

Sparsity and optimality of splines: Deterministic vs. statistical justification

Michael Unser Biomedical Imaging Group EPFL, Lausanne, Switzerland

Mathematics and Image Analysis (MIA), 18-20 January 2016, Paris, France.

OUTLINE

- Sparsity and signal reconstruction
 - Inverse problems in bio-imaging
 - Compressed sensing: towards a continuous-domain formulation
- Deterministic formulation
 - Splines and operators
 - New optimality results for generalized TV
- Statistical formulation
 - Sparse stochastic processes
 - Derivation of MAP estimators

Inverse problems in bio-imaging

Linear forward model

$$y = Hs + n$$

Problem: recover s from noisy measurements y

Reconstruction as an optimization problem

$$\mathbf{s}_{\text{rec}} = \arg\min \underbrace{\|\mathbf{y} - \mathbf{H}\mathbf{s}\|_2^2}_{\text{data consistency}} + \underbrace{\lambda \|\mathbf{L}\mathbf{s}\|_p^p}_{\text{regularization}}, \quad p = 1, 2$$

 $-\log \operatorname{Prob}(\mathbf{s})$: prior likelihood

3

Inverse problems in imaging: Current status

- **Higher reconstruction quality**: Sparsity-promoting schemes almost systematically outperform the classical linear reconstruction methods in MRI, x-ray tomography, deconvolution microscopy, etc... (Lustig et al. 2007)
- Increased complexity: Resolution of linear inverse problems using ℓ_1 regularization requires more sophisticated algorithms (iterative and nonlinear); efficient solutions (FISTA, ADMM) have emerged during the past decade. (Chambolle 2004; Figueiredo 2004; Beck-Teboule 2009; Boyd 2011)
- The paradigm is supported by the theory of compressed sensing

(Candes-Romberg-Tao; Donoho, 2006)

- Outstanding research issues
 - Beyond ℓ_1 and TV: Connection with statistical modeling & learning
 - Beyond matrix algebra: **Continuous-domain** formulation
 - Guarantees of **optimality** (either deterministic or statistical)

Sparsity and continuous-domain modeling

- Compressed sensing (CS)
 - Generalized sampling and infinite-dimensional CS (Adcock-Hansen, 2011)
 - Xampling: CS of analog signals (Eldar, 2011)
- Splines and approximation theory
 - L_1 splines (Fisher-Jerome, 1975)
 - Locally-adaptive regression splines (Mammen-van de Geer, 1997)
 - Generalized TV (Steidl et al. 2005; Bredies et al. 2010)
- Statistical modeling
 - Sparse stochastic processes

(Unser et al. 2011-2014)

Splines are intrinsically sparse

 $L\{\cdot\}$: admissible differential operator

 $\delta(\cdot - {m x}_0)$: Dirac impulse shifted by ${m x}_0 \in \mathbb{R}^d$

Definition

The function $s:\mathbb{R}^d o \mathbb{R}$ is a (non-uniform) L-spline with knots $(m{x}_k)_{k=1}^K$ if

$$\mathrm{L}\{s\} = \sum_{k=1}^K a_k \delta(\cdot - oldsymbol{x}_k) = oldsymbol{w}_{oldsymbol{\delta}}$$
 : spline's innovation

Spline theory: (Schultz-Varga, 1967)

- FIR signal processing: Innovation variables (2K) (Vetterli et al., 2002)
 - \blacksquare Location of singularities (knots) : $\{x_k\}_{k=1}^K$
 - \blacksquare Strength of singularities (linear weights): $\{a_k\}_{k=1}^K$

7

Splines and operators

Definition

A linear operator $L: \mathcal{X} \to \mathcal{Y}$, where $\mathcal{X} \supset \mathcal{S}(\mathbb{R}^d)$ and \mathcal{Y} are appropriate subspaces of $\mathcal{S}'(\mathbb{R}^d)$, is called **spline-admissible** if

- 1. it is linear shift-invariant (LSI);
- 2. its null space $\mathcal{N}_L = \{ p \in \mathcal{X} : L\{p\} = 0 \}$ is finite-dimensional of size N_0 ;
- 3. there exists a function $\rho_L: \mathbb{R}^d \to \mathbb{R}$ of slow growth (the Green's function of L) such that $L\{\rho_L\} = \delta$.
- Structure of null space: $\mathcal{N}_{\mathrm{L}} = \mathrm{span}\{p_n\}_{n=1}^{N_0}$
 - lacksquare Admits some basis $oldsymbol{p}=(p_1,\cdots,p_{N_0})$
 - lacksquare Only includes elements of the form $m{x}^{m{m}}\mathrm{e}^{\mathrm{j}\langlem{\omega}_0,m{x}
 angle}$ with $|m{m}|=\sum_{i=1}^d m_i \leq n_0$

Spline synthesis: example

$$L = D = \frac{d}{dx}$$
 $\mathcal{N}_D = \operatorname{span}\{p_1\}, \quad p_1(x) = 1$

 $\rho_{\mathrm{D}}(x) = \mathbb{1}_{+}(x)$: Heaviside function

9

Spline synthesis: generalization

L: spline admissible operator (LSI)

$$ho_{\mathrm{L}}(oldsymbol{x})$$
: Green's function of L

$$\mathcal{N}_{L} = \operatorname{span}\{p_n\}_{n=1}^{N_0}$$

Spline's innovation:
$$w_{\delta}({m x}) = \sum_k a_k \delta({m x} - {m x}_k)$$

$$\Rightarrow s(\boldsymbol{x}) = \sum_{k} a_{k} \rho_{L}(\boldsymbol{x} - \boldsymbol{x}_{k}) + \sum_{n=1}^{N_{0}} b_{n} p_{n}(\boldsymbol{x})$$

Required to the second second

Requires specification of boundary conditions

Principled operator-based approach

- Biorthogonal basis of $\mathcal{N}_{\mathrm{L}} = \mathrm{span}\{p_n\}_{n=1}^{N_0}$
 - $m{\phi} = (\phi_1, \cdots, \phi_{N_0})$ such that $\langle \phi_m, p_n \rangle = \delta_{m,n}$

- Operator-based spline synthesis
 - Boundary conditions: $\langle s, \phi_n \rangle = b_n, \ n = 1, \cdots, N_0$
 - lacksquare Spline's innovation: $L\{s\} = w_\delta = \sum_k a_k \delta(\cdot oldsymbol{x}_k)$

$$s(\mathbf{x}) = \mathcal{L}_{\phi}^{-1} \{ w_{\delta} \}(\mathbf{x}) + \sum_{n=1}^{N_0} b_n p_n(\mathbf{x})$$

- Existence of \mathcal{L}_{ϕ}^{-1} as a stable right-inverse of \mathcal{L} ? (see Theorem 1)
 - $LL_{\phi}^{-1}w = w$

From Dirac impulses to Borel measures

 $\mathcal{S}(\mathbb{R}^d)$: Schwartz's space of smooth and rapidly decaying test functions on \mathbb{R}^d

 $\mathcal{S}'(\mathbb{R}^d)$: Schwartz's space of tempered distributions

lacksquare Space of real-valued, countably additive Borel measures on \mathbb{R}^d

$$\mathcal{M}(\mathbb{R}^d) = \left(C_0(\mathbb{R}^d)\right)' = \left\{w \in \mathcal{S}'(\mathbb{R}^d) : \|w\|_{\mathrm{TV}} = \sup_{\varphi \in \mathcal{S}(\mathbb{R}^d) : \|\varphi\|_{\infty} = 1} \langle w, \varphi \rangle < \infty\right\},$$
 where $w : \varphi \mapsto \langle w, \varphi \rangle = \int_{\mathbb{R}^d} \varphi(\mathbf{r}) \mathrm{d}w(\mathbf{r})$

■ Equivalent definition of "total variation" norm

$$||w||_{\text{TV}} = \sup_{\varphi \in C_0(\mathbb{R}^d): ||\varphi||_{\infty} = 1} \langle w, \varphi \rangle$$

- Basic inclusions
 - $lacksquare \delta(\cdot m{x}_0) \in \mathcal{M}(\mathbb{R}^d)$ with $\|\delta(\cdot m{x}_0)\|_{\mathrm{TV}} = 1$ for any $m{x}_0 \in \mathbb{R}^d$
 - $\blacksquare \ \|f\|_{\mathrm{TV}} = \|f\|_{L_1(\mathbb{R}^d)} \text{ for all } f \in L_1(\mathbb{R}^d) \quad \Rightarrow \quad L_1(\mathbb{R}^d) \subseteq \mathcal{M}(\mathbb{R}^d)$

13

Generalized Beppo-Levi spaces

L: spline-admissible operator

■ Generalized "total variation" semi-norm (gTV)

$$gTV(f) = ||L\{f\}||_{TV}$$

Generalized Beppo-Levi spaces

$$\mathcal{M}_{L}(\mathbb{R}^{d}) = \left\{ f : \mathbb{R}^{d} \to \mathbb{R} \mid \|Lf\|_{TV} < \infty \right\}$$
$$f \in \mathcal{M}_{L}(\mathbb{R}^{d}) \Leftrightarrow L\{f\} \in \mathcal{M}(\mathbb{R}^{d})$$

- Classical Beppo-Levi spaces: $(\mathcal{M}(\mathbb{R}^d), L) \to (L_p(\mathbb{R}), D^n)$ (Deny-Lions, 1954)
- Inclusion of non-uniform L-splines

$$s = \sum_{k} a_k \rho_{\mathcal{L}}(\cdot - \boldsymbol{x}_k) + \sum_{n=1}^{N_0} b_n p_n \quad \Rightarrow \quad \mathcal{L}\{s\} = \sum_{k} a_k \delta(\cdot - \boldsymbol{x}_k)$$
$$gTV(s) = \|\mathcal{L}\{s\}\|_{TV} = \sum_{k} |a_k| = \|\mathbf{a}\|_{\ell_1}$$

New optimality result: universality of splines

L: spline-admissible operator

$$\mathcal{M}_{\mathrm{L}}(\mathbb{R}) = \left\{ f : \mathrm{gTV}(f) = \|\mathrm{L}\{f\}\|_{\mathrm{TV}} = \sup_{\|\varphi\|_{\infty} \le 1} \langle \mathrm{L}\{f\}, \varphi \rangle < \infty \right\}$$

Generalized total variation : $gTV(f) = ||L\{f\}||_{L_1}$ when $L\{f\} \in L_1(\mathbb{R}^d)$

Linear measurement operator $\mathcal{M}_{\mathrm{L}}(\mathbb{R}) \to \mathbb{R}^M : f \mapsto \mathbf{z} = \boldsymbol{\nu}(f)$ $\Leftrightarrow z_m = \langle f, \nu_m \rangle$

Theorem [U.-Fageot-Ward, 2015]: The generic linear-inverse problem

$$\min_{f \in \mathcal{M}_{\mathrm{L}}(\mathbb{R})} \left(\|\mathbf{y} - \boldsymbol{\nu}(f)\|_2^2 + \lambda \|\mathrm{L}\{f\}\|_{\mathrm{TV}} \right)$$
 admits a global solution of the form $f(\boldsymbol{x}) = \sum_{k=1}^K a_k \rho_{\mathrm{L}}(\boldsymbol{x} - \boldsymbol{x}_k) + \sum_{n=1}^{N_0} b_n p_n(\boldsymbol{x})$ with $K < M$, which is a **non-uniform** L**-spline** with knots $(\boldsymbol{x}_k)_{k=1}^K$.

15

Optimality result for Dirac measures

- $lacksquare{\mathbf{F}}$: linear continuous map $\mathcal{M}(\mathbb{R}^d) o \mathbb{R}^M$
- lacksquare \mathcal{C} : convex compact subset of \mathbb{R}^M
- Generic constrained TV minimization problem

$$\mathcal{V} = \arg \min_{w \in \mathcal{M}(\mathbb{R}^d) : \mathbf{F}(w) \in \mathcal{C}} \|w\|_{\mathrm{TV}}$$

Generalized Fisher-Jerome theorem

The solution set V is a **convex**, **weak***-**compact** subset of $\mathcal{M}(\mathbb{R}^d)$ with **extremal points** of the form

$$w_{\delta} = \sum_{k=1}^{K} a_k \delta(\cdot - \boldsymbol{x}_k)$$

with $K \leq M$ and $\boldsymbol{x}_k \in \mathbb{R}^d$.

Jerome-Fisher, 1975: Compact domain & scalar intervals

Existence of stable right-inverse operator

$$L_{\infty,n_0}(\mathbb{R}^d) = \{ f : \mathbb{R}^d \to \mathbb{R} : \sup_{x \in \mathbb{R}^d} (|f(x)|(1 + ||x||)^{n_0}) < +\infty \}$$

Theorem 1 [U.-Fageot-Ward, preprint]

Let L be spline-admissible operator with a N_0 -dimensional null space $\mathcal{N}_L\subseteq L_{\infty,-n_0}(\mathbb{R}^d)$ such that $p=\sum_{n=1}^{N_0}\langle p,\phi_n\rangle p_n$ for all $p\in\mathcal{N}_L$. Then, there exists a **unique and stable operator** $L_{\phi}^{-1}:\mathcal{M}(\mathbb{R}^d)\to L_{\infty,-n_0}(\mathbb{R}^d)$ such that, for all $w\in\mathcal{M}(\mathbb{R}^d)$,

- Right-inverse property: $LL_{\phi}^{-1}w = w$,
- Boundary conditions: $\langle \phi, \mathcal{L}_{\phi}^{-1} w \rangle = \mathbf{0}$ with $\phi = (\phi_1, \cdots, \phi_{N_0})$.

Its generalized impulse response $g_{\phi}(x,y) = \mathcal{L}_{\phi}^{-1}\{\delta(\cdot - y)\}(x)$ is given by

$$g_{oldsymbol{\phi}}(oldsymbol{x},oldsymbol{y}) =
ho_{\mathrm{L}}(oldsymbol{x}-oldsymbol{y}) - \sum_{n=1}^{N_0} p_n(oldsymbol{x}) q_n(oldsymbol{y})$$

with ρ_L such that $L\{\rho_L\} = \delta$ and $q_n(y) = \langle \phi_n, \rho_L(\cdot - y) \rangle$.

17

Characterization of generalized Beppo-Levi spaces

lacksquare Regularization operator $\mathrm{L}:\mathcal{M}_{\mathrm{L}}(\mathbb{R}^d) o\mathcal{M}(\mathbb{R}^d)$

$$f \in \mathcal{M}_{\mathcal{L}}(\mathbb{R}^d) \quad \Leftrightarrow \quad gTV(f) = \|\mathcal{L}\{f\}\|_{TV} < \infty$$

Theorem 2 [U.-Fageot-Ward, preprint]

Let L be a spline-admissible operator that admits a stable right-inverse L_{ϕ}^{-1} of the form specified by Theorem 1. Then, any $f\in\mathcal{M}_L(\mathbb{R}^d)$ has a unique representation as

$$f = \mathcal{L}_{\phi}^{-1} w + p,$$

where $w = L\{f\} \in \mathcal{M}(\mathbb{R}^d)$ and $p = \sum_{n=1}^{N_0} \langle \phi_n, f \rangle p_n \in \mathcal{N}_L$ with $\phi_n \in \left(\mathcal{M}_L(\mathbb{R}^d)\right)'$. Moreover, $\mathcal{M}_L(\mathbb{R}^d) \subseteq L_{\infty,-n_0}(\mathbb{R}^d)$ and is a Banach space equipped with the norm

$$||f||_{\mathcal{M}_{L}, \boldsymbol{\phi}} = ||Lf||_{TV} + ||\langle f, \boldsymbol{\phi} \rangle||_{2}.$$

lacksquare Generalized Beppo-Levi space: $\mathcal{M}_{\mathrm{L}}(\mathbb{R}^d) = \mathcal{M}_{\mathrm{L},oldsymbol{\phi}}(\mathbb{R}^d) \oplus \mathcal{N}_{\mathrm{L}}$

$$\mathcal{M}_{\mathrm{L},oldsymbol{\phi}}(\mathbb{R}^d) = \left\{ f \in \mathcal{M}_{\mathrm{L}}(\mathbb{R}^d) : \langle oldsymbol{\phi}, f \rangle = \mathbf{0} \right\}$$

$$\mathcal{N}_{L} = \{ p \in \mathcal{M}_{L}(\mathbb{R}^{d}) : L\{p\} = 0 \}$$

Link with sparse stochastic processes

Random spline: archetype of sparse signal

non-uniform spline of degree 0

$$D_{s}(t) = \sum_{n} a_{n} \delta(t - t_{n}) = w(t)$$

Random weights $\{a_n\}$ i.i.d. and random knots $\{t_n\}$ (Poisson with rate λ)

Anti-derivative operators

Shift-invariant solution:
$$D^{-1}\varphi(t)=(\mathbb{1}_+*\varphi)(t)=\int_{-\infty}^t \varphi(\tau)\mathrm{d}\tau$$

Scale-invariant solution:
$$D_{\phi_1}^{-1}\varphi(t)=\int_0^t \varphi(\tau)\mathrm{d}\tau$$
 (see **Theorem 1** with $\phi_1=\delta$)

Compound Poisson process

Stochastic differential equation

$$Ds(t) = w(t)$$

with boundary condition $s(0) = \langle \phi_1, s \rangle = 0$ with $\phi_1 = \delta$

Innovation:
$$w(t) = \sum_{n} a_n \delta(t - t_n)$$

Formal solution

$$s(t) = D_{\phi_1}^{-1} w(t) = \sum_n a_n D_{\phi_1}^{-1} \{ \delta(\cdot - t_n) \}(t)$$
$$= b_1 + \sum_n a_n \mathbb{1}_+ (t - t_n)$$

21

Lévy processes: all admissible brands of innovations

Generalized innovations : white Lévy noise with $\ \mathbb{E}\{w(t)w(t')\}=\sigma_w^2\delta(t-t')$

$$\mathrm{D}s = w$$
 (perfect decoupling!)

(Paul Lévy circa 1930)

Generalized innovation model

Theoretical framework: Gelfand's theory of generalized stochastic processes

Generic test function $\varphi \in \mathcal{S}$ plays the role of index variable

Solution of SDE (general operator)

Proper definition of **continuous-domain** white noise

(Unser et al, IEEE-IT 2014)

Regularization operator vs. wavelet analysis

Main feature: inherent sparsity (few significant coefficients)

23

From Dirac impulses to innovation processes

w is a generalized innovation process (or continuous-domain white noise) in $\mathcal{S}'(\mathbb{R}^d)$ if

- 1. *Observability*: $X = \langle \varphi, w \rangle$ is an ordinary random variable for any $\varphi \in \mathcal{S}(\mathbb{R}^d)$.
- 2. *Stationarity* : $X_{x_0} = \langle \varphi(\cdot x_0), w \rangle$ is identically distributed for all $x_0 \in \mathbb{R}^d$.
- 3. *Independent atoms* : $X_1 = \langle \varphi_1, w \rangle$ and $X_2 = \langle \varphi_2, w \rangle$ are independent whenever φ_1 and φ_2 have non-intersecting support.

Theorem (under mild technical conditions) (Amini-U., *IEEE-IT* 2014) w is an innovation process in $\mathcal{S}'(\mathbb{R}^d)$

 $\Rightarrow \quad X = \langle \pmb{arphi}, w
angle$ is well defined and **infinitely divisible** for any $\pmb{arphi} \in L_p(\mathbb{R}^d)$

Definition: A random variable X with generic pdf $p_{\mathrm{id}}(x)$ is **infinitely divisible** (id) iff., for any $N \in \mathbb{Z}^+$, there exist i.i.d. random variables X_1, \ldots, X_N such that $X \stackrel{\mathrm{d}}{=} X_1 + \cdots + X_N$.

$$X = \langle w, \text{rect} \rangle = \langle \cdots, \overrightarrow{1} \rangle$$

$$= \langle \cdots, \overrightarrow{1} \rangle + \cdots + \langle \cdots, \overrightarrow{1} \rangle$$

$$= \underbrace{\langle \cdots, \overrightarrow{1} \rangle}_{\frac{1}{n}}$$

Probability laws of innovations are infinite divisible

Canonical observation through a rectangular test function

$$X_{\mathrm{id}} = \langle w, \mathrm{rect} \rangle = \langle \cdots, \cdots \rangle$$

- w innovation process \Leftrightarrow $X_{\mathrm{id}} = \langle w, \mathrm{rect} \rangle$ infinitely divisible with canonical Lévy exponent $f(\omega) = \log \widehat{p}_{\mathrm{id}}(\omega)$
- $lue{}$ Statistical description of white Lévy noise w (innovation)
 - Generic observation: $X = \langle \varphi, w \rangle$ with $\varphi \in L_p(\mathbb{R}^d)$

$$X = \langle w, \varphi \rangle = \langle \dots, \dots \rangle \triangleq \lim_{n \to \infty} \langle \dots, \dots, \dots, \dots \rangle$$

$$= \lim_{n \to \infty} \langle \dots, \dots, \dots, \dots \rangle + \dots + \langle \dots, \dots, \dots, \dots, \dots \rangle$$

■ X is *infinitely divisible* with (modified) Lévy exponent

$$f_{arphi}(oldsymbol{\omega}) = \log \widehat{p}_X(oldsymbol{\omega}) = \int_{\mathbb{R}^d} fig(oldsymbol{\omega} arphi(oldsymbol{x})ig) \mathrm{d}oldsymbol{x}$$

25

□ Probability laws of sparse processes are id

- lacktriangle Analysis: go back to innovation process: $w=\mathrm{L}s$
 - lacktriangledown Generic random observation: $X=\langle arphi,w
 angle$ with $arphi\in\mathcal{S}(\mathbb{R}^d)$ or $arphi\in L_p(\mathbb{R}^d)$ (by extension)

If $\phi = L^{-1*}\psi \in L_p(\mathbb{R}^d)$ then $Y = \langle \psi, s \rangle = \langle \phi, w \rangle$ is *infinitely divisible* with (modified) Lévy exponent $f_\phi(\omega) = \int_{\mathbb{R}^d} f\big(\omega \phi(x)\big) \mathrm{d}x$

$$\Rightarrow p_Y(y) = \mathcal{F}^{-1}\{e^{f_{\phi}(\omega)}\}(y) = \int_{\mathbb{R}} e^{f_{\phi}(\omega) - j\omega y} \frac{d\omega}{2\pi}$$

= explicit form of pdf

Unser and Tafti

An Introduction to Sparse Stochastic Processes

CAMBRIDGE

Examples of infinitely divisible laws

 $p_{\rm id}(x)$

$$p_{\text{Gauss}}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$$

$$p_{\text{Laplace}}(x) = \frac{\lambda}{2} e^{-\lambda|x|}$$

(c) Compound Poisson

$$p_{\text{Poisson}}(x) = \mathcal{F}^{-1}\{e^{\lambda(\hat{p}_A(\omega)-1)}\}$$

$$p_{\text{Cauchy}}(x) = \frac{1}{\pi (x^2 + 1)}$$

Characteristic function:
$$\widehat{p}_{\mathrm{id}}(\omega) = \int_{\mathbb{R}} p_{\mathrm{id}}(x) \mathrm{e}^{\mathrm{j}\omega x} \mathrm{d}x = \mathrm{e}^{f(\omega)}$$

27

Examples of id noise distributions

 $p_{\rm id}(x)$

Observations: $X_n = \langle w, \mathsf{rect}(\cdot - n) \rangle$

$$f(\omega) = -\frac{\sigma_0^2}{2} |\omega|^2$$

(b) Laplace

$$f(\omega) = \log\left(\frac{1}{1+\omega^2}\right)$$

Sparser

$$f(\omega) = \lambda \int_{\mathbb{R}} (e^{jx\omega} - 1)p(x)dx$$

(d) Cauchy (stable)

$$f(\omega) = -s_0|\omega|$$

Complete mathematical characterization: $\widehat{\mathscr{P}}_w(\varphi) = \exp\left(\int_{\mathbb{R}^d} f(\varphi(\boldsymbol{x})) \mathrm{d}\boldsymbol{x}\right)$

Aesthetic sparse signal: the Mondrian process

$$L = D_x D_y \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad (j\omega_x)(j\omega_y)$$

Scale- and rotation-invariant processes

Stochastic partial differential equation : $(-\Delta)^{\frac{H+1}{2}}s(\boldsymbol{x})=w(\boldsymbol{x})$

Gaussian

H=.75

H=1.75

Sparse (generalized Poisson)

Powers of ten: from astronomy to biology

31

High-level properties of SSP

- Infinite divisible probability laws: broadest class of distributions preserved through linear transformation.
- **Explicit calculations**: Analytical determination of transform-domain statistics (including, joint pdfs).
- Unifying framework: includes all traditional families of stochastic processes (ARMA, fBm), as well as their non-Gaussian generalizations.
- Sparsifying transforms / ICA: SSP are (approximately) decoupled in a matched operator-like wavelet basis. (Pad-U., IEEE-SP 2015)
- *N*-term approximation properties: SSP are truly "sparse" as described by their inclusion in (weighted) Besov spaces. (Fageot et al., *ACHA* 2015)

An Introduction to Sparse Stochastic Processes

Cambridgi

STATISTICAL SIGNAL RECONSTRUCTION

- Discretization of reconstruction problem
- Signal reconstruction algorithm (MAP)

33

Discretization of reconstruction problem

 $\text{Spline-like reconstruction model: } s(\boldsymbol{r}) = \sum_{\boldsymbol{k} \in \Omega} s[\boldsymbol{k}] \beta_{\boldsymbol{k}}(\boldsymbol{r}) \quad \longleftrightarrow \quad \mathbf{s} = (s[\boldsymbol{k}])_{\boldsymbol{k} \in \Omega}$

Innovation model

$$Ls = w$$
$$s = L^{-1}w$$

 $\mathbf{u} = \mathbf{L}\mathbf{s}$ (matrix notation)

 p_U is part of **infinitely divisible** family

■ Physical model: image formation and acquisition

$$y_m = \int_{\mathbb{R}^d} s_1(\boldsymbol{x}) \eta_m(\boldsymbol{x}) d\boldsymbol{x} + n[m] = \langle s_1, \eta_m \rangle + n[m], \quad (m = 1, \dots, M)$$

$$\mathbf{y} = \mathbf{y}_0 + \mathbf{n} = \mathbf{H}\mathbf{s} + \mathbf{n}$$

 ${f n}$: i.i.d. noise with pdf p_N

$$[\mathbf{H}]_{m,k} = \langle \eta_m, eta_k
angle = \int_{\mathbb{R}^d} \eta_m(m{r}) eta_k(m{r}) \mathrm{d}m{r}$$
: $(M imes K)$ system matrix

Posterior probability distribution

$$p_{S|Y}(\mathbf{s}|\mathbf{y}) = \frac{p_{Y|S}(\mathbf{y}|\mathbf{s})p_{S}(\mathbf{s})}{p_{Y}(\mathbf{y})} = \frac{p_{N}(\mathbf{y} - \mathbf{H}\mathbf{s})p_{S}(\mathbf{s})}{p_{Y}(\mathbf{y})}$$

$$= \frac{1}{Z}p_{N}(\mathbf{y} - \mathbf{H}\mathbf{s})p_{S}(\mathbf{s})$$
(Bayes' rule)

$$\mathbf{u} = \mathbf{L}\mathbf{s}$$
 \Rightarrow $p_S(\mathbf{s}) \propto p_U(\mathbf{L}\mathbf{s}) \approx \prod_{\mathbf{k} \in \Omega} p_U([\mathbf{L}\mathbf{s}]_{\mathbf{k}})$

Additive white Gaussian noise scenario (AWGN)

$$p_{S|Y}(\mathbf{s}|\mathbf{y}) \propto \exp\left(-\frac{\|\mathbf{y} - \mathbf{H}\mathbf{s}\|^2}{2\sigma^2}\right) \prod_{\mathbf{k} \in \Omega} p_U([\mathbf{L}\mathbf{s}]_{\mathbf{k}})$$

... and then take the log and maximize ...

35

General form of MAP estimator

$$\mathbf{s}_{\mathrm{MAP}} = \mathrm{argmin}\left(\frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{s}\|_{2}^{2} + \sigma^{2} \sum_{n} \Phi_{U}([\mathbf{L}\mathbf{s}]_{n})\right)$$

■ Gaussian:
$$p_U(x) = \frac{1}{\sqrt{2\pi}\sigma_0} e^{-x^2/(2\sigma_0^2)}$$
 \Rightarrow $\Phi_U(x) = \frac{1}{2\sigma_0^2} x^2 + C_1$

■ Laplace:
$$p_U(x) = \frac{\lambda}{2} e^{-\lambda |x|}$$
 \Rightarrow $\Phi_U(x) = \lambda |x| + C_2$

■ Student:
$$p_U(x) = \frac{1}{B\left(r, \frac{1}{2}\right)} \left(\frac{1}{x^2 + 1}\right)^{r + \frac{1}{2}} \Rightarrow \Phi_U(x) = \left(r + \frac{1}{2}\right) \log(1 + x^2) + C_3$$

Potential: $\Phi_U(x) = -\log p_U(x)$

3D deconvolution with sparsity constraints

Maximum intensity projections of 384×448×260 image stacks; Leica DM 5500 widefield epifluorescence microscope with a 63× oil-immersion objective; C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

(Vonesch-U. IEEE Trans. Im. Proc. 2009)

Cryo-electron tomography (real data)

Standard Fourier-based reconstruction

High-resolution Fourier-based reconstruction

High-resolution reconstruction with sparsity

 $6.185\,\mathring{A}$

slice 34 slice 35 slice 36
slice 50 slice 51 slice 52

elice 66	elice 67	elice 68

slice 34 slice 35 slice 36

slice 50 slice 51 slice 52

SUMMARY: Sparsity in infinite dimensions

Continuous-domain formulation

 $s \in \mathcal{X}$

Linear measurement model

 $s \mapsto \mathbf{y} = \mathbf{H}\{s\}$

Linear signal model: PDE

Ls = w

- L-splines = signals with "sparsest" innovation \Rightarrow $s = L^{-1}w$

Deterministic optimality result

 $gTV(s) = ||Ls||_{TV}$

- qTV regularization: favors "sparse" innovations
- Non-uniform L-splines: universal solutions of linear inverse problems
- Statistical model that supports sparsity
 - Statistical decoupling: Gaussian vs. sparse innovations (Poisson, student, $S\alpha S$)
 - Unifying framework: "sparse stochastic processes"
- $s = L^{-1}w$
- MAP enforces sparsity through non-quadratic regularization

39

Acknowledgments

Many thanks to (former) members of **EPFL's Biomedical Imaging Group**

- Dr. Pouya Tafti
- Prof. Arash Amini
- Dr. John-Paul Ward
- Julien Fageot
- Emrah Bostan
- Dr. Masih Nilchian
- Dr. Ulugbek Kamilov
- Dr. Cédric Vonesch

and collaborators ...

- Prof. Demetri Psaltis
- Prof. Marco Stampanoni
- Prof. Carlos-Oscar Sorzano
- Dr. Arne Seitz

Preprints and demos: http://bigwww.epfl.ch/

Norbert Wiener

Isaac Schoenberg

Paul Lévy

41

References

- Theory of sparse stochastic processes
 - M. Unser and P. Tafti, *An Introduction to Sparse Stochastic Processes*, Cambridge University Press, 2014; preprint, available at http://www.sparseprocesses.org.
 - M. Unser, P.D. Tafti, "Stochastic models for sparse and piecewise-smooth signals", *IEEE Trans. Signal Processing*, vol. 59, no. 3, pp. 989-1006, March 2011.
 - M. Unser, P. Tafti, and Q. Sun, "A unified formulation of Gaussian vs. sparse stochastic processes—Part I: Continuous-domain theory," *IEEE Trans. Information Theory*, vol. 60, no. 3, pp. 1945-1962, March 2014.

Algorithms and imaging applications

- E. Bostan, U.S. Kamilov, M. Nilchian, M. Unser, "Sparse Stochastic Processes and Discretization of Linear Inverse Problems," *IEEE Trans. Image Processing*, vol. 22, no. 7, pp. 2699-2710, 2013.
- C. Vonesch, M. Unser, "A Fast Multilevel Algorithm for Wavelet-Regularized Image Restoration," *IEEE Trans. Image Processing*, vol. 18, no. 3, pp. 509-523, March 2009.
- M. Nilchian, C. Vonesch, S. Lefkimmiatis, P. Modregger, M. Stampanoni, M. Unser, "Constrained Regularized Reconstruction of X-Ray-DPCI Tomograms with Weighted-Norm," *Optics Express*, vol. 21, no. 26, pp. 32340-32348, 2013.
- U.S. Kamilov, I.N. Papadopoulos, M.H. Shoreh, A. Goy, C. Vonesch, M. Unser, D. Psaltis, "Learning Approach to Optical Tomography," *Optica*, vol. 2, no. 6, pp. 517-522, June 2015.