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Variational formulation of image reconstruction

m Linear forward model

g=Hs+n

Integral operator

S

lll-posed inverse problem: recover s from noisy measurements g

m Reconstruction as an optimization problem

s* = argmin ||g — Hs||; + AR(s)
N ~~ 4 SN——
data consistency regularization

Classical reconstruction = linear algorithm

s* = argmin ||g — HSH% +  AR(s)
———— ——

data consistency  regularization

m Quadratic regularization (Tikhonov)
R(s) = ||ILs||*

Formal linear solution: s = (H"H + A\L'L)"'H’g =R, - g

$ L= Cs_l/Z: Whitening filter

m Statistical formulation under Gaussian hypothesis

Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

.1 -
swap = argming —|[lg — Hs|3+ |C7'/*s|3
Hﬂ

A\ 7

~

Data Log likelihood Gaussian prior likelihood

Signal covariance: Cs = E{s -sT'}




Current trend: non-linear algorithms (/1 optimization)

s* = argmin ||y — Hs||§ +  AR(s)
———— ——

data consistency regularization

m Wavelet-domain regularization

Wavelet expansion: s = Wv  (typically, sparse)

Wavelet-domain sparsity-constraint:  R(s) = ||v]l,, with v=W~ls
(Nowak et al., Daubechies et al. 2004)

m /; regularization (Total variation=TV) (Rudin-Osher, 1992)

R(s) = ||Ls||¢, with L: gradient

m Compressed sensing/sampling  (Candes-Romberg-Tao; Donoho, 2006)

Key research questions (for biomedical imaging)

(1) Formulation of ill-posed reconstruction problem

Statistical modeling (beyond Gaussian)
supporting non-linear reconstruction schemes

(including CS)
Sparse stochastic processes

@ Efficient implementation for large-scale imaging problem

ADMM = smart chaining of simple modules

(3) Future trends and open issues
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Random spline: archetype of sparse signal

non-uniform spline of degree 0

0 2 4 6 8 10

= and(t —t,) = w(t)

Random weights {a,, } i.i.d. and random knots {t¢,,} (Poisson with rate \)

m Anti-derivative operators
t
Shift-invariant solution: D™ p(t) = (14 * ) (t) = / o(T)dT

t
Scale-invariant solution: Dy *¢(t) :/ o(T)dr
0

Compound Poisson process

m Stochastic differential equation
Ds(t) = w(t)

with boundary condition s(0) = 0

Innovation: w(t) = Z and(t —tn) A 3

m Formal solution

s(1) Zan “HOC = ta) H1)

= Zan]l+
n
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Lévy processes: all admissible brands of innovations
Generalized innovations : white Lévy noise with E{w(t)w(t')} = o25(t — t')

Ds

w (perfect decoupling!)

White noise (innovation)

Gaussian

Lévy process

0 fn\m Brownian motion
W m

04 06 0% 10

0

(Wiener 1923)

o0 02

Integrator

t
fd’r
0

S(t] Compound Poisson

Impulsive w(t) ;
: |5

—_—

_._L L

02

o0 0%

Lévy flight

o0 04 06 0% 1o

04 06 ]

SaS (Cauchy)

(Paul Lévy circa 1930) .

Generalized innovation model

Theoretical framework: Gelfand’s theory of generalized stochastic processes

Generic test function ¢ € S plays the role of index variable

Solution of SDE (general operator)

@

innovation process sparse stochastic process
—» L1
@ White noise s=L""w _’T_I_; @
v 2 -
X = (p,w) _
J% L Y = <g0, s> = <(p’L 1w> = <L_1*Qp7w>

@

Regularization operator vs. wavelet analysis

Approximate
decoupling
Proper definition of
continuous-domain white noise

Main feature: inherent sparsity
(Unser et al, IEEE-IT 2014) . g .
(few significant coefficients)
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Infinite divisibility and Lévy exponents

Definition: A random variable X with generic pdf piq(z) is infinitely divisible (id) iff., for
any N € Z™, there exist i.i.d. random variables X1, ..., Xy such that X < X1+ +Xn.

m Rectangular test function ii.d.
X = (w,rect) =
Proposition

The random variable X = (w,rect) where w is a generalized innovation process is
infinitely divisible. It is uniquely characterized by its Lévy exponent f(w) = log piq(w).

Palw) = /) = [ p(o)el*wda
R

Bottom line: There is a one-to-one correspondence between Lévy exponents and infinitely
divisible distributions and, by extension, innovation processes.
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Probability laws of innovations are infinite divisible

X =(w,0) = (wwawwe S N 2 Tim o L)

n—oo

= li_>m<ww,% R R e Tl

n L
n

m Statistical description of white Lévy noise w (innovation)

= Characterized by canonical (p-admissible) Lévy exponent f(w)
= Generic observation: X = (p, w) with ¢ € L,(R?)

n X is infinitely divisible with (modified) Lévy exponent

folw) = log Px () = /R F(pl@))de

14




= Probability laws of sparse processes are id

m Analysis: go back to innovation process: w = Ls
= Generic random observation: X = (o, w) with ¢ € S(R?) or p € L,(R?) (by extension)

—
= Linear functional: Y = (¢, s) = (), L™ w) = (L™, w)

If g = L1 € L,(R?) thenY = (¢, s) = (¢, w) is infinitely divisible
with Lévy exponent fy(w) = [oa f(wed(x))da

dw

> oyl = Fe ) = [ et
R w

= explicit form of pdf

R An Introduction to AR

Sparse Stochastic Processes

15
Examples of infinitely divisible laws
pid()
(a) Gaussian ) 5 1 122
pGauss(m) = We 20
(b) Laplace
pLaplace(.ﬁlf) = %Q_MM

(c) Compound Poisson
A

pPoisson(CC) = fﬁl{eA(ﬁA(w)*l)}

lasiedg

02}
= E) o

(d) Cauchy (stable)

1

PCauchy(-fC) = m

Characteristic function: piq(w) = /pid(az)ej”‘””dx = of @)

R 16




Examples of id noise distributions

pia() Observations:  X,, = (w, rect(- — n))

5

(a) Gaussian

(b) Laplace

(c) Compound Poisson
A

lasiedg

(d) Cauchy (stable)

Complete mathematical characterization: 2, (y) = exp (/ f(ga(w))dw)
Rd
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Generation of self-similar processes: s=L"'w

L X (jw)H+3 = L~!: fractional integrator
N%w

.
,ﬂ‘ r T
Gaussian Sparse (generalized Poisson)
Fractional Brownian motion (Mandelbrot, 1968) (U.-Tafti, IEEE-SP 2010)
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Aesthetic sparse signal: the Mondrian process

F . .
L=D,D, <= (jwz)(jwy)
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Scale- and rotation-invariant processes

H+1

Stochastic partial differential equation: (—A)™2" s(x) = w(x)

Gaussian

r ] .
i ; ‘
) ’
a v .
%
- o
", -

H=.5 H=.75 H=1.25 H=1.75

Sparse (generalized Poisson)

‘

(U.-Tafti, IEEE-SP 2010) 20




Powers of ten: from astronomy to biology

e @ 1'9_86 J‘ény Lodriguss and John Martinez
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RECONSTRUCTION OF BIOMEDICAL IMAGES

= Discretization of reconstruction problem
= Signal reconstruction algorithm (MAP)

= Examples of image reconstruction
Deconvolution microscopy
X-ray tomography
Cryo-electron tomography
Phase contrast tomography
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Discretization of reconstruction problem

Spline-like reconstruction model: s(r) = » _ s[klfr(r) «— s = (s[k])keq
ke
m Innovation model

Ls = . .
i v Discretization u = Ls (matrix notation)
s = L 'w

pu is part of infinitely divisible family

m Physical model: image formation and acquisition

i = [ 1@ (@da +nlm] = (s1.70) il (0 =1, M)

y=Yo+tn=Hs+n n: i.i.d. noise with pdf py

He = (ons i) = /R () Bu(r)dr: (M x ) system matri
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Posterior probability distribution

_ pyis(yls)ps(s) _ pn(y — Hs)ps(s) (Bayes’ rule)

py (¥) N py(y)

1

= gpzv(y — Hs)ps(s)

pS|Y(S|Y)

u=>Ls = ps(s) < py(Ls) ~ erQ pU([Ls]k)

m Additive white Gaussian noise scenario (AWGN)

psy (sly) o< exp (—@) 1] po(Lslk)

... and then take the log and maximize ...

24




General form of MAP estimator

SMAP = argmin <% ly — HS||§ +02y @U([Ls]n))

= Gaussian: py(z) = \/%JO e~/ (200) = Oy(x) = ﬁazQ +C4
= Laplace: py(z) = Se=2I=l =  Oy(x) = ANz|+ Cs
Student: py (z) ! LT = Py(z)=(r+ 1) log(1 + z*) + C:
cpu(z) = = -
: bu B(r,5) \#2+1 v 2/ %8 3

2}
©
o
l Potential: @/ (z) = —log py ()
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Proximal operator: pointwise denoiser

1
proxg, (y; o) = argmin |y — ul” + 0”@y (u)
ue

U = proxg,, (y; 1)

02(I)U(’LL)

linear attenuation /5 minimization
W soft-threshold /1 minimization
B shrinkage function ~ {, relaxation for p — 0

26




Maximum a posteriori (MAP) estimation

m Constrained optimization formulation

Auxiliary innovation variable: u = Ls

1
SMAP = arg Srélg&r[l{ <§y — Hs||3 + o2 Z <I>U([u]n)) subjectto u = Ls

m Augmented Lagrangian method

Quadratic penalty term: £||Ls — ul|3

Lagrange multipler vector: «

1
La(s,u,a) = 3 g — Hs||§ + o Z@U([u]n) +al(Ls —u) + gHLs —ul|2

27

Alternating direction method of multipliers (ADMM)
Lals,u,@) = 5 llg ~ Hs| + 0> 3 ®u([ul.) + af (Ls —w) + & Ls — ul

Sequential minimization
skl « arg min £ 4(s,u”, a)
scRN

k okl = ok + M(Lsk—kl _ uk)
uFt! « arg min L£4(s*T1 u, o)

ueRN

Linear inverse problem: s*™! = (H"H + /LLTL)_l (HTy + z* 1)

with  z*™ = LT (pu* — oF)

Nonlinear denoising: ~ u**! = prox,,, (Ls**! + %ak“; %)

m Proximal operator taylored to stochastic model

1
prox, (55 A) = argmin fy — uf? + APy (u)

FE 0 : on
Cauchy prior with increasing sg




Deconvolution of fluorescence micrographs

m Physical model of a diffraction-limited microscope

g(xaya Z) - (h3D * S)(Q’J,y, Z)

3-D point spread function (PSF)

h3D($)y7 Z) = IO ‘pA (%7 %’ #)‘2

2 2
oAz, y, 2) = / P(w1,ws) exp (j27rzw1 +(;2> exp (_j27rxwl+ng> dwidws
R2 2A fo Afo

Optical parameters
= \: wavelength (emission)
= M': magnification factor
fo: focal length

P(w1,w2) = 1| <R, pupil function

s NA = nsinf = Ry/ fo: numerical aperture )
9

Deconvolution: numerical set-up

m Discretization

wo < 7 and representation in (separable) sinc basis {sinc(x — k)},cza
Analysis functions: 7y, (z,y, 2) = hsp(x — m1,y — ma, 2 — mg3)

Hlm.k = (m, sinc(- — k))
= (h3p(- — m),sinc(- — k))
= (sinc * hgp) (m — k) = hgp(m — k).

H and L: convolution matrices diagonalized by discrete Fourier transform
m Linear step of ADMM algorithm implemented using the FFT
Sk+l _ (HTH —|—MLTL)_1 (HTy + Zk—|—1)

with  zF T = LT (pu* — oF)
30




2D deconvolution experiment

Astrocytes cells bovine pulmonary artery cells human embryonic stem cells

L : gradient

Deconvolution results in dB Optimized parameters

Gaussian Estimator

Laplace Estimator

Student’s Estimator

Astrocytes cells 12.18 10.48 10.52
Pulmonary cells 16.90 19.04 18.34
Stem cells 15.81 20.19 20.50
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3D deconvolution with sparsity constraints

Maximum intensity projections of 384 x448 x260 image stacks;
Leica DM 5500 widefield epifluorescence microscope with a 63 x oil-immersion objective;
C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

(Vonesch-U. IEEE Trans. Im. Proc. 2009)




Computed tomography (straight rays)

Projection geometry: a = t0 + r6~ with @ = (cos 6, sin 6)

m Radon transform (line integrals)

Ro{s(z)}(t) = / s(t0 + roL)dr

R

_ /R s(x)d(t — (, 0))da

sinogram

Equivalent analysis functions: 7, () = 6 (¢, — (, 0,r,))

33

Computed tomography reconstruction results

O

(b)
Figure 10.6 Images used in X-ray tomographic reconstruction experiments. (a) The
Shepp-Logan (SL) phantom. (b) Cross section of a human lung.

Table 10.4 Reconstruction results of X-ray computed tomography using different

estimators.
Directions  Estimation performance (SNR in dB)
Gaussian  Laplace Student’s
SL Phantom 120 16.8 17.53 18.76 L: discrete gradient
SL Phantom 180 18.13 18.75 20.34
Lung 180 22.49 21.52 21.45
Lung 360 24.38 22.47 22.37
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EM: Single particle analysis Bovine
papillomavirus

Cryo-electron micrograph )
Number of pixels: 256 x 256 x 256

Resolution: 2.474 A

Number of particles: 800
Type of symmetry: i1 (60 fold symmetry)

CNB @

CENTRO NACIONAL DE BIOTECNOLOGIA C. -O-_ Sorzano

image alignment and classification CTF estimation and correction

noisy projection of identical
particles, with unknown

orientations 35

Image reconstruction (real data)

Standard Fourier-based High-resolution Fourier-based High-resolution
reconstruction reconstruction reconstruction with sparsity

| slice 34 slice 35 slice 36 | slice 34 slice 35 | slice 36

| slices0 slice 51 | slice 52

| slice50 | slice51 | slice52

| slice66 | slice67 | slice68 | slice 66 slice 67 slice68 36




Differential phase-contrast tomography @

Paul Scherrer Institute (PSI), Villigen Ty )
u | S

A Q kE|

> m

v &

phase grating absorption grating

. (Pfeiffer, Nature 2006)

Mathematical model )

g=Hs
0 i
t,0) = =R t )
9(t.6) ot ol f3() H] i)k = @Pejﬁk(tj)
J 37

Experimental results

Rat brain reconstruction with 721 projections

ADMM-PCG (TV) FBP

(Pfeiffer et al. Nucl. Inst. Meth. Phys. Res. 2007)

L: discrete gradient, ®(u) = A|u]

Collaboration: Prof. Marco Stampanoni, TOMCAT PSI/ETHZ

L | 5 *

=
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Reducing the numbers of views C:BM
Rat brain reconstruction with 181 projections )
ADMM-PCG g-FBP

SSIM = .96

SSIM = .60

SSIM = .95

SSIM = .15
SSIM = .89 SSIM = .43

SSIM = .49

Collaboration: Prof. Marco Stampanoni, TOMCAT PSI/ETHZ

(Nichian et al. Optics Express 2013)

Performance evaluation

Goldstandard: high-quality iterative reconstruction with 721 views

0.
30+
0.8
2 3
0.71
101
0.6-
% s 0.54
& 7
Z X 0.4r
@
—e— ADMM-PCG 037 | —e— ADMM-PCG
0.21
1 L o
—=—FBP 0.1 | —=—FBP
L L L ] o L L L
361 181 91 46 23 361 181 91 46 23
Number of directions Number of directions
(a) (b)

= Reduction of acquisition time by a factor 10 (or more) ?
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CAN WE GO BEYOND MAP ESTIMATION ?

m A detailed investigation of simpler denoising problem

Test case: Lévy processes

Gaussian : MAP = Wiener = MMSE
Poisson: MAP = zero

1. Can we compute the “best”= MMSE estimator ?
Yes, by using belief propagation (Kamilov et al., IEEE-SP 2013)

2. Can we compute it with an iterative MAP-type algorithm ?

Yes (with the help of Haar wavelets) by optimizing the thresholding function

41

Pointwise MMSE estimators for AWGN

m Minimum-mean-square-error (MMSE) estimator fromy = x + n
runasi(y) = B{XIY =9} = [ 2 pxy(aly)da
R
AWGN probability model = py|x(y|z) = go(y — ) and py = g, * px

go: Gaussian pdf (zero mean with variance o2)
m Stein’s formula for AWGN

ramse(y) =y — 0@y (y)  where @y (y) = —f logpy (y) = —

MMSE .~ 1
~{LMMSE

. . . .
-4 -2 0 2 4

Laplacian

42




Iterative wavelet-based denoising: MAP - MMSE

Consistent Cycle Spinning (CCS) (Kamilov, [IEEE-SPL 2012)

CCS denoising: Solves ming { 3 [|s — y[|3 + 7 ®(As)} where A is a tight frame

input: y,s’ e RV, 7, e R*
set: k=0,1°=0,u = Ay;
repzat k+1 sk+1, o’
2! = proxg (i (u+ pAs* +A%); 1) or z" =uvuse (2 %)
ghk+1 :A’r(zk+1 _ iﬂ’k)
Akﬂ — /lk —p(zkH _Ask+1)
k=k+1
until stopping criterion
return s =st

= CCS constraint: z = As with ||z||> = M||s||> (enforces energy convervation)

m Variation on a theme: substitute MAP shrinkage by MMSE shrinkage

(Kazerouni, IEEE-SPL 2013) = Iterative MMSE denoising

43

Comparison of wavelet denoising strategies

Compound Poisson

—A— CCS-MMSE

=P frame-MMSE
8| —¢— ortho-MMSE
ortho-ST

A SNR [dB]

i1

10™ | “““10" | | “““10
AWGN o?

Key empirical finding: CCS MMSE denoising yields optimal solution !!!!
Levy Flight

=$— CCS-MMSE
=p— CCS-MAP
3l =€¢=frame-MAP | -
frame-MMSE
ortho-MMSE
ortho—-MAP

A SNR [dB]

-

10™ 10° 10
AWGN o°

An Introduction to Chap. 11

Unser and Tafti .
Sparse Stochastic Processes
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CONCLUSION

= Unifying continuous-domain stochastic model
Backward compatibility with classical Gaussian theory
Operator-based formulation: Lévy-driven SDEs or SPDEs
Gaussian vs. sparse (generalized Poisson, student, SaS)

= Regularization

Sparsification via “operator-like” behavior (whitening)
Specific family of id potential functions (typ., non-convex)

= Conceptual framework for sparse signal recovery
Principled approach for the development of novel algorithms
Challenge: algorithms for solving large-scale problems in imaging:
Cryo-electron tomography, diffraction tomography,
dynamic MRI (3D + time), etc...

Beyond MAP reconstruction: MMSE with learning (self-tuning)
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Conclusion (Cont’d)

The continuous-domain theory of sparse
stochastic processes is compatible with both

20th century SP = linear and Fourier-based
algorithms, and

21st century SP = non-linear, sparsity-

promoting, wavelet-based algorithms

.. but there are still many open questions ...
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