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Brownian motion (a.k.a. Wiener process)
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Mathematical construction by Wiener in 1923

Gaussian process

Non-stationary

Self-similar: “1/!” spectral decay

Independent increments

u[k] = s(k)� s(k � 1): i.i.d. Gaussian

s(x)

In-depth analysis of sample path properties in the 1930’s by Paul Lévy

Haar-related expansion whose coefficients are i.i.d. Gaussian



Non-Gaussian generalization of Wiener process

Non-stationary

Self-similar: “1/!” spectral decay

Independent increments

u[k] = s(k)� s(k � 1): i.i.d. infinitely divisible (heavy tailed)

Lévy process
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Constructed by Paul Lévy in the 1930’s

Poisson; H = 0.50

s(x)

Example: compound Poisson process (piecewise-constant, with random jumps)

⇒  Archetype of a “sparse” random signal

Simple denoising experiment
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Noisy samples of a compound Poisson process (zoom)

 

 
original
noisy samples

Noisy samples of a Brownian motion (zoom)

 

 
original
noisy samples

Brownian motion (Gaussian)

Compound Poisson process (Sparse)

Controlled experiment

Matched 2nd-order statistics (correlation function)

Generalized spectrum ⇠ 1
!

s(x): Continuously-defined process

n[k]: Discrete white Gaussian noise

Measurement model

g[k] = s(k) + n[k]

Wiener process

Lévy process



Three dominant paradigms
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Theoretical result:  Continuous-domain LMMSE = piecewise-linear smoothing spline
Also provides MMSE and MAP for Brownian motion model  (Blu-U., 2005)

Theoretical result:  Simple wavelet shrinkage algorithm (LASSO: Tibshirani, 1996)

Wavelet solution = sparse signal recovery

s̃wave(x) = argmin
s(x)

(
kg � sk2�2 +

X

i

µikwikp�p

)

with wi[k] =
⌦
s, 2i/2�(x/2i � k)

↵
L2(R)

Wiener solution (LMMSE) = Smoothing spline

s̃spline(x) = argmin
s(x)

n

X

k2Z
|g[k]� s(k)|2 + µ

Z

R
|Ds(x)|2dx

o

= argmin
s(x)

n

⇥g � s⇥2�2 + µ⇥Ds⇥2L2(R)

o

Three dominant paradigms (cont’d)
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Theoretical result 1                [Mammen, Annals of Statistics, 1997]
Piecewise-constant spline with adaptive knots is a global minimizer

Total variation = non-quadratic regularization

s̃TV(x) = argmins(x)
�
kg � sk2�2 + µTV(s)

 

Theoretical result 2                [Unser et al., IEEE Trans. Sig. Proc. 2010]
MAP solution for specific Lévy process (continuous-domain model)

s̃MAP(k) = argmin
s

(
kg � sk2`2 + µ

X

k

|s(k)� s(k � 1)|
)



Denoising results
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Wiener process (Gaussian) Poisson process (Sparse)
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SNR out [dB] SNR out [dB]

SNR in

Commonalities
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Wavelet as a smoothed derivative: ⇥Haar(x) = D�(x)

Central role of derivative operator

Quadratic spline energy: kDsk2L2(R)

TV as an L1 norm: s 2 W 1
1 , TV(s) = kDskL1(R)

�(x)
L⇤ =

d

dx

⇥(x) = L⇤�(x)

⇤ ⌅f,⇥(·� x0)⇧ = L(f ⇥ �⇤)(x0) = � d
dx (f⇥ ) (x0)

⇒  innovation modeling
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OUTLINE
■ Gaussian (Wiener) vs. sparse (Lévy) signals ✔
■ The spline connection

■ L-splines and signals with finite rate of innovation
■ Green functions as elementary building blocks

■ Sparse stochastic processes
■ Generalized innovation model
■ Gelfand’s theory of generalized stochastic processes
■ Statistical characterization of sparse stochastic processes

■ Implications of innovation model
■ Link with regularization
■ Wavelet representation of sparse processes
■ Determination of transform-domain statistics

■ Sparse processes and signal reconstruction
■ MAP estimator
■ MRI examples

10
Photo courtesy of Carl De Boor

The spline connection
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Splines: signals with finite rate of innovation

Spline theory: (Schultz-Varga, 1967)

(Vetterli et al., 2002)

L{·}: differential operator

�(x): Dirac distribution

Definition

The function s(x) is a (non-uniform) L-spline with knots {xn} iff.

L{s}(x) =
NX

n=1

an�(x� xn)

FIR signal processing: Innovation variables (2N)

Location of singularities (knots) : {xn}n=1,...,N

Strength of singularities (linear weights): {an}n=1,...,N

an

xn xn+1

L =
d
dx

Splines and Green’s functions
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�(x)L{·} �(x)
L�1{·}

(+ null-space component?)

L�1{·}

Formal integration

⇒

General (non-uniform) L-spline: L{s}(x) =
X

k2Z
ak�(x� xk)

X

k2Z
ak�(x� xk)

Definition

⇢L(x) is a Green function of the shift-invariant operator L iff L{⇢L} = �

⇢L(x) ⇢L(x)

s(x) = pL(x) +
X

k2Z
ak�L(x� xk)



Green function = Impulse response 

Translation invariance 

Linearity 

Example of spline synthesis
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�(x)

�(x� x0)

�(x)
L�1{·}

�

k�Z
a[k]�(x� k)

�(x� x0)

L�1{·}

L�1{·}

s(x) =
�

k�Z
a[k]�(x� k)

L = d
dx = D � L�1: integrator

14

Sparse stochastic
processes



Brownian motion vs. spline synthesis
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L�1{·}

Brownian motion

Cardinal spline (Schoenberg, 1946)

white noise
or

stream of Diracs

 

L = d
dx � L�1: integrator

Poisson; H = 0.50

Compound Poisson process (sparse)
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(Paul Lévy, 1934)

 

Random jumps with rate � (Poisson point process)

Compound Poisson process

s(x)

L = d
dx

) L�1
: integrator

L�1{·}

random stream of Diracs

r(x) =
X

k

ak�(x� xk)

Jump size distribution: a v p(a)



Generalized stochastic processes
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Splines are in direct correspondence with stochastic processes 
(stationary or fractals) that are solution of the same partial differential 
equation, but with a random driving term.

References: stationary proc. (U.-Blu, IEEE-SP 2006), fractals (Blu-U., IEEE-SP 2007),
sparse processes (U.-Tafti, IEEE-SP 2010)

non-empty null space of L, boundary conditions

Defining operator equation: L{s(·)}(x) = r(x)

r(x) =
�

k�Zd

a[k]�(x� k) ⇥ s(x) : Cardinal L-spline

r(x): white noise ) s(x): generalized stochastic process

Specific driving terms

r(x) = �(x) � s(x) = L�1{�}(x) : Green function

w(x) s(x)

White noise
 (Gaussian, Poisson or Lévy)

Generalized
stochastic process

L{·}

Shaping filter

(appropriate boundary conditions)

Whitening operator

L�1{·}

What is white noise ?

The problem: Continuous-domain white noise does not have a pointwise interpretation.

Standard stochastic calculus. Statisticians circumvent the difficulty by working with ran-

dom measures (dW (x) = w(x)dx) and stochastic integrals; i.e, s(x) =
R
R ⇢(x, x0)dW (x0)

where ⇢(x, x0) is a suitable kernel.

Innovation model. The white noise interpretation is more appealing for engineers (cf.

Papoulis), but it requires a proper distributional formulation and operator calculus.
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Road map for theory of sparse processes

White noise

Characterization of continuous-domain white noise

Mixing operator

Whitening operator

L�1

L

s = L�1w

w

Characterization of 
generalized stochastic process

Specification of inverse operator

Characterization of 
transform-domain statistics

Multi-scale 
wavelet 
analysis

 i = L⇤�i

Functional analysis solution of SDE

Very easy ! (after solving 1. & 2.)

Easy when:

Higher mathematics: generalized functions (Schwartz)
measures on topological vector spaces

Gelfand’s theory of generalized stochastic processes
Infinite divisibility (Lévy-Khintchine formula)

1

2

4

3

20

Step 1: White noise characterization

White noise

Whitening operator

L�1

L

s = L�1w

w

Difficulty 1: w ⇤= w(x) is too rough to have a pointwise interpretation

� s' = ⌅w,�⇧ for any � ⇥ S

Difficulty 2: w is an infinite-dimensional random entity;

its “pdf” can be formally specified by a measure Pw(E) where E � S 0

White noise property: independence at every point

Infinite-dimensional counterpart of characteristic function (Gelfand, 1955)

Characteristic functional:

dPw(') = E{ejhw,'i} =

Z

S0
ejhs,'iPw(ds), for any ' 2 S
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Characteristic form of white “noise” processes
Definition: Independence at every point

dPw('1 + '2) = dPw('1)⇥ dPw('2) whenever '1 ⇥ '2 = 0 (disjoint support)

Bottom line

WNP uniquely specified by f(!) , pid(x) = F�1{ef(!)}(x) (canonical id pdf)

Functional characterization (Gelfand-Vilenkin)

The characteristic form

dPw(') = exp

✓Z

Rd

f
�
'(x)

�
dx

◆
defines a white noise w over S 0

(Rd
)

, f : R ! C is a conditionally positive-definite function of order one

, f(!) is a valid L

´

evy exponent

, p̂id(!) = ef(!)
is an infinitely-divisible (id) characteristic function

Example of usage: X = w('0) = hw,'0i
) pX(x) = F�1{p̂X(!)} where p̂X(!) = E{ej!hw,'0i} = dPw(!'0)

White noise: canonical distribution
Continuous-domain white noise is highly singular; its points values are undefined 

A given brand uniquely specified by pid(x) = F�1{ef(�)}(x)

Interpretation: noise observation through a rectangular window

Special cases

f(⇥) = 1
2 |⇥|

2 � pid(x): normalized Gaussian

f(⇥) = |⇥|↵ with � ⇥ (0, 2] � pid(x): Symmetric-�-stable (S�S)

Also allowed: compound Poisson, Beta, Student, Cauchy, etc. (typically heavy tailed)

dPw

�
� rect(x)

�
= ef(�) ⇥ pid(x) = pXid(x) with Xid = ⇤rect(·� k), w⌅ (i.i.d.)



Examples of id noise distributions
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Sparser

f(�) = 1
2�2

0
|�|2

f(⇥) = �
R
R(e

jx� � 1)p(x)dx

f(�) = log

⇣
1

1+!2

⌘

pid(x)

f(�) = s|�|

Complete mathematical characterization:

dPw(�) = exp

✓Z

Rd

f
�
�(x)

�
dx

◆

Complete characterization of id distributions
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Definition: A random variable X with generic pdf pid(x) is infinitely divisible (id) iff.,

for any N 2 Z+
, there exist i.i.d. random variables X1, . . . , XN such that X has the

same distribution as X1 + · · ·+XN .

Theoretical relevance: one-to-one correspondence between a 
“classical” id PDF and a white noise processes

L

´

evy-Khinchine theorem

pid(x) is an infinitely divisible (id) PDF iff. its characteristic function can be written as

p̂id(!) =

Z

R
pid(x)e

j!xdx = e

f(!)

with L

´

evy exponent

f(!) = jb1! � b2!
2

2
+

Z

R\{0}

�
e

ja! � 1� ja!I|a|<1(a)
�
v(a)da

where b1 2 R and b2 2 R+
are some constants, and where v(a) � 0 is some

positive function (density L

´

evy) such that

R
R min(a2, 1)v(a)da < 1.



25

Steps 2 + 3: Characterization of sparse process

White noise

Whitening operator

L�1

L

s = L�1w

w

Technical aspect: functional analysis

Find an acceptable inverse of L such that the adjoint operator L�1⇤

is well-defined over Schwartz’s class of test functions

Abstract formulation of innovation model

s = L�1w � ⇤� ⇥ S, ⌅�, s⇧ = ⌅�,L�1w⇧ = ⌅L�1⇤�| {z }, w⇧

) cPs(') = E{ejhs,'i} =

dPw(L
�1⇤') = exp

✓Z

Rd

f
�
L

�1⇤'(x)
�
dx

◆

Ideally: L�1⇤' 2 S

or at least kL�1⇤'kLp < C k'kLp (continuity)

Self-similar processes (TS-invariant)
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fBm; H = 0.50

fBm; H = 0.75

fBm; H = 1.25

fBm; H = 1.50

Poisson; H = 0.50

Poisson; H = 0.75

Poisson; H = 1.25

Poisson; H = 1.50

H=.5
H=.75

H=1.25
H=1.5

L F ! (j!)H+ 1
2 ) L�1

: fractional integrator

Sparse (generalized Poisson)Gaussian
Fractional Brownian motion (Mandelbrot, 1968) (U.-Tafti, IEEE-SP 2010)



2D generalization: the Mondrian process
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� = 30

L = DxDy
F�⇥ (j�x)(j�y)

Scale- and rotation-invariant processes
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H=.5 H=.75 H=1.25 H=1.75

Stochastic partial differential equation : (��)
H+1

2 s(x) = w(x)

Gaussian

Sparse (generalized Poisson)

(U.-Tafti, IEEE-SP 2010)



Powers of ten: from astronomy to biology
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IMPLICATION OF INNOVATION MODEL
■ Optimized analysis tools = B-splines
■ Decoupling sparse processes
■ Wavelet analysis of sparse processes
■ Determination of transform-domain statistics
■ Signal reconstruction algorithm (MAP)
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Recap on infinite-dimensional innovation model 

1 3

dPw(�) = exp

✓Z

Rd

f
�
�(x)

�
dx

◆
cPs(') = dPw(L

�1⇤')

White noise

Whitening operator

L�1

L

s = L�1w

w

2

Generic test function ' � S plays the role of index variable

Regularization operator vs. wavelet analysis

4 Analysis step

Solution of SDE

White “noise” signature: pid(x) = F�1{ef(�)}(x)

Optimized analysis tools = B-splines
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Ls = w

s = L�1w

Whitening operator L

Discrete version of operator

Lds(x) =
X

k2Zd

d[k]s(x� k)

Generalized B-spline

�L(x) = LdL
�1⇥(x) =

X

k2Zd

d[k]⇤L(x� k)

Green function ⇢L(x) such that L⇢L = �

) �L should be well-defined

�
�L 2 L1(Rd)

�
and maximally localized (short support)

Quality of discrete approximation:

Lds(x) = Ld L
�1L| {z }
Id

s(x) = �L ⇤ Ls(x)



Optimized analysis tools: introductory example

33

Whitening operator D

Ds(x) = w(x)

s(x) =

Z
x

0
w(y)dyFinite difference operator

Dds(x) = s(x)� s(x� 1)

SDE for Lévy process

B-spline of minimal support: �(0)(x) 2 Lp(R) for p > 0

Piecewise-constant B-spline

�(0)(x) = 1+(x)� 1+(x� 1) = rect(x� 1

2
)

Green function ⇢D(x) = 1+(x) (unit step)

Decoupling sparse processes
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Innovation model (SDE)

Generalized increment process

Ls = w

s = L�1w

u = Lds = LdL
�1w = �L ⇤ w

hu,⇥i = h�L ⇤ w,⇥i = hw,�_
L ⇤ ⇥i with �_

L (x) = �L(�x)

=) dPu(') = dPw(�
_
L ⇤ ')

Statistical implications

u = Lds is stationary with characteristic function

dPw(⇥�_
L)

Quality of decoupling depends upon support of B-spline �L(x)



and Wavelets ...
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Wavelet analysis of sparse processes

36

Innovation model (SDE) Ls = w

s = L�1w
Operator-like wavelet:  i = L⇤�i

Wavelet analysis

�i: smoothing kernel at wavelet scale i

vi(x) = ⇥⇥i(·� x), s⇤ = ⇥L⇤�i(·� x),L�1w⇤ = ⇥�i(·� x), w⇤

Statistical implications

Wavelet coefficients vi are stationary with characteristic function

dPw(⇥�i)

Quality of decoupling depends upon support of wavelet/smoothing kernel �i

=) dPvi(') = dPw(�i ⇤ ')



Determination of transform-domain statistics
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X(⇤) = hw,⇤i for suitable ⇤ (e.g., �L,⇥i, rect)

General properties

R
R |x|ppid(x)dx < ⇥ � pX(�)(x) well-defined for all � ⇤ Lp(Rd)

pid(x) is symmetric, unimodal � pX(�)(x) idem

pid(x) = O(1/|x|p) with p > 1 (heavy tailed) � pX(�)(x) idem

pid(x) (non-Gaussian) � pX(�)(x) is sparse

Common white noise analysis framework

Decay: O(e��|x|) (exponential), xpe��|x|
, or O(1/|x|p) (algebraic)

Explicit form of characteristic function

p̂X(')(!) = dPw(!') = ef'(!)
with f'(!) =

Z

Rd

f
�
!'(x)

�
dx

38

Finale Finale: sparse processes
 and signal reconstruction



Signal reconstruction: MAP formulation
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Ls = w

s = L�1w
Innovation model of the signal

Signal decoupling: discrete version of operator

u(x) = Lds(x) , u = Ls (matrix notation)

s� = argmin
⇣

1
2 kg �Hsk22 + �2

P
n �X([Ls]n)

⌘
Maximum a posteriori (MAP) estimator for AWN

Statistical characterization

- X = [u]n identically distributed (approx. independent)

- Probability density function: pX(x) = F�1{dPw(⇥�_
L )}(x)

- Potential function: �X(x) = � log pX(x)

MAP estimator: special cases
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-30 -20 -10 0 10 20 30
0

5

10

15

20

25

30

Student potentials: r = 2, 4, 8, 32 (fixed variance)

Sparser
s� = argmin

⇣
1
2 kg �Hsk22 + �2

P
n �X([Ls]n)

⌘

Gaussian: pX(x) = 1⇥
2⇥⇤0

e�x2/(2⇤2
0) � �X(x) = 1

2⇤2
0
x2

Laplace: pX(x) = �
2 e

��|x| � �X(x) = �|x|

Student: pX(x) =
1

B
�
r, 1

2

�
✓

1

x2 + 1

◆r+ 1
2

� �X(x) =
�
r +

1

2

�
log(1 + x2)



Reconstruction algorithms
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FWISTA (Guerquin-Kern TMI 2011),  IRWL1 (Candès), AL (Ramani TMI 2011) 

Auxiliary innovation variable: u = Ls

Proximal operator taylored to stochastic model

prox�X
(y;�) = argmin

u

1

2
|y � u|2 + ��X(u)

ADM: Alternating minimization over s (linear problem) and u (non-linear)

(s⇤,u⇤) = argmin
s,u2RN

 
1

2
kg �Hsk22 + �2

X

n

�X([u]n) +
µ

2
kLs� uk22

!

Variable splitting with quadratic penalty

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

Cauchy prior with increasing s

Original SL Phantom Fourier Sampling Pattern
12 Angles

Student prior (log)

L : gradient

Optimized parameters

Laplace prior (TV)

MRI: Shepp-Logan phantom



Original Phantom
(Guerquin-Kern et al.)

Gaussian prior (Tikhonov)
SER =17.69 dB

Laplace prior (TV)
SER = 21.37 dB

Student prior
SER = 27.22 dB

L : gradient

Optimized parameters
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MRI: Spiral sampling in k-space
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CONCLUSION
 Unifying continuous-domain innovation model

 Backward compatibility with classical Gaussian theory
 Operator-based formulation: Lévy-driven SDEs or SPDEs
 Gaussian vs. sparse (generalized Poisson, student, SαS)
 Focus on unstable SDEs ⇒ non-stationary, self-similar processes

 Regularization vs. wavelet analysis
 Central role of B-spline
 Sparsification via “operator-like” behavior

 Discrete approximation of whitening operator
 Multi-resolution: wavelets

 Theoretical framework for sparse signal recovery
 New statistically-founded sparsity priors
 Derivation of optimal estimators (MAP, MMSE)
 Guide for the development of novel algorithms
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