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OUTLINE
n Construction of wavelet bases

n Meyer wavelet
n The mathematical micoscope
n Multi-resolution analysis
n Applications: coding, etc.

n Wavelets and functional analysis
n Wavelets and (fractional) differentiation
n Wavelets and Besov spaces
n Best N-term approximations

n Wavelets and sparsity
n Denoising
n Biomedical image reconstruction
n Compressed sensing

n Conclusion
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The precursors: the continuous wavelet transform

8

SIAM J. MATH. ANAL.
Vol. 15, No. 4, July 1984

(C) 1984 Society for Industrial and Applied Mathematics
OO9

DECOMPOSITION OF HARDY FUNCTIONS INTO
SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE*

A. GROSSMANN" AND J. MORLET:

Abstract. An arbitrary square integrable real-valued function (or, equivalently, the associated Hardy
function) can be conveniently analyzed into a suitable family of square integrable wavelets of constant shape,
(i.e. obtained by shifts and dilations from any one of them.) The resulting integral transform is isometric and
self-reciprocal if the wavelets satisfy an "admissibility condition" given here. Explicit expressions are ob-
tained in the case of a particular analyzing family that plays a role analogous to that of coherent states
(Gabor wavelets) in the usual Lrtheory. They are written in terms of a modified F-function that is
introduced and studied. From the point of view of group theory, this paper is concerned with square
integrable coefficients of an irreducible representation of the nonunimodular ax+ b-group.

1. Introduction.
1.1. It is well known that an arbitrary complex-valued square integrable function

(t) admits a representation _by Gaussians, shifted in direct and Fourier transformed
space. If g(t)-2-1/2r-3/ae-t/2 and o, 00 are arbitrary real, consider

(1.1) g(t’)(t) e-ioto/2eiOotg( t- o )
and form the inner product

(1.2)

Then

to, Oo ) fg<to,o,o)( )k( ) dr.

(1.3) ffig(to,oo)l=dtodoo:f l(t)l=dt.
The function (t) can be recovered from the function t’(t0, 00) through

(1.4) /( ) ffg(t’)( )ffZ( tO, 00 ) dtod,o0

The above statements remain true if the Gaussian g is replaced by an arbitrary
square integrable function. The advantages of the Gaussian are (i) maximal concentra-
tion in direct and Fourier transformed space and (ii) the possibility of a simple intrinsic
characterization of the space of functions ’t’(t0, o0).

This representation of functions has been used in quantum mechanics, quantum
optics and signal theory. (See e.g. [1 ], [4], [5], [6].)

1.2. Consider now the case where the object of interest is not a complex-valued
function (t), but a square integrable real-valued function s(t), say the wiggle of a
seismograph. It has been known for a long time that it is very useful to consider s(t) as
the real part of a complex-valued square integrable function h(t) which has the special
property that its Fourier transform vanishes on a half-line (say/(0)-0 for 0< 0). The

*Received by the editors September 21, 1982.
Centre de Physique Th6orique, Section II, Centre National de la Recherche Scientifique, Marseille,
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Elf Aquitaine Company, O.R.I.C. Lab., 370 bis Av. Napol6on Bonaparte, 92500 Rueil-Malmaison,

France.
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1. CONSTRUCTION OF WAVELET BASES

n Wavelet basis functions
n Dilation and translation of a single prototype, but with critical sampling  
 
 
 
 
 
 

n The Meyer wavelet 
n Multi-resolution analysis
n Applications to image coding
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�i,k = 2�i/2�
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x� 2ik
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Littlewood-Paley decomposition / Shannon wavelet
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� 2 � 4 � 8 �

1

-� �

1

1X

j=�1

�� ̂Sha(2
j!)|2 = 1

 Sha(t) = 2 sinc(2t)� sinc(t)

Bj = [�2j+1⇡,�2j⇡]
[

[2j⇡, 2j+1⇡]

f(t) =
1X

j=�1

1

2⇡

Z

Bj

f̂(!)ei!td!

| {z }
rj

r0(t) =
X

k2Z
hf, Sha(·� k)i  Sha(·� k)

 ̂Sha(!)

8f 2 L2(R) : f(t) =
1X

j=1

X

k2Z
hf, j,ki  j,k  j,k(t) = 2�j/2 Sha

✓
t� 2jk

2j

◆



The Meyer wavelet
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� 2 � 4 � 8 �

1

� 2 � 4 � 8 �

1

-� � 2 �

1

-� �

1

 Sha /2 Lp(R), p 2 [1, 2)

8f 2 L2(R) : f(t) =
1X

j=�1

X

k2Z
hf, j,ki  j,k  j,k(t) = 2�j/2 Meyer

✓
t� 2jk

2j

◆

1X

j=�1

�� ̂Meyer(2
j!)|2 = 1

1X

j=�1

�� ̂Sha(2
j!)|2 = 1

 Sha(t) = 2 sinc(2t)� sinc(t)

 ̂Meyer(!)

 ̂Sha(!)

 Meyer 2 S(R) ⇢ Lp(R)



Wavelet transform as a mathematical microscope
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Wavelet = Point Spread Function (PSF) of mathematical microscope

Shape of PSF is the same at all scales

Magnification by powers of two: 2i

Sampling is critical (no redundancy)

Analysis functions (PSF) are orthogonal

Resolution can be pushed to ultimate limit
) existence of wavelet bases of L2(R)

Journal of Microscopy, Vol. 255, Issue 3 2014, pp. 123–127 doi: 10.1111/jmi.12151
Received 6 March 2014; accepted 3 June 2014

Wavelets: on the virtues and applications of the
mathematical microscope

M I C H A E L U N S E R
Biomedical Imaging Group, EPFL, Lausanne, Switzerland

Key words. Deconvolution, denoising, wavelets, image analysis,
multiresolution, computational imaging.

Summary

The paper provides a short introduction to wavelets and dis-
cusses their main applications in microscopy and biological
imaging.

Wavelets as a virtual microscope

Wavelets offer a powerful way of decomposing signals or im-
ages into their elementary constituents across scale (multires-
olution decomposition). They provide a one-to-one representa-
tion in very much the same way as the Fourier transform does,
with the fundamental difference that the wavelet-basis func-
tions are jointly localized in space and frequency (Daubechies,
1988; Mallat, 1989; Unser & Aldroubi, 1996; Mallat, 2009).

There is a striking analogy between the wavelet transform
and a microscope. To keep the discussion simple, we shall focus
on the one-dimensional scenario where the input image f (x) is
a function of the space variable x ∈ R. The wavelet transform
involves a series of dyadic magnification factors a = 2i , with
i ∈ Z. It corresponds to a mathematical microscope whose
point-spread function (PSF) φ can be dilated (or contracted
when i < 0) at will by powers of two, like

φi (x) = φ(x/2i ).

There the virtual PSF is a reference functionφ (scaling function
or wavelet) to be specified in the sequel. The leading concept
behind wavelets is to observe f (x) by forming correlations
with φi (or convolutions with its space-reversed version) and
sampling the data at the appropriate rate. Specifically, the
observation at resolution level i and location index k ∈ Z is
given by

〈 f,φi,k〉 =
∫

R
f (x)φi (x − 2i k)dx,

This work was founded in part by the Swiss National Science Foundation under

Grant 200020-121763.
Correspondence to: Michael Unser, Biomedical Imaging Group, EPFL, CH-1015

Lausanne, Switzerland. Tel +41 21 693 51 75; e-mail: michael.unser@epfl.ch

with the notational convention

φi,k (x) = φi (x − 2i k)

where the corresponding sampling step a = 2i is matched to
the size of the integration window φi (virtual PSF at resolu-
tion 2i ). The underlying principle is that the virtual PSF is
engineered to maximize the intake of information; first, within
a given resolution level i (scale of the microscope) by ensur-
ing that the shifted replicates of φi – that is, φi,k with k ∈ Z –
are orthogonal to one another, and, second, by avoiding re-
dundancies across scale (global inter-scale orthogonality). The
latter requirement translates into the virtual PSF being band-
pass (that is, a wavelet denoted by φ = ψ) rather than the
more traditional lowpass solution (denoted by φ = ϕ) that
would better fit the description of a physical microscope.

The Haar transform: from Legos to wavelets

The fundamental idea in the theory of wavelets is to construct
a series of fine-to-coarse approximations { fi }i∈Z of a function
f (x) and to exploit the structure of the multiresolution approx-

imation errors, which are orthogonal across scale. Here, we
shall illustrate the concept by taking fi (the best approxima-
tion of f at resolution i ) to be a piecewise-constant function
represented by the (Lego-like) expansion

fi (x) =
∑

k∈Z
ci [k]ϕi,k(x), (1)

where the basis functions ϕi,k are adjacent rectangular func-
tions of size 2i . Specifically,

ϕi,k (x) = ϕ

(
x − 2i k

2i

)
=

{
1, for x ∈

[
2i k, 2i (k + 1)

)

0 otherwise.
(2)

The optical analogy is that of a microscope with ideal op-
tics whose resolution is determined by the size of its CCD-
type (charge coupled device) detector (rectangular window of
size 2i ), while the spatial location is encoded by k. An exam-
ple of such a sequence of approximations is shown in Fig. 1,
where each ci [k] is given by the height of the corresponding

C© 2014 The Authors
Journal of Microscopy C© 2014 Royal Microscopical Society



Multiresolution analysis: Haar transform revisited
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s0(x)

Multi-scale signal representation

si(x) =
�

k�Z
ci[k]�i,k(x)

Multi-scale basis functions

�i,k(x) = �

�
x� 2ik

2i

�
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s2(x)

  

s3(x)

Signal representation
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Wavelets: Haar transform revisited
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Wavelets: Haar transform revisited
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Haar revisited

r1(x) =
�

k

d1[k]�1,k

r2(x) =
�

k
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r3(x) =
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k
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�(x) s(x) =
�

k

c[k]⇥(x� k)

1

=

  

Haar revisited
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Wavelet:
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Scaling function
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n Riesz basis condition

�c � �2, A · �c��2 �

�����
�

k�Z
c[k]�(x� k)

�����
L2

� B · �c��2

n Partition of unity
�

k�Z
�(x� k) = 1

Definition: �(x) is a valid scaling function of L2(R) iff:

'̂(!) =
1Y

j=1

H(ei!/2j )

H(1)

1 1
n Two-scale relation

'(x) =
2

H(1)

X

k2Z
h[k]'(2x� k)

H(z) =
X

k2Z
h[k]z�k



Multiresolution analysis of L2
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s � V(0)

s1 � V(1)

Two-scale relation � V(i) � V(j), for i � j

Partition of unity �
�

i�Z V(i) = L2(R)

s2 � V(2)

s3 � V(3)

Multiresolution basis functions: �i,k(x) = 2�i/2�
�

x�2ik
2i

�

Subspace at resolution i: V(i) = span {�i,k}k�Z



From scaling functions to wavelets
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n Wavelet bases of L2   (Mallat-Meyer, 1989)

1 -1

n Constructive approach: perfect-reconstruction filterbank

G(z) =
X

k2Z
g[k]z�k

si[k]

si+1[k]

si[k]

wi+1[k]

" 2

" 2# 2

# 2H̃(z�1)

G̃(z�1) G(z)

H(z)

+

Theorem
For any valid scaling function ' 2 L2(R), there exists a wavelet  (x) =

2

H(1)

X

k2Z
g[k]'(2x� k)

with g[·] 2 `2(Z) such that the family of functions
n
2�i/2

 

⇣
x�2ik

2i

⌘o

i2Z,k2Z

forms a Riesz (or an orthogonal) basis of L2(R).



Haar wavelet and 2D basis functions
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Expansion coefficients

Tensor-product basis functions  
x x

y

y

f(x, y) =
�

i,k

wi,k �i,k(x, y)

�(x)

�(y)

�(x)

�(y)"
p1
p2

#
=

"
1
2

1
2

1
2 � 1

2

#
·
"
s

d

#



Shortest, orthogonal solutions of the two-scale relation
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�Haar(x) + �Haar(x� 1)
�Haar(x)� �Haar(x� 1)

Two-scale relation: �(x/2) =
�

k�Z
h[k]�(x� k) (without normalization)

Daubechies of order 2:

H2(z) =
1
4

⇤�
1 +

⇥
3
⇥

+
�
3 +

⇥
3
⇥

z�1 +
�
3�

⇥
3
⇥

z�2 +
�
1�

⇥
3
⇥

z�3
⌅

= (1 + z�1)2 P2(z)

Haar transform (order 1):

H1(z) = 1 + z
�1

Daubechies of order N :

HN (z) = (1 + z
�1)NPN (z)

,  has N vanishing moments; i.e.,
Z

R
xn (x)dx = 0, n = 0, . . . , N � 1



Application: Wavelet coding
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Wavelet transform

Inverse wavelet transform

Discarding “small coefficients”

Thresholding: w� wNReconstruction: fN = WwN

Wavelet-domain representation: w = W�1f

Wavelet expansion of an image

Space-domain representation: f = Ww

f(x) =
X

i,k

�i,k(x)wi,k

CDF 9/7 Filters:
Cohen-Daubechies-Feauveau

(outperforms DCT-based jpeg)



Fractional B-spline wavelets
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Remarkable property

Each of these wavelets generates a Riesz basis of L2(R)

(Unser & Blu, SIAM Rev, 2000)

 ↵
+(x/2) =

X

k2Z

(�1)k

2↵

X

n2N

✓
↵+ 1

n

◆
�2↵+1
⇤ (n+ k � 1)

�↵+1
+ (x� k)↵+
�(↵+ 1)

Only known wavelet bases that have an explicit time-domain formula !



2. WAVELETS AND FUNCTIONAL ANALYSIS
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n Wavelets and differentiation 
n Wavelets and Besov spaces
n Best N-term approximations



What makes wavelets attractive for mathematicians

24

Existence of wavelet bases of L2(Rd) (one-to-one representation)

Basis functions are dilations and translates of a single template

Vanishing moments, derivative-like behavior

) Sparse representation of piecewise-smooth signals

Natural images tend to have few large wavelet coefficients

�Wavelet-domain regularization: �1-sparsity, compressed sensing, ...

Unconditional basis of many function spaces: Lp-Sobolev, Hölder, Besov, ...

Assessment of local/global regularity from wavelet decay/mixed `p-norms

Sparsity and (non-linear) N -term approximation of functions



Wavelets and functional spaces
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"everything takes place as if the wavelets  (x/a) were eigenvectors

of the differential operator @s
, with corresponding eigenvalue a�s

”

Yves Meyer (Wavelets and Operators)



Wavelets and fractional differentiation
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a�r

Differentiation and scaling

@r (x) =  (r)(x)
F ! (i!)r ̂(!)

@r (x/a) = a�r (r)(x/a)
F ! (i!)r|a| ̂(a!) = a�r|a|(ia!)r ̂(a!)

Property: the “derivative” wavelet  (r) also generates a biorthogonal basis of L2(R)
provided that  2W r

2 and r < N (number of vanishing moments of  ).

Fractional differentiation

Fourier transform: f̂(!) = F{f}(!) =
Z

R
f(x)e�i!xdx

Fractional derivative of order r: @rf(x)
F ! (i!)rf̂(!)

Differentiation of wavelet expansion

@rf(x) =
X

j2Z

X

k2Z
wj [k] @

r j,k(x) =
X

j2Z

X

k2Z
2�jrwj [k]| {z }

w0
j [k]

 (r)
j,k(x)



Wavelets and Sobolev spaces
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f has s derivatives in L2-sense

� ⇥�sf⇥2
L2

⇤ ⇥� ⌅

Sobolev space of order s

f ⇤W s
2 (R) � f, ⇧sf ⇤ L2(R)

W s
2 (R) =

�
f = F�1{f̂} :

⇤

�⇥R
(1 + |⇥|2s)|f̂(⇥)|2 d⇥

2�
�= �f�2W s

2
< +⇥

⇥

Equivalent norm in wavelet domain

kwk`2,s
M
=

0

@kcj0k2`2 +
j0X

j=�1

��2�jswj

��2
`2

1

A

1
2

kfkW s
2
s kwk`2,s , C1kwk`2,s  kfkW s

2
 C2kwk`2,s

wj [k] = hf, j,ki

cj0 [k] = hf,'j0,ki

Orthogonal wavelet expansion



Wavelets and Besov spaces

28� ⇥�sri⇥Lp

⇤ ⇥� ⌅

s derivatives in Lp-sense
q: fine-tuning parameter that controls decay across scales

Besov space of order s > 0

f 2 Bs
q(Lp(R)) ,

8
>>><

>>>:

(i) f 2 Lp(R)
(ii) there exists a sequence of “smooth” functions gj 2 Lp(R), j 2 N

such that kf � gjkLp  2�js✏j and k@m0gjkLp  2(m0�s)j✏j
with ✏ 2 `q and m0 � s

Besov space and multiresolution analysis (Meyer 1990)

Explicit approximation sequence: fj =
X

k2Z
hf,'j,ki'j,k, rj =

X

k2Z
hf, j,ki j,k

f 2 Bs
q(Lp(R)) ,

(
f 2 Lp(R)
kf � fjkLp  2js✏j , ✏ 2 `q

,
(

fj0 2 Lp(R)
k@srjkLp  ✏j , ✏ 2 `q

Equivalent norm in wavelet domain

kfkBs
q(Lp(R)) s

2

4
⇣
2�j0( 1

2�
1
p )kcj0k`p

⌘q
+

j0X

j=�1

⇣
2�j( 1

2�
1
p )k2�jswjk`p

⌘q

3

5

1
q



Wavelets and non-linear approximation
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kf � fNkL2(Rd) 
C

Nr
kfk

Bs
p

�
Lp(Rd)

� with r = s
d

Critical regularity exponent: s = d
p �

d
2

For p = q 2 [1, 2]: `p(Zd) ✓ `2(Zd) ) Bs
p

�
Lp(Rd)

�
✓ L2(Rd)

(d = dimension of domain)

= kwk`1 If p = q = 1 and s = d
2

Best N -term wavelet approximation: fN = arg min
g2⌃N

kf � gkL2 =
X

j,k2⇤N (f)

wj [k] j,k

N -term wavelet expansions: ⌃N =
�
g =

X

j,k2⇤N

cj,k j,k, cj,k 2 R, card(⇤N )  N
 

(DeVore, Cohen 1998)

Equivalent Besov norm in wavelet domain

kfkBs
q(Lp(Rd)) s

2

4
+1X

j=�1

⇣
2�j(s+ d

2�
d
p )kwjk`p

⌘q

3

5

1
q



3. WAVELETS AND SPARSITY

n Wavelet-based denoising

n Image reconstruction by iterative shrinkage thresholding

n Compressed sensing

30

[Donoho et al., 2005
     Candès-Tao, 2006, ...]

[Donoho 1995]

y A x

+    “noise”

min
x

kxk`1 subject to ky �Axk22  �2

[Figuereido et al. 2003, 
   Daubechies et al. 2004]



Denoising and wavelet-domain/Besov regularization
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Measurement model

Space domain Wavelet domain

�

2

w̃ = T�(w)

w

Orthogonal wavelet transform: WTW = I

y = f + n , wi[k] = w̃i[k] + ni[k] (additive white noise)

Equivalent wavelet-domain solution (by Parseval)

f̃ = Ww̃ with w̃ = argmin
v

0

@kWTy| {z }
w

�vk22 + �kvk`1

1

A

Regularized least-squares signal estimation

Regularization functional: R(f̃) = kw̃k`1 =
X

j

X

k

|w̃j [k]| s kf̃kB1
1(L1(R2))

Variational formulation of denoising problem:

f̃ = argmin
f

�
ky � fk22 + �kWT fk1

�

) Soft-thresholding



Standard Color Image

Input PSNR=18.59 dB
32



Denoised with OWT SURE-LET

Output PSNR = 31.91 dB
33

(Luisier et al., IEEE Trans. Image Proc.  2007)

SURE-LET Optimized thresholds



Denoised with UWT SURE-LET

Output PSNR = 33.27 dB
34

(Luisier et al., IEEE Trans. Image Proc.  2007)

SURE-LET Optimized thresholds
+ redundant wavelet transform



2D + time SURE-LET denoising (DWT) : C-elegance embryo

35



Wavelet-regularized image reconstruction

36

Reconstruction as a (convex) optimization problem

g = Hf + n Hypotheses:

System matrix H is known (physics)

f = Ww has a “sparse” wavelet expansion

f̃ = Ww̃ with w̃ = argmin
w

�
kg �Awk22 + �kwk`1

�

Equivalent system matrix: A = HW

s kf̃kB1
1(L1(R2))

f̃ = argmin
f

⇣
kg �Hfk22| {z }
data consistency

+�k

wz }| {
W

�1
f k`1| {z }

regularization

⌘

Theory of compressed sensing

Conditions on A for perfect signal recovery from few measurements when kwk0 < K0

(Donoho et al., 2005, Candès-Tao, 2006]



3D deconvolution of widefield stack

37(Vonesch-U., IEEE TIP 2009)

Maximum intensity projections of 384⇥448⇥260 image stacks;

Leica DM 5500 widefield epifluorescence microscope with a 63⇥ oil-immersion objective;

C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

wavelet regularization (Haar), 3 decomposition levels for X-Y, 2 decomposition levels for Z.



Application: Parallel MRI reconstruction

38

k-space domainspatial domain

Parallel MRI: several receiving coils, known sensitivities

Challenging reconstruction: few k-space samples

Fourier Transform

S(r)f(r) g(k) =

Z
S(r)f(r)ejhr ,ki dr



Wavelet-regularized reconstruction of MRI 

39

L2 regularization (Laplacian) �1 wavelet regularization

Standard approach (CG) WFISTA algorithm

(Guerquin-Kern et al. IEEE Trans. Med. Im.  2012)
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Improved wavelet design
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Wavelet Art


