

Towards a theory of sparse stochastic processes: when Paul Lévy joins forces with Nobert Wiener

Michael Unser Biomedical Imaging Group EPFL, Lausanne, Switzerland

Joint work with P. Tafti, Q. Sun, T. Blu, M. Guerquin-Kern, E. Bostan, etc.

Mathematics and Image Analysis (MIA'12), Paris, 16-18 January 2012.

Brownian motion (a.k.a. Wiener process)

Mathematical construction by Wiener in 1923

- Gaussian process
- Non-stationary
- Self-similar: " $1/\omega$ " spectral decay
- Independent increments

$$u[k] = s(k) - s(k-1)$$
: i.i.d. Gaussian

In-depth analysis of sample path properties in the 1930's by Paul Lévy

■ Haar-related expansion whose coefficients are i.i.d. Gaussian

Lévy process

Constructed by Paul Lévy in the 1930's

- Non-Gaussian generalization of Wiener process
- Non-stationary
- Self-similar: " $1/\omega$ " spectral decay
- Independent increments

$$u[k] = s(k) - s(k-1)$$
: i.i.d. infinitely divisible (heavy tailed)

Example: compound Poisson process (piecewise-constant, with random jumps)

⇒ Archetype of a "sparse" random signal

3

Simple denoising experiment

Measurement model

$$g[k] = s(k) + n[k]$$

Brownian motion (Gaussian)

- lacksquare s(x): Continuously-defined process
- lacksquare n[k]: Discrete white Gaussian noise

Compound Poisson process (Sparse)

- Controlled experiment
 - Matched 2nd-order statistics (correlation function)
 - \blacksquare Generalized spectrum $\sim \frac{1}{\omega}$

Three dominant paradigms

■ Wiener solution (LMMSE) = Smoothing spline

$$\tilde{s}_{\text{spline}}(x) = \arg\min_{s(x)} \left\{ \sum_{k \in \mathbb{Z}} |g[k] - s(k)|^2 + \mu \int_{\mathbb{R}} |Ds(x)|^2 dx \right\}$$

$$= \arg\min_{s(x)} \left\{ \|g - s\|_{\ell_2}^2 + \mu \|Ds\|_{L_2(\mathbb{R})}^2 \right\}$$

Theoretical result: Continuous-domain LMMSE = piecewise-linear smoothing spline Also provides MMSE and MAP for Brownian motion model (Blu-U., 2005)

■ Wavelet solution = sparse signal recovery

$$\begin{split} \tilde{s}_{\text{wave}}(x) &= \arg\min_{s(x)} \left\{ \|g - s\|_{\ell_2}^2 + \sum_i \mu_i \|w_i\|_{\ell_p}^p \right\} \\ & \text{with} \quad w_i[k] = \left\langle s, 2^{i/2} \psi(x/2^i - k) \right\rangle_{L_2(\mathbb{R})} \end{split}$$

Theoretical result: Simple wavelet shrinkage algorithm (LASSO: Tibshirani, 1996)

5

Three dominant paradigms (cont'd)

■ Total variation = non-quadratic regularization

$$\tilde{s}_{\text{TV}}(x) = \arg\min_{s(x)} \left\{ \|g - s\|_{\ell_2}^2 + \mu \, \text{TV}(s) \right\}$$

Theoretical result 1 [Mammen, *Annals of Statistics*, 1997] Piecewise-constant spline with adaptive knots is a global minimizer

$$\tilde{s}_{\text{MAP}}(k) = \arg\min_{s} \left\{ \|g - s\|_{\ell_2}^2 + \mu \sum_{k} |s(k) - s(k-1)| \right\}$$

Theoretical result 2 [Unser et al., *IEEE Trans. Sig. Proc.* 2010] MAP solution for specific Lévy process (continuous-domain model)

Denoising results

SNR out [dB] 26 24 (Wiener) 22 wavelet SNR in

Wiener process (Gaussian)

Poisson process (Sparse)

7

Commonalities ⇒ innovation modeling

- Central role of derivative operator
 - lacksquare Quadratic spline energy: $\|\mathbf{D}s\|_{L_2(\mathbb{R})}^2$
 - $lacksquare \mathsf{TV}$ as an L_1 norm: $s \in W_1^1 \quad \Leftrightarrow \quad \mathrm{TV}(s) = \| \frac{\mathsf{D}}{\mathsf{D}} s \|_{L_1(\mathbb{R})}$
 - Wavelet as a smoothed derivative: $\psi_{\text{Haar}}(x) = \mathbf{D}\phi(x)$

$$L^* = \frac{\mathrm{d}}{\mathrm{d}x}$$

$$\Rightarrow \langle f, \psi(\cdot - x_0) \rangle = \mathcal{L}(f * \phi^*)(x_0) = -\frac{\mathrm{d}}{\mathrm{d}x} \left(f * \right) (x_0)$$

OUTLINE

- Gaussian (Wiener) vs. sparse (Lévy) signals
- The spline connection
 - L-splines and signals with finite rate of innovation
 - Green functions as elementary building blocks
- Sparse stochastic processes
 - Generalized innovation model
 - Gelfand's theory of generalized stochastic processes
 - Statistical characterization of sparse stochastic processes
- Implications of innovation model
 - Link with regularization
 - Wavelet representation of sparse processes
 - Determination of transform-domain statistics
- Sparse processes and signal reconstruction
 - MAP estimator
 - MRI examples

Splines: signals with finite rate of innovation

 $L\{\cdot\}$: differential operator

 $\delta(x)$: Dirac distribution

Definition

The function s(x) is a (non-uniform) L-spline with knots $\{x_n\}$ iff.

$$L\{s\}(x) = \sum_{n=1}^{N} a_n \delta(x - x_n)$$

Spline theory: (Schultz-Varga, 1967)

- FIR signal processing: Innovation variables (2N) (Vetterli et al., 2002)
 - Location of singularities (knots) : $\{x_n\}_{n=1,\dots,N}$
 - Strength of singularities (linear weights): $\{a_n\}_{n=1,...,N}$

11

Splines and Green's functions

Definition

 $ho_{
m L}(m{x})$ is a Green function of the shift-invariant operator m L iff $m L\{
ho_{
m L}\}=\delta$

$$\rho_{\mathbf{L}}(\boldsymbol{x}) \longrightarrow \mathbf{L}\{\cdot\} \longrightarrow \delta(\boldsymbol{x}) \qquad \Longrightarrow \qquad \stackrel{\delta(\boldsymbol{x})}{\longrightarrow} \mathbf{L}^{-1}\{\cdot\} \longrightarrow \stackrel{\rho_{\mathbf{L}}(\boldsymbol{x})}{\longleftarrow} \text{ (+ null-space component?)}$$

■ General (non-uniform) L-spline: $L\{s\}(m{x}) = \sum_{k \in \mathbb{Z}} a_k \delta(m{x} - m{x}_k)$

Formal integration

$$\sum_{k \in \mathbb{Z}} a_k \delta(\boldsymbol{x} - \boldsymbol{x}_k) \longrightarrow \mathbf{L}^{-1} \{\cdot\} \longrightarrow s(\boldsymbol{x}) = \frac{p_{\mathbf{L}}(\boldsymbol{x})}{p_{\mathbf{L}}(\boldsymbol{x})} + \sum_{k \in \mathbb{Z}} a_k \rho_{\mathbf{L}}(\boldsymbol{x} - \boldsymbol{x}_k)$$

Example of spline synthesis

$$L = \frac{d}{dx} = D \implies L^{-1}$$
: integrator

Translation invariance

Brownian motion vs. spline synthesis

$$L = \frac{d}{dx} \Rightarrow L^{-1}$$
: integrator

Brownian motion

Cardinal spline (Schoenberg, 1946)

15

Compound Poisson process (sparse)

$$L = \frac{d}{dx} \Rightarrow L^{-1}$$
: integrator

$$r(x) = \sum_{k} a_k \delta(x - x_k) \longrightarrow \mathbb{L}^{-1} \{\cdot\} \longrightarrow s(x)$$

random stream of Diracs

Compound Poisson process

Random jumps with rate λ (Poisson point process)

Jump size distribution: $a \backsim p(a)$

(Paul Lévy, 1934)

Generalized stochastic processes

Splines are in direct correspondence with stochastic processes (stationary or fractals) that are solution of the same partial differential equation, but with a random driving term.

Defining operator equation: $L\{s(\cdot)\}(x) = r(x)$

Specific driving terms

$$= r({\pmb x}) = \delta({\pmb x}) \qquad \qquad \Rightarrow \quad s({\pmb x}) = {\rm L}^{-1}\{\delta\}({\pmb x}) : {\rm Green \ function}$$

$$lacksquare r(m{x}) = \sum_{m{k} \in \mathbb{Z}^d} a[m{k}] \delta(m{x} - m{k}) \qquad \Rightarrow \quad s(m{x}) : \mathsf{Cardinal\ L-spline}$$

 $\mathbf{r}(\mathbf{x})$: white noise \Rightarrow $s(\mathbf{x})$: generalized stochastic process

non-empty null space of L, boundary conditions

References: stationary proc. (U.-Blu, *IEEE-SP* 2006), fractals (Blu-U., *IEEE-SP* 2007), sparse processes (U.-Tafti, *IEEE-SP* 2010)

- What is white noise ?
 - **The problem**: Continuous-domain white noise does not have a pointwise interpretation.
 - Standard stochastic calculus. Statisticians circumvent the difficulty by working with *random measures* ($\mathrm{d}W(x) = w(x)\mathrm{d}x$) and *stochastic integrals*; i.e, $s(x) = \int_{\mathbb{R}} \rho(x,x')\mathrm{d}W(x')$ where $\rho(x,x')$ is a suitable kernel.
 - **Innovation model**. The white noise interpretation is more appealing for engineers (cf. Papoulis), but it requires a proper distributional formulation and operator calculus.

Road map for theory of sparse processes

- Specification of inverse operator **Functional analysis solution of SDE**
- 3) Characterization of generalized stochastic process

Very easy ! (after solving 1. & 2.)

Characterization of continuous-domain white noise

Higher mathematics: generalized functions (Schwartz) measures on topological vector spaces

Gelfand's theory of generalized stochastic processes Infinite divisibility (Lévy-Khintchine formula)

Characterization of transform-domain statistics

Easy when: $\psi_i = \mathrm{L}^* \phi_i$

19

Step 1: White noise characterization

- Difficulty 1: $w \neq w(x)$ is too rough to have a pointwise interpretation $\Rightarrow \quad s_{\varphi} = \langle w, \varphi \rangle \text{ for any } \varphi \in \mathcal{S}$
- Difficulty 2: w is an infinite-dimensional random entity; its "pdf" can be formally specified by a measure $\mathscr{P}_w(E)$ where $E\subseteq \mathcal{S}'$
- Infinite-dimensional counterpart of characteristic function (Gelfand, 1955) $\widehat{\mathscr{P}_w}(\varphi) = \mathbb{E}\{e^{j\langle w,\varphi\rangle}\} = \int_{\mathscr{C}} e^{j\langle s,\varphi\rangle} \mathscr{P}_w(ds), \qquad \text{for any } \varphi \in \mathcal{S}$ Characteristic functional:
- White noise property: independence at every point

Characteristic form of white "noise" processes

■ Definition: Independence at every point

$$\widehat{\mathscr{P}_w}(\varphi_1+\varphi_2)=\widehat{\mathscr{P}_w}(\varphi_1) imes\widehat{\mathscr{P}_w}(\varphi_2)$$
 whenever $\varphi_1 imes\varphi_2=0$ (disjoint support)

■ Functional characterization (Gelfand-Vilenkin)

The characteristic form $\widehat{\mathscr{P}_w}(\varphi) = \exp\left(\int_{\mathbb{R}^d} f\big(\varphi(\boldsymbol{x})\big)\mathrm{d}\boldsymbol{x}\right)$ defines a white noise w over $\mathcal{S}'(\mathbb{R}^d)$

- $\Leftrightarrow f: \mathbb{R} \to \mathbb{C}$ is a conditionally positive-definite function of order one
- $\Leftrightarrow f(\omega)$ is a valid Lévy exponent
- $\Leftrightarrow \hat{p}_{\mathrm{id}}(\omega) = e^{f(\omega)}$ is an infinitely-divisible (id) characteristic function
- Bottom line

WNP uniquely specified by $f(\omega) \quad \Leftrightarrow \quad p_{\mathrm{id}}(x) = \mathcal{F}^{-1}\{e^{f(\omega)}\}(x)$ (canonical id pdf)

Example of usage: $X = w(\varphi_0) = \langle w, \varphi_0 \rangle$

$$\Rightarrow \quad p_X(x) = \mathcal{F}^{-1}\{\hat{p}_X(\omega)\} \quad \text{where} \quad \hat{p}_X(\omega) = \mathbb{E}\{e^{j\omega\langle w, \varphi_0\rangle}\} = \widehat{\mathscr{P}_w}(\omega\varphi_0)$$

21

White noise: canonical distribution

Continuous-domain white noise is highly singular; its points values are undefined

A given brand uniquely specified by $p_{\mathrm{id}}(x) = \mathcal{F}^{-1}\{e^{f(\omega)}\}(x)$

Interpretation: noise observation through a rectangular window

$$\widehat{\mathscr{P}_w}\big(\omega\,\mathrm{rect}(\boldsymbol{x})\big) = e^{f(\omega)} \quad \Leftrightarrow \quad p_{\mathrm{id}}(x) = p_{X_{\mathrm{id}}}(x) \quad \text{with} \quad X_{\mathrm{id}} = \langle \mathrm{rect}(\cdot - \boldsymbol{k}), w \rangle \quad \text{(i.i.d.)}$$

- Special cases
 - $f(\omega) = \frac{1}{2}|\omega|^2 \quad \Leftrightarrow \quad p_{\mathrm{id}}(x)$: normalized Gaussian

 - Also allowed: compound Poisson, Beta, Student, Cauchy, etc. (typically heavy tailed)

Examples of id noise distributions

$$p_{\rm id}(x)$$

$$f(\omega) = \frac{1}{2\sigma_0^2} |\omega|^2$$

(b) Laplace

$$f(\omega) = \log\left(\frac{1}{1+\omega^2}\right)$$

(c) Compound Poisson

Sparse

$$f(\omega) = \lambda \int_{\mathbb{R}} (e^{jx\omega} - 1)p(x)dx$$

(d) Cauchy (stable)

$$f(\omega) = s|\omega|$$

Complete mathematical characterization: $\widehat{\mathscr{P}_w}(\varphi) = \exp\left(\int_{\mathbb{R}^d} f(\varphi(\boldsymbol{x})) \mathrm{d}\boldsymbol{x}\right)$

$$\widehat{\mathscr{P}_w}(\varphi) = \exp\left(\int_{\mathbb{R}^d} f(\varphi(\boldsymbol{x})) d\boldsymbol{x}\right)$$

23

Complete characterization of id distributions

Definition: A random variable X with generic pdf $p_{id}(x)$ is *infinitely divisible* (id) iff., for any $N \in \mathbb{Z}^+$, there exist i.i.d. random variables X_1, \dots, X_N such that X has the same distribution as $X_1 + \cdots + X_N$.

Lévy-Khinchine theorem

 $p_{\rm id}(x)$ is an infinitely divisible (id) PDF iff. its characteristic function can be written as

$$\hat{p}_{\mathrm{id}}(\omega) = \int_{\mathbb{R}} p_{\mathrm{id}}(x) e^{j\omega x} \mathrm{d}x = e^{f(\omega)}$$

with Lévy exponent

$$f(\omega) = jb_1\omega - \frac{b_2\omega^2}{2} + \int_{\mathbb{R}\setminus\{0\}} \left(e^{ja\omega} - 1 - ja\omega \mathbb{I}_{|a|<1}(a)\right)v(a)da$$

where $b_1 \in \mathbb{R}$ and $b_2 \in \mathbb{R}^+$ are some constants, and where $v(a) \geq 0$ is some positive function (density Lévy) such that $\int_{\mathbb{R}} \min(a^2, 1) v(a) da < \infty$.

Theoretical relevance: one-to-one correspondence between a "classical" id PDF and a white noise processes

Steps 2 + 3: Characterization of sparse process

Abstract formulation of innovation model

$$s = L^{-1}w \quad \Leftrightarrow \quad \forall \varphi \in \mathcal{S}, \quad \langle \varphi, s \rangle = \langle \varphi, L^{-1}w \rangle = \langle L^{-1*}\varphi, w \rangle$$

$$\Rightarrow \widehat{\mathscr{P}}_s(\varphi) = \mathbb{E}\{e^{j\langle s,\varphi\rangle}\} = \widehat{\mathscr{P}}_w(L^{-1*}\varphi) = \exp\left(\int_{\mathbb{R}^d} f(L^{-1*}\varphi(\boldsymbol{x})) d\boldsymbol{x}\right)$$

■ Technical aspect: functional analysis

Find an acceptable inverse of L such that the adjoint operator L^{-1*} is well-defined over Schwartz's class of test functions

Ideally:
$$L^{-1*}\varphi \in \mathcal{S}$$

or at least
$$\|\mathbf{L}^{-1*}\varphi\|_{L_p} < C \|\varphi\|_{L_p}$$
 (continuity)

Self-similar processes (TS-invariant)

$$L \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad (j\omega)^{H+\frac{1}{2}} \quad \Rightarrow \quad L^{-1}$$
: fractional integrator

Gaussian

Sparse (generalized Poisson)

Fractional Brownian motion (Mandelbrot, 1968)

(U.-Tafti, *IEEE-SP* 2010)

2D generalization: the Mondrian process

$$L = D_x D_y \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad (j\omega_x)(j\omega_y)$$

27

Scale- and rotation-invariant processes

Stochastic partial differential equation : $(-\Delta)^{\frac{H+1}{2}}s(\boldsymbol{x})=w(\boldsymbol{x})$

Gaussian

H=.5

H=.75

H=1.25

H=1.75

Sparse (generalized Poisson)

(U.-Tafti, IEEE-SP 2010)

Powers of ten: from astronomy to biology

29

IMPLICATION OF INNOVATION MODEL

- Optimized analysis tools = B-splines
- Decoupling sparse processes
- Wavelet analysis of sparse processes
- Determination of transform-domain statistics
- Signal reconstruction algorithm (MAP)

Recap on infinite-dimensional innovation model

Generic test function $\varphi \in \mathcal{S}$ plays the role of index variable

White "noise" signature: $p_{\mathrm{id}}(x) = \mathcal{F}^{-1}\{e^{f(\omega)}\}(x)$

Regularization operator vs. wavelet analysis

31

Optimized analysis tools = B-splines

■ Whitening operator L

Green function $ho_{
m L}({m x})$ such that ${
m L}
ho_{
m L}=\delta$

$$Ls = w$$

$$s = L^{-1}w$$

$$L_d s(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^d} d[\boldsymbol{k}] s(\boldsymbol{x} - \boldsymbol{k})$$

Generalized B-spline

$$eta_{\mathrm{L}}(oldsymbol{x}) = \mathrm{L}_{\mathrm{d}} \mathrm{L}^{-1} \delta(oldsymbol{x}) = \sum_{oldsymbol{k} \in \mathbb{Z}^d} d[oldsymbol{k}]
ho_{\mathrm{L}}(oldsymbol{x} - oldsymbol{k})$$

Quality of discrete approximation:

$$L_d s(\boldsymbol{x}) = L_d \underbrace{L^{-1}L}_{Id} s(\boldsymbol{x}) = \beta_L * Ls(\boldsymbol{x})$$

 \Rightarrow $eta_{
m L}$ should be well-defined $\left(eta_{
m L}\in L_1(\mathbb{R}^d)
ight)$ and maximally localized (short support)

Optimized analysis tools: introductory example

Whitening operator D

Green function $\rho_D(x) = 1_+(x)$ (unit step)

Finite difference operator

$$D_{d}s(x) = s(x) - s(x-1)$$

SDE for Lévy process

$$Ds(x) = w(x)$$

$$s(x) = \int_0^x w(y) dy$$

■ Piecewise-constant B-spline

$$\beta_{(0)}(x) = 1_{+}(x) - 1_{+}(x-1) = \text{rect}(x - \frac{1}{2})$$

B-spline of minimal support: $\beta_{(0)}(x) \in L_p(\mathbb{R})$ for p > 0

33

Decoupling sparse processes

Innovation model (SDE)

$$Ls = w$$

$$s = L^{-1}w$$

Generalized increment process

$$u = L_{\mathrm{d}}s = L_{\mathrm{d}}L^{-1}w = \beta_{\mathrm{L}} * w$$

$$\langle u, \varphi \rangle = \langle \beta_{\mathrm{L}} * w, \varphi \rangle = \langle w, \beta_{\mathrm{L}}^{\vee} * \varphi \rangle \quad \text{ with } \quad \beta_{\mathrm{L}}^{\vee}(\boldsymbol{x}) = \beta_{\mathrm{L}}(-\boldsymbol{x})$$

$$\Longrightarrow \widehat{\mathscr{P}_{u}}(\varphi) = \widehat{\mathscr{P}_{w}}(\beta_{\mathbf{L}}^{\vee} * \varphi)$$

- Statistical implications
 - $\mathbf{u} = \mathbf{L}_{\mathrm{d}} s$ is stationary with characteristic function $\widehat{\mathscr{P}}_w(\omega \mathbf{\beta}_{\mathbf{L}}^{\vee})$
 - \blacksquare Quality of decoupling depends upon support of B-spline $\beta_{\mathrm{L}}(\boldsymbol{x})$

Wavelet analysis of sparse processes

■ Innovation model (SDE)

$$Ls = w$$
$$s = L^{-1}w$$

Operator-like wavelet: $\psi_i = L^* \phi_i$

 ϕ_i : smoothing kernel at wavelet scale i

Wavelet analysis

$$v_i(\boldsymbol{x}) = \langle \psi_i(\cdot - \boldsymbol{x}), s \rangle = \langle L^* \phi_i(\cdot - \boldsymbol{x}), L^{-1} w \rangle = \langle \phi_i(\cdot - \boldsymbol{x}), w \rangle$$

$$\Longrightarrow \widehat{\mathscr{P}_{v_i}}(\varphi) = \widehat{\mathscr{P}_{w}}(\phi_i * \varphi)$$

- Statistical implications
 - lacktriangle Wavelet coefficients v_i are stationary with characteristic function $\widehat{\mathscr{P}}_w(\omega \phi_i)$
 - lacktriangle Quality of decoupling depends upon support of wavelet/smoothing kernel ϕ_i

Determination of transform-domain statistics

■ Common white noise analysis framework

$$X(\varphi) = \langle w, \varphi \rangle$$
 for suitable φ (e.g., $\beta_{\rm L}, \phi_i, {
m rect}$)

■ Explicit form of characteristic function

$$\hat{p}_{X(\varphi)}(\omega) = \widehat{\mathscr{P}_w}(\omega\varphi) = e^{f_\varphi(\omega)} \quad \text{with} \quad f_\varphi(\omega) = \int_{\mathbb{R}^d} f\big(\omega\varphi(\boldsymbol{x})\big) \mathrm{d}\boldsymbol{x}$$

- General properties
 - $\ \, \ \, \int_{\mathbb{R}}|x|^{p}p_{\mathrm{id}}(x)\mathrm{d}x<\infty \quad \Rightarrow \quad p_{X(\varphi)}(x) \text{ well-defined for all } \varphi\in L_{p}(\mathbb{R}^{d})$
 - $lacktriangledown p_{\mathrm{id}}(x)$ is symmetric, unimodal $\Rightarrow p_{X(\varphi)}(x)$ idem
 - $\qquad \qquad p_{\mathrm{id}}(x) = O(1/|x|^p) \text{ with } p > 1 \text{ (heavy tailed)} \quad \Rightarrow \quad p_{X(\varphi)}(x) \text{ idem}$
 - $lacktriangleq p_{\mathrm{id}}(x)$ (non-Gaussian) \Rightarrow $p_{X(\varphi)}(x)$ is sparse

Decay: $O(e^{-\gamma|x|})$ (exponential), $x^p e^{-\gamma|x|}$, or $O(1/|x|^p)$ (algebraic)

Finale: sparse processes and signal reconstruction

Signal reconstruction: MAP formulation

Innovation model of the signal

$$Ls = w$$
$$s = L^{-1}w$$

Signal decoupling: discrete version of operator

 $u(\boldsymbol{x}) = L_d s(\boldsymbol{x}) \quad \Leftrightarrow \quad \mathbf{u} = \mathbf{L}\mathbf{s} \quad \text{(matrix notation)}$

- Statistical characterization
 - $X=[\mathbf{u}]_n$ identically distributed (approx. independent)
 - Probability density function: $p_X(x) = \mathcal{F}^{-1}\{\widehat{\mathscr{P}_w}(\omega\beta^\vee_{\mathrm{L}})\}(x)$
 - Potential function: $\Phi_X(x) = -\log p_X(x)$
- Maximum a posteriori (MAP) estimator for AWN

$$\mathbf{s}^* = \operatorname{argmin} \left(\frac{1}{2} \|\mathbf{g} - \mathbf{H}\mathbf{s}\|_2^2 + \sigma^2 \sum_n \Phi_X([\mathbf{L}\mathbf{s}]_n) \right)$$

39

MAP estimator: special cases

$$\mathbf{s}^{\star} = \operatorname{argmin} \left(\frac{1}{2} \|\mathbf{g} - \mathbf{H}\mathbf{s}\|_{2}^{2} + \sigma^{2} \sum_{n} \Phi_{X}([\mathbf{L}\mathbf{s}]_{n}) \right)$$

- Gaussian: $p_X(x) = \frac{1}{\sqrt{2\pi}\sigma_0}e^{-x^2/(2\sigma_0^2)}$ \Rightarrow $\Phi_X(x) = \frac{1}{2\sigma_0^2}x^2$
- Laplace: $p_X(x) = \frac{\lambda}{2}e^{-\lambda|x|}$ \Rightarrow $\Phi_X(x) = \lambda|x|$
- $\qquad \text{Student: } p_X(x) = \frac{1}{B\left(r,\frac{1}{2}\right)} \left(\frac{1}{x^2+1}\right)^{r+\frac{1}{2}} \quad \Rightarrow \quad \Phi_X(x) = \left(r+\frac{1}{2}\right) \log(1+x^2)$

Student potentials: r = 2, 4, 8, 32 (fixed variance)

Reconstruction algorithms

FWISTA (Guerquin-Kern TMI 2011), IRWL1 (Candès), AL (Ramani TMI 2011)

Variable splitting with quadratic penalty

Auxiliary innovation variable: $\mathbf{u} = \mathbf{L}\mathbf{s}$

$$(\mathbf{s}^*, \mathbf{u}^*) = \underset{\mathbf{s}, \mathbf{u} \in \mathbb{R}^N}{\operatorname{argmin}} \left(\frac{1}{2} \|\mathbf{g} - \mathbf{H}\mathbf{s}\|_2^2 + \sigma^2 \sum_n \Phi_X([\mathbf{u}]_n) + \frac{\mu}{2} \|\mathbf{L}\mathbf{s} - \mathbf{u}\|_2^2 \right)$$

ADM: Alternating minimization over ${\bf s}$ (linear problem) and ${\bf u}$ (non-linear)

Proximal operator taylored to stochastic model

$$\operatorname{prox}_{\Phi_X}(y;\lambda) = \arg\min_{u} \frac{1}{2} |y - u|^2 + \lambda \Phi_X(u)$$

41

MRI: Shepp-Logan phantom

Original SL Phantom

Fourier Sampling Pattern 12 Angles

Laplace prior (TV)

Student prior (log)

 $\label{eq:Lorent} L : \text{gradient}$ Optimized parameters

MRI: Spiral sampling in k-space

Original Phantom (Guerquin-Kern et al.)

Gaussian prior (Tikhonov) SER =17.69 dB

Student prior SER = 27.22 dB

L : gradient

Optimized parameters

43

Laplace prior (TV) SER = 21.37 dB

CONCLUSION

- Unifying continuous-domain innovation model
 - Backward compatibility with classical Gaussian theory
 - Operator-based formulation: Lévy-driven SDEs or SPDEs
 - Gaussian vs. sparse (generalized Poisson, student, $S\alpha S$)
 - Focus on unstable SDEs ⇒ non-stationary, self-similar processes
- Regularization vs. wavelet analysis
 - Central role of B-spline
 - Sparsification via "operator-like" behavior
 - Discrete approximation of whitening operator
 - Multi-resolution: wavelets
- Theoretical framework for sparse signal recovery
 - New statistically-founded sparsity priors
 - Derivation of optimal estimators (MAP, MMSE)
 - Guide for the development of novel algorithms

References

- Theory of generalized stochastic processes
 - M. Unser, P. Tafti, and Q. Sun, "A unified formulation of Gaussian vs. sparse stochastic processes—Part I: Continuous-domain theory," preprint, available at http://arxiv.org/abs/1108.6150.
 - M. Unser, P.D. Tafti, "Stochastic models for sparse and piecewise-smooth signals", *IEEE Trans. Signal Processing*, vol. 59, no. 3, pp. 989-1006, March 2011.
 - M. Unser and T. Blu, "Generalized Smoothing Splines and the Optimal Discretization of the Wiener Filter," *IEEE Transactions on Signal Processing*, vol. 53, no. 6, pp. 2146–2159, June 2005. 1256–1267, April 2006.
 - T. Blu, M. Unser, "Self-Similarity: Part II—Optimal Estimation of Fractal Processes," *IEEE Trans. Signal Processing*, vol. 55, no. 4, pp. 1364-1378, April 2007.
 - P.D. Tafti, D. Van De Ville, M. Unser, "Invariances, Laplacian-Like Wavelet Bases, and the Whitening of Fractal Processes," *IEEE Trans. Image Processing*, vol. 18, no. 4, pp. 689-702, April 2009.
- Algorithms and imaging applications
 - M. Guerquin-Kern, M. Häberlin, K.P. Pruessmann, M. Unser, "A Fast Wavelet-Based Reconstruction Method for Magnetic Resonance Imaging," *IEEE Trans. Medical Imaging*, vol. 30, no. 9, pp. 1649-1660, September 2011.
 - S. Ramani and J.A. Fessler, "Parallel MR Image Reconstruction Using Augmented Lagrangian Methods," *IEEE Trans. Medical Imaging*, vol. 30, no. 3, pp. 694-706, August 2011.

Acknowledgments

Many thanks to

- Dr. Pouya Tafti
- Prof. Qiyu Sun
- Prof. Thierry Blu
- Dr. Arash Amini
- Dr. Hagai Kirshner
- Matthieu Guerquin-Kern
- Emrah Bostan

Members of EPFL's Biomedical Imaging Group

Preprints and demos: http://bigwww.epfl.ch/