible with finite support signals
Gibbs oscillations

Slow decay of sinc(x)

m Basic problem

How do you interpolate a signal ?

1-2




Image processing task

Tomographic
reconstruction

Specific operation

* Filtered backprojection
« Fourier reconstruction
* lterative techniques

Interpolation and biomedical imaging

Imaging modality

Commercial CT (X-rays)
EM

PET, SPECT
Dynamic CT, SPECT, PET

3D + time
Sampling grid « Polar-to-cartesian coordinates Ultrasound (endovascular)
conversion * Spiral sampling Spiral CT, MRI

* k-space sampling MRI

* Scan conversion
Visualization 2D operations

* Zooming, panning, rotation Al

* Re-sizing, scaling

* Stereo imaging

Fundus camera

- Range, topography OCT
3D operations
* Re-slicing CT, MRI, MRA
* Max. intensity projection
* Simulated X-ray projection
Surface/volume rendering
* Iso-surface ray tracing CT
« Gradient-based shading MRI
* Stereogram
Geometrical correction * Wide-angle lenses Endoscopy

* Projective mapping
* Aspect ratio, tilt
* Magnetic field distortions

C-Arm fluoroscopy
Dental X-rays
MRI

Registration

* Motion compensation

* Image subtraction

* Mosaicking

« Correlation-averaging

* Patient positioning

* Retrospective comparisons
* Multi-modality imaging

* Stereotactic normalization
* Brain warping

fMRI, fundus camera

DSA

Endoscopy, fundus camera,
EM microscopy

Surgery, radiotherapy

CT/PET/MRI

Feature detection

* Contours
* Ridges
- Differential geometry

All

Contour extraction
* Snakes and active contours

MRI, Microscopy (cytology)
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Splines: a unifying framework

Linking the discrete and the continuous .....

Multiresolution
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Splines: bad press phenomenon

= (Classical review article on interpolation, IEEE TMI, 1983
Comparison of four interpolators:
“The cubic B-spline provides the most smoothing.”

= Classical book on Digital Image Processing, 1991 (2nd ed)
About high-order B-splines:
“lout-of-band] interpolation error reduces significantly for higher-order
interpolation functions, but at the expense of resolution error [i.e.,
distortion]”

= Recent book on Volume Rendering, 1998
“The results of scaling the original image using [cubic] B-spline
interpolation are shown in Figure 5.20. You can see the blurring
effects .....”
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CONTINUOUS/DISCRETE REPRESENTATION

= Splines: definition

= Basic atoms: B-splines
= Riesz bases n
L.ﬂ-l
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Splines: definition

Definition: A function s(z) is a polynomial spline of degree n with knots
<z < xRy < - dff. it satisfies the following two properties:

= Piecewise polynomial: .
s(z) is a polynomial of degree n within each interval [z, Tx+1); s

= Higher-order continuity:
s(x),sM(x),---, s~ (x) are continuous at the knots .

m Effective degrees of freedom per segment:
(n+1) — n = 1
(polynomial coefficients) (constraints) 1

m Cardinal splines = unit spacing and infinite number of knots

The right framework for signal processing !
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Polynomial B-splines
m B-spline of degree n '
BL(w) = Bx B2 -+ B ()
(n+ ﬁtimes
% S 1 2 3 5

52@):{ 1, z€][0,1)

) 0, otherwise.
m Key properties

= Compact support: shortest polynomial spline of degree n
= Positivity

= Piecewise polynomial

= Smoothness: Holder-continuous of order n

m Symmetric B-spline
5@ = 9 (4 15)
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B-spline representation

Theorem (Schoenberg, 1946)

Every cardinal polynomial spline s(x) has a unique and stable representation in terms
of its B-spline expansion

s(z) = Z clk]\5Y (z — k) ! Basis functions

kEZ 0.8
\ 06l /7

discrete signal

04l
(B-spline coefficients) /

analog signal ;
0.2 ./

4 Cubic spline (n=3)

In modern terminology: {37 (z — k) }rez forms a Riesz basis.
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B-spline representation of images

m Symmetric, tensor-product B-splines
B (w1, wq) = B (1) X -0 X B (2a)

02

o

02

04

08

= Multidimensional spline function il
S(xla"'7xd): Z C[kl,"‘,kd] /Bn('xl_kla"')xd_kd)
(k1 ,-kq)€Zd \
continuous-space image image array Compactly supported
(B-spline coefficients) basis functions
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Riesz basis

Definition: Let V' = span{yy}recz be a subspace of a Hilbert space H. Then,
{¢k }rez is a Riesz basis of V iff. there exist two constants A > 0 and B < +o0 s.t.

Ve e ly, A-llelle, < ||Xgez crprlly < B-llclle,
N———
1l
Unique representation of a function f € V: f = chgok
kez

m Properties

= Linear independence
Consequence of lower Rieszbound: f=0=¢; =0

= Stability
Perturbation: ¢+ Ac — f+ Af
Consequence of upper Riesz bound:  ||Ac||,, bounded = ||Af||z bounded

= Norm equivalence
The basis is orthonormal iff. A = B = 1, in which case, ||c|l¢, = || fllz

-1

Shift-invariant spaces

Integer-shift-invariant subspace associated with a generating function ¢ (e.g. B-spline):

V(p) = {f(ac) =) cklp(m—k):ce fz(ZP)}

kezr

Generating function:  ¢(x) s P(w) :/ SO(w)e*ﬂw,vwdxl...dg[;p
xERP

Proposition. V' (¢) is a subspace of Ly (R?) with {¢(x — k) }rez» as its Riesz basis iff.

0<A*< > |p(w+2mn)]> < B? < +oo  (almost everywhere)
nezp

Hint for the proof (in 1D):

1 [ )
lel7, = =— |C(e')|?dw  (Parseval)
21 Jo
2 1 Jwy\|2],4 2
1Az, = 5- |C(e™)]7]p(w) [ dw
T Jwer

2m . 1 2m )
= % Z/ ‘C(eﬂw)m@(w—i-%rn)‘?dw = %/ ‘C(eJWNQ Z |p(w +27rn)|2dw
nez’0 0

nez
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INTERPOLATION REVISITED

Classical interpolation

= Generalized interpolation

Interpolation: filtering solution
= Application

Classical image interpolation

Discrete image data Continuous image model

flk], k= (ki,--- k) €Z? : : f(x), = (21, ,2p) €ERP

m Interpolation formula: f(z) = Y f[k] i (x — k)
keZpr

= f[k]: pixel values at location k
= pint(x): continuous-space interpolation function

= it (x — k): interpolation function translated to location k

m Interpolation condition

At the grid points « = ko : f(ko) = Z FIK] ot (ko — k)
kezp
1, k=0

Only possible for all f iff. @it (k) = )
0, otherwise




Examples of popular interpolation functions

m Bandlimited

1

m Piecewise linear

1

. 1
0.8 0.8 tri(z) = 5 (x)
0.6 0.6
0.4 0.4
0.2 0.2

oz oz 2 -1 0 1 2 3

Interpolation condition: m Cubic convolution

1, k=0
A k = 6 = ’ 1
Pint (F) ¥ { 0, otherwise 08

0.6
0.4
0.2

02 ~~21 o N~—"2 3

[Keys, 1981; Karup-King 1899]

Generalized image interpolation

m Desired features for the interpolation kernel

= short (to minimize computations)

= simple expression (e.g., polynomial)
= smooth (to avoid model discontinuities)

= good approximation properties: reproduction of polynomials

m Generalized interpolation formula: ~ f(x) = Z ck] p(x — k)
keZp
= Simple shift-invariant structure
= simple expression (e.g., polynomial)

= ( selected freely (not interpolating and much shorter)

[C=> Faster interpolation formulas!
but one new difficulty:

How to pre-compute the coefficients c[k] ?
m Separable basis functions:  p(x) = ¢(z1) - @(x2) - - - ()

|:> Further acceleration
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Interpolation: filtering solution

Interpolation problem: Given the samples { f[k]}, find the (B-spline) expansion coefficients {c[k]}
m Interpolation condition: f(x)|z—r = f[k] = Z clki]p(k — k)
k1 €ZP
I:> Discrete convolution equation: f[k] = (b * c¢)[k]
with blk] = o(k) < B(z)= Y _ blk]z "
kezp
m Inverse filtering solution

1 1

f[k] C[k] - (hint * f)[k] With Hint(z) - B(Z) - Zk 7 W(k)zik

— Digital filter ——

Note: ¢(x) separable =  hiy[k] separable

One-to-one continuous/discrete representation

-

Continuously defined signal B-spline coefficients

[f(w) = Z clklp(x — k)] <:> clk]
keZr

Riesz-basis property
Digital filtering

« b (FIR) % hing (IIR)

Sampling: f(@)]a—s

Discrete signal

In principle, all ¢’s are equally acceptable, but. ..
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Example: cubic-spline interpolation

m Cubic B-spline

4/6
3 sleP@—lal), 0<2f<1 6 6
p(z) = F(x) = ¢ 52— |2])?, 1<z <2
0, otherwise ° | | ) S
. : z+4+z271
m Discrete B-spline kernel: B(z) = —
m Interpolation filter
6 (1-a)? 2 1-a
= hint k] = ||
z+4+2z71 (1—-az)(l—azl) - tlA] <1+o¢>a
symmetric exponential
a=—-2++3=-0.171573 (sy P )

Cascade of first-order recursive filters

1 1
1—az! 1—az
causal anti-causal

Generic C-code (splines of any degree n)

= Main recursion
void ConvertTolnterpolationCoefficients (
double c[ ], long DataLength, double z[], long NbPoles, double Tolerance)
{double Lambda = 1.0; long n, k;
if (DataLength == 1L) return;
for (k = OL; k < NbPoles; k++) Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[K]);
for (n = OL; n < DataLength; n++) c[n] *= Lambda;
for (k = OL; k < NbPoles; k++) {
c[0] = InitialCausalCoefficient(c, DatalLength, z[k], Tolerance);
for (n = 1L; n < DatalLength; n++) c[n] += z[k] * c[n - 1L];
c[DatalLength - 1L] = (z[k] / (z[K] * z[Kk] - 1.0))
* (z[k] * c[DataLength - 2L] + c[DataLength - 1L]);
for (n = DataLength - 2L; 0 <= n; n--) c[n] = z[K] * (c[n + 1L]- c[n]); }
}

= |nitialization

double InitialCausalCoefficient (

double c[], long Datalength, double z, double Tolerance)
{ double Sum, zn, z2n, iz; long n, Horizon;
Horizon = (long)ceil(log(Tolerance) / log(fabs(z)));
if (DataLength < Horizon) Horizon = DatalLength;
zn = z; Sum = ¢[0];
for (n = 1L; n < Horizon; n++) {Sum += zn * ¢c[n]; zn *= z;}
return(Sum);
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Interpolating basis function

m Equivalent interpretation of generalized interpolationn

fx) =Y clklp@—k) = Y (k] * hue[k]) p(z — k)

keZ kEZ

= DSk pine(z — k)

kEZ

m Interpolation basis function

(@) = 3 i) ol — k)

keZ

Example: cubic-spline interpolant

Finite-cost implementation of an infinite impulse response interpolator !

1-21
Limiting behavior (splines)
= Spline interpolator 1 o
Impulse response Frequency response 1 2
. n+1
) S et = (U e
s 27 37 4T

= Asymptotic property

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the
degree goes to infinity:
lim ", (z) = sinc(z), lim @7, (w) = rect (ﬁ) (in all L,-norms)
n—00 n— 00 21

(Aldroubi et al., Sig. Proc., 1992)

Includes Shannon’s theory as a particular case !
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Geometric transformation of images

= 2D separable model

k() +TL+1 l() —|—n—‘,—1

faowo)= > D ekl o(ao—1) plyo 1)
k=ko(zo) l=lo(yo)
(70, yo)
1k, kg |

2D filtering 2D re-sampling
(separable)

—_—

= Applications

zooming, rotation, re-sizing, re-formatting, warping

1-23

Cubic-spline coefficients in 2D

Digital filter
o (recursive, —
separable)

Pixel values f[k, ] B-spline coefficients c|k, (]
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Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins !

Bilinear Windowed-siné Cubic spline |
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High-quality image interpolation

35

Lena 256 x 256, rotation 15 x 24°, central 128 x 128 SNR (dB)
(]
W
|

Bspline(6)
Bspline(5)
Bspline(4)
Bspline(3)
Bspline(2)
Schaum(2) [1993] Meijering(7) [1999]
Keys [1981] Meijering(5) [1999]

Schaum(3) [1993]

Dodgson [1997]

Linear

Sinc Hamming(4)

Nearest-neighbor
German [1997]

T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Execution time (s rot ")

Thévenaz et al., Handbook of Medical Image Processing, 2000
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MINIMUM-ERROR SIGNAL APPROXIMATION

= | east-squares approximation
Orthogonal projection

= |mage pyramids
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Least-squares fit: multi-scale approximation

m Shift-invariant space at scale a

T a=1
Va(p) = {s(x) = Zc[k]apa(x —ak) : c[k] € 62} /
k€EZ X >
1 2 3 4 5
= Rescaled basis function: ¢, (2) = a2 (2) =2
/
2 4 >
m Minimume-error approximation at scale a
Continuous-space input f(x clkl = (f, ¢a(- — ak
pace input f(z) Orthogonal [k] = (f, Gal )L,
) ,
projector

h h . _ 2
suc tat;lelgi If—sllz,

Biorthogonality condition: ¢, € V,,(¢) such that (p,(-), @u(- — ak))r, = 0k




Image pyramids

m Successive approximations at dyadic scales

Vai(p) = {s(x) = ZCi[k]gOQi (x — 2'k) : ¢i[k] € 62}

keZ

Rescaled basis function: pyi () = 2792 ()

m Repeated application of REDUCE operator

ci—1lk ~ cilk
L. hk] 4,@_.[ |

m Optimal prefilter R
arlk] = (O colllp(- = 1), @al- = 2k)) = (co * h)[2K]
IEZ

= hlk] = {e(), @2(-+K))
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SPLINES: IMAGING APPLICATIONS

= Sampling and interpolation
Interpolation, re-sampling, grid conversion
Image reconstruction
Geometric correction

= Feature extraction

Contours, ridges
Differential geometry
Shape and active contour models

= |[mage matching
Stereo
Image registration (multimodal, rigid-body or elastic)
Optical flow




Spline approximation: LS resizing

Approximation at arbitrary scales: differential approach using splines

Orthogonal projection onto V,, (cubic spline)

a=1—10
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Application: image resizing

m Resizing algorithm
Interpolation
Linear splines

scaling= 70%

SNR=22.94 dB




Application: image resizing (LS)

= Resizing algorithm
Orthogonal projector
Linear splines

scaling= 70%

R DA R

SNR=28.359 dB

+5.419 dB

(Munoz et al., IEEE Trans. Imag. Proc, 2001)

B-spline derivatives

m Derivative operator

Df(z) = L) T (o) % flw)

m Finite-difference operator (centered)

Af(@) 2 fla+ ) —fla—1) o (@7 —ei%?) x f(v)

m Derivative of a B-spline (exact)

D™ g™ (x) = A™ GEE(x)

. Reduction of degree
Discrete operator

Sketch of proof:

) . w \n+l eiw/2 _ p—jw/2\ "1
8™ (w) = sinc (E) = (T)

eiwl2 _ g—iw/2 ) nl=m

R O R L
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Cubic-spline image differentials

m Convolution-based implementation

f(kD) clk, 1]
2D filtering Differential
> —
(separable) mask
orta (z.1) = Laplacian
JAVA code available: Aoa o P\ Y
'Y q
http:/bigwww.epfl.ch/ OzPOy e=k,y=I 2 e 1|t M
a5 ts5: 511 -8 1
ox2  oy2 3
1 11
» Hessian masks » Gradient masks
Y i O LI D
0z2 " 6 a dxdy " 2-2 oz’ 6-2 |
1 -2 1 -1 0 1 -1 0 1
1 4 1 -1 -4 -1
02 1 3] 1
~—_. Z| 2 _8 -9 = = 0 0 0
2 .92
dy 1 4 1] gy 6 [ 1 4 1]
1-35

Multi-modal image registration

Specificities of the approach

= Criterion: mutual-information

= Cubic-spline model 4
high quality

sub-pixel accuracy

= Multiresolution strategy

= Marquardt-Levenberg-like
optimizer
Speed

d
o

Thévenaz and Unser, IEEE Trans. Imag Proc, 2000

1-36




CONCLUSION

= Generalized interpolation
Same as standard interpolation, except for a prefiltering step
Offers more flexibility
Best cost/performance tradeoff (splines)
Infinite-support interpolator at finite cost

= Special case of polynomial splines
Simple to manipulate
Smooth and well-behaved
Excellent approximation properties
Multiresolution properties

= Unifying formulation for continuous/discrete image processing

Tools: digital filters, convolution operators
Efficient recursive filtering solutions

Flexibility: piecewise-constant to bandlimited
1-37

Splines: the end of the tunnel

= Survey article on interpolation, IEEE TMI, 2000
Comparison of 31 interpolation algorithms:
“It [the cubic B-spline interpolator] produces one of the best results in
terms of similarity to the original images, and of the top methods, it
runs fastest.”

= Addendum on spline interpolation, IEEE TMI, 2001
“Therefore, high-degree B-splines are preferable interpolators for
numerous applications in medical imaging, particularly if high

precision is required. (Lehmann et al)

= Recent evaluation of interpolation, Med. Image Anal., 2001
Comparison of 126 interpolation algorithms:
“The results show that spline interpolation is to be preferred over all
other methods, both for its accuracy and its relatively low cost.”

(Meijering et al)
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SAMPLING: 50+ years after Shannon

Analog/physical world Discrete domain
4 2\
Continuous signals: La(R)

sampling

[ Signal subspace } Discrete signals: EQ(Z)}
4— __________

interpolation

= reconstruction algorithms
= signal processing

= image analysis

Introduction: Shannon revisited

Sampling preliminaries
Review paper on sampling

Sampling revisited

Quantitative approximation theory )

Interpolation/approximation in the presence of noise -




Shannon’s sampling reinterpreted

Generating function: ¢(x) = sinc(x)

Subspace of bandlimited functions: V' (y) = span{y(z — k) }rez

analysis synthesis
_ sampling

— w(x)ﬁ?— o) —
anti-aliasing . .

filter Z 5z — k) ideal filter
keZ

f(z) € Lo

Analysis:  f(k) = (sinc(x — k), f(x))

Synthesis: f(z Z f(k) sinc(z — k)

keZ

m Orthogonal basis: (sinc(x — k), sinc(z — 1)) = 0y [Hardy, 1941]

Orthogonal projection operator ! o

Generalized sampling: roadmap

m Nonideal acquisition system

i noise
sampling Measurements:
f(x) € Ly(R)

—» aoquiiton__~ oM = (hx F)(@loet +nlk]
I

Goal: Specify ¢ and the reconstruction algorithm Reconstruction
so that f(z) is a good approximation of f(z) algorithm

g

Continuous-domain model signal coefficients

f(@) = clklp(z - k) <> {clk]} ez
kEZ . s
Riesz-basis property H

Interpolation
problem
Discrete signal

{/[E}hez
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SAMPLING PRELIMINARIES

= Function and sequence spaces

Smoothness conditions and sampling

Shift-invariant subspaces

Equivalent basis functions

2-5

Continuous-domain signals

Mathematical representation: a function of the continuous variable x € R

m Lebesgue’s space of finite-energy functions

= Ly(R) = {f(x),x eR: /xeR |f(2)|2dz < —I—oo}

m Lo-inner product: (f, g) :/ IR{f(ac)g*(ac)dgc
EAS

1/2
« Lynorm: [|f]1z, = ( / |f<x>2dx) =TT
rz€R
m Fourier transform
= Integral definition: f(w) :/ f(z)e “"dz
xER
1

= Parseval relation: || f||7, = 7 |f(w)[2dw
weR
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Discrete-domain signals

Mathematical representation: a sequence indexed by the discrete variable k € Z

m Space of finite-energy sequences

w 0y(Z) = {a[k],k €Z:» lalk]]® < +oo}

kEZ

1/2
u ly-norm: ||ale, = <Z |a[k”2>

kEZ

m Discrete-time Fourier transform
» z-transform: A(z) = Z alk]z=*
kEZ

= Fourier transform: A(e’*) =~ a[kle /"
keZ

2-7

Smoothness conditions and sampling

m Sobolev’s space of order s € R*
Wi®) = { ) eR: [ (4P de < +oo)
weR
f and all its derivatives up to (fractional) order s are in Ly

m Mathematical requirements for ideal sampling
= The input signal f(z) should be continuous

» The samples f[k] = f(z)|.=x should be in ¢y

Theorem

Let f(x) € W5 with s > 5. Then, the samples of f at the integers, f[k] = f ()|,
are in {5 and

F(e?*) = Zf[k‘]e*j”k = Z f(w+ 27n) a.e.

keZ nez

Generalized (almost everywhere) version of Poisson’s formula [Blu-U., 1999]

2-8




Shift-invariant spaces

Integer-shift-invariant subspace associated with a generating function ¢ (e.g., B-spline):

Vie) = {f(x) = clkp(z—k):ce 82(2)}

kEZ

Generating function:  ¢(z) — @(w)—/ o(z)e 1 da
z€R

m Autocorrelation (or Gram) sequence
ol £ (p(), (- —R)) o AL(E®) = [p(w + 2mn)
ne”L
m Riesz-basis condition
Positive-definite Gram sequence: 0 < A* < Y A,(e/*) < B? < +o0
nez 1]:
A-lelle, < [ Epez clklo(z = k)|, < B llclle,

1711,

Orthonormal basis < ay[k] =6, & A () =1 & || = | fllz, (Parseval)
2-9

Example of sampling spaces

m Piecewise-constant functions

p(z) = rect(z) = f°(x) aylk] =96, <  the basis is orthonormal

m bandlimited functions

Z |p(w+27n)|> =1 < the basis is orthonormal
neZ

o(x) = sinc(x)
m Polynomial splines of degree n

p(z) = "(x) = (8°* 87 3%)(2)
—_——

(n+1) times

-2 -1 1 2

Autocorrelation sequence:  agn [k] = (8" * ™) (x)|z=r = B2 TL(k)

Proposition. The B-spline of degree n, 5" (z), generates a Riesz basis with lower and
upper Riesz bounds A = inf,{Agn (e7¥)} > (%>n+1 and B = sup,,{Agn (e7¥)} = 1.
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Equivalent and dual basis functions

m Equivalent basis functions:

Peq(®) = > plklp(x — k)

kEZ

Proposition. Let ¢ be a valid (Riesz) generator of V() = span{p(z — k)}rez.
Then, ¢4 also generates a Riesz basis of V() iff.

0<Cy <|P(e¥)|? <Cy < 400

m Dual basis function

Unique function pe V() such that (¢(x),

(almost everywhere)

(x —k)) =0 (biorthogonality)

Together, ¢ and <Op operate as if they were an orthogonal basis; i.e., the orthogonal
projector of any function f € L, onto V(i) is given by

Py f(@) = D (£, (- — k) (e — k)

kEZ c[k]

Example: four equivalent cubic-spline bases

m Cubic B-spline: ¢(z) = 3%(x)
1

0.8

0.6

0.4

0.2

-2 0 2 4

Compact support

m Interpolating spline: ;. (x)
1

0.8

0.6

0.4

0.2

T/ o \A

-0.2

Interpolation: (pint(z),0(z — k)) = d5,

4

6

m Dual spline: &(m)

25
2
15
;
05
-05
-1

o

Biorthogonality: (¢ (z), ¢(x — k)) = dx

m Orthogonal spline: Yorno ()

1.2

1
0.8
0.6
0.4
0.2

A\ ~
on -4 A/ o \ 2 4 6

Orthogonality: (Portho (), Portho(® — k)) = %




SAMPLING REVISITED

= Generalized sampling system

= Generalized sampling theorem
= Consistent sampling: properties
= Performance analysis

= Applications

Generalized sampling system

acquisition digital
device correction filter reconstruction

sampling f(:c)

x Lo
flo e Q) — ala) —

— p1(—x)

C1

> 6z —k)

keZ

= p1(—2a): prefilter (acquisition system)
= p2(x): generating function (reconstruction subspace)

m Constraints

= Consistent measurements: (f,¢1(- — k)) = c1[k] = (f, o1(- — k), Vk € Z

= Linearity and integer-shift invariance

Digital filtering solution: f(x) = Z (q*c1)[k] p2(z — k)

nez calk]




Generalized sampling theorem

Cross-correlation sequence: a12[k] = (p1(- — k), ¢2(+)) RN Apa(ed?)

m Consistent sampling theorem

Let A15(e7¥) > m > 0. Then, there exists a unique solution f € V(i) that is
consistent with f in the sense that ¢; [k] = (f,¢1(- — k)) = (f, o1(- — k))

F@) = Pasif@) = S (axe)klpa(z— k) with Q(2) !

=  Yrezoaz[k]z7F

m Geometric interpretation

f = Pa.1f is the projection of f onto V' (2) perpendicular to V (p1).

V(e1)

Orthogonality of error:

<f7f¢991('7k)> :(fv@l('fk»i(fv@l(‘*k)):0

ci[k] c1[k]
Pof o Paiif  Vie2) (consistency)

Consistent sampling: properties

V(1)

f =Py, f: oblique projection onto V(¢5) perpendicular to V (¢;)

Pof ‘\“\quf V(p2)

m Generalization of Shannon’s theorem
Every signal f € V(y2) can be reconstructed exactly

= Flexibility and realism
- o1 and 5 can be selected freely

- They need not be biorthogonal (unlike wavelet pairs)

m Special case: least-squares approximation
w1 € Vips) = V(1) =V(p2) = Pai1 =Py (orthogonal projection)

Minimun-error approximation: f(z) = Py f(z) = Z (f, <opz(~ — k) pa(z — k)

kEZ
(crva)k] 216




Application 1: interpolation revisited

m Interpolation constraint
clk] = f(@)]e=r = (O(- = k), f)

m Interpolator = consistent ideal sampling system

= |deal sampler: ¢ (z) = d(x)
» Reconstruction function: ¢o(z) = ¢(x)

= Cross-correlation: ai2[k] = (6(- — k), ¢(+)) =

m Reconstruction/interpolation formula

1
Qint(2) = W
c[k] 2 3 4 5
—_—~

flz) = Z (f *qint)[k] p(z — k) Example: cubic-spline interpolant

keZ

= ) fIE] (k) Gint (1) = > qint[k] p(z — k)
keZ keZ
2-17

Application 2: consistent image display

m Problem specification

= ldeal acquisition device: @1 (z,y) = sinc(x) - sinc(y)

» LCD display: @2 (z,y) = rect(x) - rect(y)

m Separable image-enhancement filter

) . 1
Aqa(e?¥) = Z SJ(w+2mn)Po(w+2mn) = Q%) = — =
nez smce (ﬂ)
15
125 /
1

01 02 03 04 05 27
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QUANTITATIVE APPROXIMATION THEORY

Order of approximation
= Fourier-domain prediction of the Lo-error

Strang-Fix conditions

= Spline case

= Asymptotic form of the error
Optimized basis functions (MOMS)
= Comparison of interpolators

Order of approximation

m General “shift-invariant” space at scale a

Valp) = {sa(x)—Zc[k]Qp (g—k) :CEEQ} /

keZ

m Projection operator /><><\
Vf €Ly Pof=arg min |f s, - : —

m Order of approximation
Definition
A scaling/generating function ¢ has order of approximation L iff.

vf€W2L7 Hf_PafHLz SC'aL'Hf(L)HLz

2-20




Fourier-domain prediction of the L,-error

Theorem [Blu-U., 1999]
Let P, f denote the orthogonal projection of f onto V,, () (at scale a).
Then,

too 1/2
Vf € Wy, ||f—Paf||L2=(/ If(w)lew(aw)d—w> To(a®)

o 2
where )1 5(w)|?
v Zkez |o(w + 27k) |2
A +w .
Fourier-transform notation: f(w) :/ f(x)e™7¥*dx

2-21

Strang-Fix conditions of order L

Let ¢(x) satisfy the Riesz-basis condition. Then, the following Strang-
Fix conditions of order L are equivalent:

k0

1) ¢(0) =1, and (™ (27k) = 0 for
(1) ¢(0) '™ (21k) {n:O...L—l

(2) ¢(x) reproduces the polynomials of degree L—1; i.e., there exist
weights p,, [k] such that

:U”:an[k]go(:c—k),fornzo...L—1
kez

(3) Bylw) = gy " + 0w +)

@) VfeWs, |f —Pafllr, = O(a")

2-22




Polynomial splines

m Basis functions: causal B-splines 4

Bi(z) = (67" % B89) (x)

1, for0<z <1
/8_0’_(.7/') B { 0, otherwise /
I . / X

m Fourier-domain formula

B (w) = (1_;‘3—;&)”+1

m Order of approximation

B (2mk + Aw) = O(|Aw|™ 1) for k # 0
— B has order of approximation L = n + 1

2-23

Spline approximation

m Fourier approximation kernel
D kst0 8™ (w + 2k)|?

E n(u)) = ~
! 3
0.8 > okez |0 (w + 27k) 2
0.6 -1 Order: L=n+1
L=2
0.4 L.
0.2 mL=38
™ w
+o0
= Link with Riemann’s zeta function ((2) =) n*
n=1
2n+4-2 stféo |w+27rllc)|2"+_2
Egn(w) = |2sin(w/2)]

Ykez 18w + 27k) 2
2¢(2n + 2))

o 2n-+2 2n+4
= Tenme Y + O(jw[™™)
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Spline reconstruction of a PET-scan

Piecewise constant
L=1

Cubic spline
L=4

2-25

Asymptotic form of the error

Theorem [U.-Daubechies, 1997]
Let ¢ be an Lth order function. Then, asymptotically, as a — 0,

VieWs, |If —=Pufllr, =Cr-a* || fP| 1,

where

+oo
1 R 2 (2L)
Cr= ﬁ\l ’ Z |¢() (27n))| (= Esz)(!O))
n=1

m Special case: splines of order L =n + 1

\/2 2L | B
CL,spIines < QL! (Bernoulli number of order 2L)

2-26




Characteristic decay of the error for splines

0

predicted Lo approximation error (dB)

asymptotic mode

_140 L L L L L
0.1 0.2 0.5 1 2 5 10

sampling step a

Least squares approximation of the function f(z) = e~ /2 007

Optimized basis functions (MOMS)

m Motivation

= Cost of prefiltering is negligible (in 2D and 3D)
= Computational cost depends on kernel size W

= Order of approximation is a strong determinant of quality

QUESTION: What are the basis functions with maximum order of approximation and
minimum support ?

-1
ANSWER: Shortest functions of order L (MOMS)  moms () = Z apDF B ()
k=0

m Most interesting MOMS

= B-splines: smoothest (3%~ € C'“~1) and only refinable MOMS
= Shaum’s piecewise-polynomial interpolants (no prefilter)

= OMOMS: smallest approximation constant C7,

1 d2 3
Fipla) = B(x) + 35 )
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Comparisons of cubic interpolators of size W=4

0
Keys s
——  cubic Lagrange 2
-10F [ — — - cubic spline e
——  cubic O'moms o e

m 201
o
2
w
5 —30
S
(0]
X
S
£ _40f
(O]
3
5
o
L -50

-60

/
_70 ~ / 1 1 1
0 /4 /2 3m/4 T
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INTERPOLATION IN THE PRESENCE OF NOISE

= |nterpolation and regularization
= Smoothing splines
= General concept of an L-spline

= Optimal Wiener-like estimators

2-30




Spline-fitting with noisy data

m Context

= Input data { f[k] } ez corrupted by noise
= Model: continuously defined function s(x)
= Data term: {qata = ) sz | (K] — s(k)|2 (discrete domain)

= Spline energy: &pline = ||[D™s||7, (continuous domain)

m Possible formulations

min &g subject to = min subject to &spline < Co
s(z)€ELs gbphne ) gdata OR s(z)€Ls gdata ] §sp ine >
A priori knowledge of noise variance II A priori knowledge of signal class
(rr;lenL {€data + A Eapline } (Tikhonov-like regularization)
s(x 2

Lagrange multiplier

2-31

Regularized fit: smoothing splines

B-spline representation: s(z) = Z clk]8" (x — k)

keZ

m Smoothing splines

Discrete, noisy input: clk]

Smoothing
flk] = s(k) + n[k] algorithm

Theorem: The solution (among all functions) of the smoothing spline problem
“+oo
min ¢ Y | f[k] — s(k)|* + )\/ ID™s(z)|?da
s(@) kez -

is a cardinal spline of degree 2m — 1. Its coefficients c[k] = h * f[k] can be
obtained by suitable recursive digital filtering of the input samples f[k].

m Special case: the draftman’s spline

The minimum-curvature interpolant is obtained by setting m = 2 and A — 0.

It is a cubic spline !
2-32




General concept of an L-spline

L{-}: differential operator (shift-invariant) d(z): Dirac distribution

Definition
The function s(x) is a cardinal L-spline (with knots at the integers) iff.

L{s(2)} = ) _ alkld(z — k)

keZ
s) =Y sk —k)  — | D{s@)} =Y (slk] sk — 1])6(z — k)
keZ keZ
m Special cases — 4 t R

| R

» Piecewise-constant = D-splines

= Polynomial splines = D" !-splines

Justification:

DA (2)} = ATHO(2)} = Yy dkld(z — k) T D(el?) = (1 — eIy

2-33

Existence of B-spline-like bases

L{-}: generalized differential operator of order s > 3

m Riesz-basis representation

Cardinal L-splines generally admit a B-spline-like representation

s(x) = clk]fL(z — k)

kez v fr(z)withL =D — ol

Example: first-order exponential B-spline \L

\ ' A ﬁL(J;)

m Composition properties ﬂ * \L - /\

= Higher-order B-splines: Li=D Ly=D-adl L=D?-aD
B, (x) and B, (x) are B-spline generators for the cardinal L; - and Ly-splines.
Then, 0L, (x) * O, (x) is a generator for the (L;Lo)-splines.

= Positive-definite operators: If O, (x) generates a Riesz basis for the L-splines,
then o(z) = fi(z) * BL(—z) generates a Riesz basis for the (L*L)-splines
and the interpolation problem in V() is well posed.
2-34




Generalized smoothing splines

Generalized spline energy: &piine = ||Ls||7,

m Generalized smoothing-spline fit

Discrete, noisy input: sx(z)

Estimation
flk] = s(k) + n[k] algorithm

Theorem: The solution (among all functions) of the generalized smoothing

problem
“+o0

rsr(lg;{Zv[k] —s(B)F+ [ |Ls<x>|2dx}

keZ —o°
is a cardinal L*L-spline.
The solution has a B-spline representation sx(z) = _, ., c[k]o(z — k),
the coefficients of which are obtained by suitable filtering of the input data
(generalized smoothing-spline algorithm).

2-35

Stochastic signal models

m Wide-sense stationary process
= Realization of the stochastic process: s(z)
= Zero-mean: E{s(z)} =0
= Autocorrelation function: E{s(y) - s(y — )} = ¢s(x) € Lo

= Spectral density function: C(w) = [, p cs(x)e™7“*dz € Ly

m Stochastic differential equation

L{s(z)} = w(x) (driven by white Gaussian noise)

w(x) s(x) w(x)
— L' — L —
Spectral shaping Whitening filter
2
Cu(w) = a3 Cs(w) = 90
| L(w)[?

2-36




MMSE estimation in the presence of noise

m Statistical hypotheses
Discrete measurements (signal + noise): f[k] = s(k) + n[k]
Signal autocorrelation: ¢4 (z) such that L*L{c(z)} = o2 - §(x)

Discrete white noise with variance 02 = ¢, [k] = o2 - §[K]

m MMSE continuous-domain signal estimation

Theorem

Under the above assumptions, the linear Minimum-Mean Square Error Estimator of
s(x) at position z = x¢, given the measurements { f[k]}kez, is sx(xo) with A = %
where s (x) is the L*L-smoothing-spline fit of { f[k]}rcz given by the generalized

smoothing-spline algorithm.

Remark: optimal overall estimators if one adds the assumption of Gaussianity
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CONCLUSION

= Generalized sampling
Unifying Hilbert-space formulation: Riesz basis, etc.

Approximation point of view:
projection operators (oblique vs. orthogonal)

Increased flexibility; closer to real-world systems
Generality: nonideal sampling, interpolation, etc...

= Quest for the “optimal” representation space
Not bandlimited ! (prohibitive cost, ringing, etc.)
Quantitative approximation theory: Lo-estimates, asymptotics
Optimized functions: MOMS
Signal-adapted design ?

= [nterpolation/approximation in the presence of noise

Regularization theory: smoothing splines
Stochastic formulation: new, hybrid form of Wiener filter
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