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Brownian motion (a.k.a. Wiener process)

Mathematical construction by Wiener in 1923

m Gaussian process

= Non-stationary
m Self-similar: “1/w” spectral decay

m Independent increments
ulk] = s(k) — s(k — 1): ii.d. Gaussian

In-depth analysis of sample path properties in the 1930’s by Paul Lévy

m Haar-related expansion whose coefficients are i.i.d. Gaussian




Lévy process

Constructed by Paul Lévy in the 1930’s

m Non-Gaussian generalization of Wiener process

= Non-stationary
m Self-similar: “1/w” spectral decay

m Independent increments
ulk] = s(k) — s(k —1): i.i.d. infinitely divisible (heavy tailed)

Example: compound Poisson process (piecewise-constant, with random jumps)

= Archetype of a “sparse” random signal

Simple denoising experiment

Wiener process
T T

original
+ noisy samples

m Measurement model

glk] = s(k) + n[k]

Brownian motion (Gaussian)

= s(x): Continuously-defined process
= n|k|: Discrete white Gaussian noise
Lévy process
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Compound Poisson process (Sparse)

m Controlled experiment

= Matched 2nd-order statistics (correlation function)

= Generalized spectrum ~ 1




Three dominant paradigms

m Wiener solution (LMMSE) = Smoothing spline
Spine(a) = argmin{ 3" [glk] ~ sV + 1 [ [Ds(o)ds
@) Meez R

= argmin { g — sl13, + #Dsll3, x|

Theoretical result: Continuous-domain LMMSE = piecewise-linear smoothing spline
Also provides MMSE and MAP for Brownian motion model (Blu-U., 2005)

m Wavelet solution = sparse signal recovery

Swave(¥) = argmin {Ilg —sli, + > Hi”“’iﬂfp}

(2

with — w;[k] = (5,22 (z/2" — k)>L2(IRi)

Theoretical result: Simple wavelet shrinkage algorithm (LASSO: Tibshirani, 1996)

Three dominant paradigms (cont’d)

m Total variation = non-quadratic regularization

Stv(z) = argming(, {|lg — s)|2, + pTV(s)}

Theoretical result 1 [Mammen, Annals of Statistics, 1997]
Piecewise-constant spline with adaptive knots is a global minimizer

Smap(k) = argmin{”g — sz, +p Z |s(k) — s(k — 1)|}
k

Theoretical result 2 [Unser et al., IEEE Trans. Sig. Proc. 2010]
MAP solution for specific Lévy process (continuous-domain model)




Denoising results
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Poisson process (Sparse)

Commonalities

= innovation modeling

m Central role of derivative operator

= Quadratic spline energy: ||Ds||2L2(R)

» TVasan L norm:

s € Wi

= Wavelet as a smoothed derivative:

(z) = L*o(x)

= (f,9(- = x0)) = L(f * ¢*)(x0) = — 35 (f*

L*=—

& TV(s) = IDs|lL, m)
@DHaar(l') = D¢($)

¢(x)




OUTLINE

= Gaussian (Wiener) vs. sparse (Lévy) signals v/

The spline connection

L-splines and signals with finite rate of innovation
Green functions as elementary building blocks

Sparse stochastic processes

Generalized innovation model
Gelfand’s theory of generalized stochastic processes
Statistical characterization of sparse stochastic processes

Implications of innovation model

Link with regularization
Wavelet representation of sparse processes
Determination of transform-domain statistics

Sparse processes and signal reconstruction

MAP estimator
MRI examples




Splines: signals with finite rate of innovation

L{-}: differential operator
d(z): Dirac distribution

Definition
The function s(z ) is a (non-uniform) L-spline with knots {x,, } iff.

L{s}(z) = Z and
Spline theory: (Schultz-Varga, 1967) L = o
anlﬁ x

Tn xn—|—1

m FIR signal processing: Innovation variables (2N ) (Vetterli et al., 2002)

= Location of smgularltles (knots) {xn}n 1

.....
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Splines and Green’s functions

Definition
pL(x) is a Green function of the shift-invariant operator L iff L{p;,} = ¢

pL(x) L{p 5(z) - (@) pL(z)

—

LY} —

(+ null-space component?)

m General (non-uniform) L-spline: L{s}(x) = Z ard(x — )
keZ

Formal integration

Zak5($—$k) — L_l{-} — s(@) =pL(x) + > arpL(® — )

kezZ keZ
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Example of spline synthesis

L=2% =D = L ! integrator
o(x) : [ ola)
|

> >

3

Green function = Impulse response

Translation invariance

‘ d(x — xp) p(x — x0)
—L -
| T > ] — >
Z alk]é(z — k) Linearity X s(x) = Z alklp(xz — k)
' kez . L_l{.} . kez
t ¢ . = v
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Sparse stochastic
processes N




Brownian motion vs. spline synthesis

L=2L = L~ integrator

white noise

or — L_l{o} —

oI,

Brownian motion
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Compound Poisson process (sparse)

L=< = L~!:integrator

r(x) :Zakd(aj—xk) —] L—l{.} —» s(x)
k

random stream of Diracs Compound Poisson process

Random jumps with rate A (Poisson point process)

Jump size distribution: a « p(a)
(Paul Lévy, 1934)




Generalized stochastic processes

Splines are in direct correspondence with stochastic processes
(stationary or fractals) that are solution of the same partial differential
equation, but with a random driving term.

Defining operator equation: L{s(:)}(x) = r(x)
m Specific driving terms
= 7(x) = 0(x) =  s(x) = L7{6}(=x) : Green function
r(x) = Z alk]o(x — k) = s(«) : Cardinal L-spline

kczd

= 7(x): white noise = s(x): generalized stochastic process

A non-empty null space of L., boundary conditions

References: stationary proc. (U.-Blu, IEEE-SP 2006), fractals (Blu-U., IEEE-SP 2007),
sparse processes (U.-Tafti, IEEE-SP 2010)
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Shaping filter

White noise L_l{'}

Generalized
(Gaussian, Poisson or Lévy)

stochastic process

(appropriate boundary conditions)

w(@) . 8=

— t — M —

m What is white noise ?

= The problem: Continuous-domain white noise does not have a pointwise interpretation.

= Standard stochastic calculus. Statisticians circumvent the difficulty by working with ran-
dom measures (AW (x) = w(x)dx) and stochastic integrals; i.e, s(x) = [, p(z, z")dW (z')
where p(x, z’) is a suitable kernel.

= Innovation model. The white noise interpretation is more appealing for engineers (cf.
Papoulis), but it requires a proper distributional formulation and operator calculus.




Road map for theory of sparse processes

@ Specification of inverse operator

. ) ) @ Characterization of
Functional analysis solution of SDE

generalized stochastic process

Very easy ! (after solving 1. & 2.)

» L1 .
) =L 'w _\T 1
. . ixi t
White noise , ¥ing operator
— > .
w Multi-scale
wavelet
3 3 P L — analysis
!
@ Characterization of continuous-domain white noise o
@ Characterization of
Higher mathematics: generalized functions (Schwartz) transform-domain statistics
measures on topological vector spaces .
Easy when: v; = L*¢;

Gelfand’s theory of generalized stochastic processes

Infinite divisibility (Lévy-Khintchine formula)
19

Step 1: White noise characterization

—> L7t

-1 —
White noise s=L"w U

—
w — >
—— L +—

m Difficulty 1: w # w(x) is too rough to have a pointwise interpretation

= s, =(w,p)foranypeS

m Difficulty 2: w is an infinite-dimensional random entity;
its “pdf” can be formally specified by a measure #,,(E) where E C S’

m Infinite-dimensional counterpart of characteristic function (Gelfand, 1955)

Characteristic functional: 22, () = E{e? (")} = / P P, (ds), foranype S
S/

m White noise property: independence at every point

20




Characteristic form of white “noise” processes

m Definition: Independence at every point

—_ — —

Puw(p1+ v2) = Puw(e1) X Puw(p2)  Whenever p; X o2 = 0 (disjoint support)

m Functional characterization (Gelfand-Vilenkin)

The characteristic form 22, () = exp (/ f(gp(:c))da:) defines a white noise w over S’'(R%)
Rd
< f: R — Cis a conditionally positive-definite function of order one
< f(w) is avalid Lévy exponent

& pa(w) = e/ @) is an infinitely-divisible (id) characteristic function

m Bottom line

WNP uniquely specified by f(w) < pia(z) = F{e/“)}(z) (canonical id pdf)

Example of usage: X = w(yo) = (w, vo)

= px(e) = F px(w)} where px(w) = E{el (w0} = D (wipp)
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White noise: canonical distribution

Continuous-domain white noise is highly singular; its points values are undefined

A given brand uniquely specified by piq(z) = F~{e/ ()} (z)

m Interpretation: noise observation through a rectangular window

ﬁw(w rect(z)) = e/ & pa(r) =px.(z) with Xig = (rect(- — k),w) (i.i.d.)

m Special cases
» f(w)=3w|* < pia(e): normalized Gaussian
s f(w) = |w|*witha € (0,2] < pia(x): Symmetric-a-stable (SaS)

= Also allowed: compound Poisson, Beta, Student, Cauchy, etc. (typically heavy tailed)




Examples of id noise distributions
pia()

(a) Gaussian

(b) Laplace

(c) Compound Poisson
A

lasiedg

E

(d) Cauchy (stable)

Complete mathematical characterization: ﬁw(go) = exp (/ f(go(z))dw)
R4
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Complete characterization of id distributions

Definition: A random variable X with generic pdf p;q(x) is infinitely divisible (id) iff.,
forany N € Z™, there exist i.i.d. random variables X7, ..., Xy such that X has the
same distribution as X; +--- + Xn.

Lévy-Khinchine theorem
pia(z) is an infinitely divisible (id) PDF iff. its characteristic function can be written as

ﬁid(w) = /pid(it)eijd:c _ ef(w)
R

with Lévy exponent

2
o) = e — 22

-I-/ (7% =1 — jawl|4 <1 (a)) v(a)da
R\{0}

where b; € R and b, € R are some constants, and where v(a) > 0 is some
positive function (density Lévy) such that [, min(a?,1)v(a)da < oo.

Theoretical relevance: one-to-one correspondence between a

“classical” id PDF and a white noise processes
24




Steps 2 + 3: Characterization of sparse process

—> L}

—1 | A
White noise s=L"w ,—i_F

w —>-
—

%"_._L._

m Abstract formulation of innovation model

>

s=L7'w & VpeS, (ps)={(p, L7 w) = (L p,w)
——

= Blp) =B} = Fot g = ([ 1L p())de)

m Technical aspect: functional analysis

Find an acceptable inverse of L such that the adjoint operator L—1*
is well-defined over Schwartz’s class of test functions

ldeally: L *pecS

oratleast [[L™¢| 1, <C |l¢lz, (continuity) 05

Self-similar processes (TS-invariant)

L < (jw)HJF% = L~1: fractional integrator

B
— >~ B

Gaussian Sparse (generalized Poisson)

G/.'=H

G¢'I=H

H

S

Fractional Brownian motion (Mandelbrot, 1968) (U.-Tafti, IEEE-SP 2010) 06




2D generalization: the Mondrian process

F . ;
L=D,D, <= (jwz)(jwy)
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Scale- and rotation-invariant processes
Stochastic partial differential equation : (—A)%s(w) = w(x)

Gaussian

i 8 ‘
Y
PR el S
@ o 4
#
. A
8

H=1.25 H=1.75

AT,

(U.-Tafti, IEEE-SP 2010) 28

Sparse (generalized Poisson)




Powers of ten: from astronomy to biology

o ©1986 J’érry Lodriguss and John Martinez
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IMPLICATION OF INNOVATION MODEL

= Optimized analysis tools = B-splines

= Decoupling sparse processes

= Wavelet analysis of sparse processes

= Determination of transform-domain statistics

= Signal reconstruction algorithm (MAP)
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Recap on infinite-dimensional innovation model

Generic test function ¢ € S plays the role of index variable

Solution of SDE

Fate)=ex ([ flola)ac) ® Fie) = Pull )
— L_l —_
@ White noise s=L"1w ,—i_r'_ @
[ et
White “noise” signature:  piq(z) = F~{e/ )} (x) @ Analysis step

Regularization operator vs. wavelet analysis
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Optimized analysis tools = B-splines

m Whitening operator L

Green function py,(x) such that Loy, = § Ls = w
. . _ =1
m Discrete version of operator s = L7w
Las(x) = ) _ dlk]s(x — k)
kezd

m Generalized B-spline

Br(x) = Lyl é(x) = Z dklpr(z — k)
kezd

Quality of discrete approximation:

Lgs(x) = LgL™ 'L s(x) = A1, * Ls(x)
Id

= [ should be well-defined (81, € L1 (R?)) and maximally localized (short support)
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Optimized analysis tools: introductory example

m Whitening operator D SDE for Lévy process

Green function pp(x) = 14 (z) (unit step)
Ds(z) = w(x)

m Finite difference operator s(z) = /m w(y)dy
0

Dgs(z) = s(z) — s(x — 1)

m Piecewise-constant B-spline

By (x) = L (a) — Ly (@ — 1) = rect(z — 1)

A

T

B-spline of minimal support: (g (z) € L,(R) for p > 0
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Decoupling sparse processes
m Innovation model (SDE) Ls
s = L'w
m Generalized increment process
uw=DLgs = LqL  w = A, xw
(u,0) = (BL*w, ) = (w, By, ) with By (z) = fr(—)

—

— Do) = Pu(BY * )

m Statistical implications

= u = Lgs is stationary with characteristic function @\w(wﬁf)

= Quality of decoupling depends upon support of B-spline 51,(x)

34




s

wt.

=2,

-V Esy 42
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Wavelet analysis of sparse processes
m Innovation model (SDE) Ls

s = L 'w
m Operator-like wavelet: ; = L*¢;

¢;: smoothing kernel at wavelet scale ¢

m Wavelet analysis

vi(@) = (Yi(- — x),5) = (L7¢(- — ), L™ w) = (¢i(- — z), w)

— P (p) = Puw(Pi x 0)

m Statistical implications

= Wavelet coefficients v; are stationary with characteristic function g’a\u(wgﬁi)

= Quality of decoupling depends upon support of wavelet/smoothing kernel ¢;

36




Determination of transform-domain statistics

m Common white noise analysis framework
X(¢) = (w,p) forsuitable ¢ (e.g., AL, ¢i, rect)

m Explicit form of characteristic function

(o) = Pulig) = ) with o) = [ F{wpl@)de

m General properties
w fplzPpa(z)dz <00 = px(e) (x) well-defined for all ¢ € L,(R?)
= pid() is symmetric, unimodal = px(,)(7) idem
= pia(z) = O(1/]z|P) with p > 1 (heavy tailed) = px(,)(z) idem

= pia(r) (non-Gaussian) = px(,) () is sparse

Decay: O(e~"1l) (exponential), zPe=71#l, or O(1/|z|?) (algebraic)
37

Finale: sparse processes
and signal reconstruction




Signal reconstruction: MAP formulation

. . L =
m Innovation model of the signal ° v
s = L7tw

m Signal decoupling: discrete version of operator

u(x) = Las(x) < wu=Ls (matrix notation)

m Statistical characterization

- X = [u], identically distributed (approx. independent)
- Probability density function: px(z) = f‘l{@\w(wﬁf)}(x)

- Potential function: ®x(z) = —logpx(x)

m Maximum a posteriori (MAP) estimator for AWN
s* = argmin ( |lg — Hs|} + 0> %, @x([Ls].) )

39

MAP estimator: special cases

s* = argmin (% g — HSH% + o2 o @X([Ls]n)>

= Gaussian: px (z) = —=L—e—2"/(200) =  Ox(r) = 51,22

P
2mog )

= Laplace: px (z) = el =  Dx(z) = Nzl
Student: px (z) ! LT = ®x(z)=(r+ 1)1 (1+27)
. xr) = r) = \Tr — ) 10 i
| bx B (T, %> 22 +1 X 92 g

lasiedg

=30 -20 -10 0 10 20 30

Student potentials: r = 2, 4, 8, 32 (fixed variance)
40




Reconstruction algorithms
FWISTA (Guerquin-Kern TMI 2011), IRWL1 (Candes), AL (Ramani TMI 2011)

m Variable splitting with quadratic penalty

Auxiliary innovation variable: u = Ls

. (1 2 p
(s*,u*) = argmin (5 g — Hs||; + o? zﬂ: D x ([u],) + §HLS - u\l%)

s,ucRN

ADM: Alternating minimization over s (linear problem) and u (non-linear)

m Proximal operator taylored to stochastic model

1
prosa, (3 ) = argmin -y — uf® + \x (u)

-4 =2 0 2 4
Cauchy prior with increasing s
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MRI: Shepp-Logan phantom

Fourier Sampling Pattern

Original SL Phantom
12 Angles

L : gradient
Optimized parameters

N

Laplace prior (TV) Student prior (log)




L : gradient
Optimized parameters

Original Phantom Gaussian prior (Tikhonov)
(Guerquin-Kern et al.) SER =17.69 dB

Laplace prior (TV) Student prior
SER =21.37 dB SER =27.22 dB 43
CONCLUSION

= Unifying continuous-domain innovation model
Backward compatibility with classical Gaussian theory
Operator-based formulation: Lévy-driven SDEs or SPDEs
vs. sparse (generalized Poisson, student, SaS)
Focus on unstable SDEs = non-stationary, self-similar processes

= Regularization vs. wavelet analysis
Central role of B-spline
Sparsification via “operator-like” behavior
Discrete approximation of whitening operator
Multi-resolution: wavelets

= Theoretical framework for sparse signal recovery
New statistically-founded sparsity priors
Derivation of optimal estimators (MAP, MMSE)

Guide for the development of novel algorithms
44
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