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Inverse problems in bio-imaging

m Linear forward model

Integral operator

S Problem: recover s from noisy measurements y

m Reconstruction as an optimization problem

~"

data consistency  regularization

Srec = arg min i\y — HSH%—i— ALs|b, p=1,2

— log Prob(s) : prior likelihood

Inverse problems in imaging: Current status

m Higher reconstruction quality: Sparsity-promoting schemes almost sys-
tematically outperform the classical linear reconstruction methods in MRI,
x-ray tomography, deconvolution microscopy, etc... (Lustig et al. 2007)

m Increased complexity: Resolution of linear inverse problems using ¢,
regularization requires more sophisticated algorithms (iterative and non-
linear); efficient solutions (FISTA, ADMM) have emerged during the past

decade. (Chambolle 2004; Figueiredo 2004; Beck-Teboule 2009; Boyd 2011)

m The paradigm is supported by the theory of compressed sensing
(Candes-Romberg-Tao; Donoho, 2006)

m Outstanding research issues

m Beyond /; and TV: Connection with statistical modeling & learning
m Beyond matrix algebra: Continuous-domain formulation

m Guarantees of optimality (either deterministic or statistical)




Sparsity and continuous-domain modeling

m Compressed sensing (CS)

m Generalized sampling and infinite-dimensional CS ~ (Adcock-Hansen, 2011)

m Xampling: CS of analog signals (Eldar, 2011)

m Splines and approximation theory

m [, splines (Fisher-Jerome, 1975)
m Locally-adaptive regression splines (Mammen-van de Geer, 1997)
m Generalized TV (Steidl et al. 2005; Bredies et al. 2010)

m Statistical modeling
(Unser et al. 2011-2014)

m Sparse stochastic processes




Splines are intrinsically sparse

L{-}: admissible differential operator
§(- — xg): Dirac impulse shifted by x, € R?

Definition
The function s : R? — R is a (non-uniform) L-spline with knots (x5, )%, if
K
L{s} = Z ard(- —xr) = ws : spline’s innovation
k=1
Spline theory: (Schultz-Varga, 1967) L= di
CL]C‘: | x
Lk Thk41

m FIR signal processing: Innovation variables (2K) (vetterli et al., 2002)
= Location of singularities (knots) : {zx }*_,

m Strength of singularities (linear weights): {ak}szl

Splines and operators

Definition
A linear operator L : X — Y, where X D S(RY) and ) are appropriate sub-
spaces of S’(R?), is called spline-admissible if

1. it is linear shift-invariant (LSI);
2. its null space Ny, = {p € X : L{p} = 0} is finite-dimensional of size Ny;

3. there exists a function pr, : R? — R of slow growth (the Green’s function of
L) such that L{pp, } = 6.

m Structure of null space: Vi, = span{p, }2?,

= Admits some basis p = (p1,--- ,pnN,)

= Only includes elements of the form "¢l («0:®) with lm| = Zle m; < ng




Spline synthesis: example

d
L=D= i Np =span{p1}, pi(z)=1

pp(x) = 14 (x): Heaviside function
T ws(x) = Zak5(a: — Tk
k

T 4 z

P >
p o s(z) =bipi(z) + > arly(z —ax)
all
X ] :

Spline synthesis: generalization

L: spline admissible operator (LSI)

pL(x): Green’s function of L N1, = span{p, }2°,

Spline’s innovation: ws(x) = Z ard(x — xk)
k

No
= s(@) =) apL(z—xp)+ Y bppa(x)
k n=1

\

Requires specification of boundary conditions

arf —

T
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Principled operator-based approach
m Biorthogonal basis of Vi, = span{p,}"°,

= @ = (b1, On,) such that (G, pn) = G,

. p= %(%,pm for all p € N,

m Operator-based spline synthesis

= Boundary conditions: (s, ¢,) =b,, n=1,---, Ny
= Spline’s innovation: L{s} = ws = Zaké —xr)

s(x) = 1{w5} )+ Z bppn ()

m Existence of L' as a stable right-inverse of L ?  (see Theorem 1)

n LL;lw =w

= (¢, Ly w) =0
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From Dirac impulses to Borel measures

S(R%): Schwartz’s space of smooth and rapidly decaying test functions on R¢

S’(R?): Schwartz’s space of tempered distributions

m Space of real-valued, countably additive Borel measures on R?

MR = (Co(RY) = {w € S'(RY) : |w|rv = sup (w, p) < o0},
PES(RY):||p]leo=1

where w : @ = (w, ) = [pa p(r)dw(r)
m Equivalent definition of “total variation” norm

|w||rv = sup (w, @)
0ECo(RY): [l plloo=1

m Basic inclusions

s 0(- — o) € M(R?) with ||§(- — xo)|Tv = 1 for any xy € R?
= [Iflvv = 1fllL, ey forall f € Li(RY) = Li(R?) € M(RY)
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Generalized Beppo-Levi spaces

L: spline-admissible operator

m Generalized “total variation” semi-norm (gTV)

gTV(f) = [IL{f}lrv

m Generalized Beppo-Levi spaces
MLRY) ={f: R 5 R | |Lf|lrv < oo}

f € ML(RY) & L{f} € M(R?)

= Classical Beppo-Levi spaces: (M(R?),L) — (L,(R),D") (Deny-Lions, 1954)

= Inclusion of non-uniform L-splines

s:Zaka('—a:k)—l—Zobnpn = L{s} :Zakd(‘—mk)
k n=1 k
gTV(s) = [L{s}|rv = Y lax| = |lall,

k
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New optimality result: universality of splines

L: spline-admissible operator
ML(R) = {f: gTV(f) = [[L{f}HIrv = sup (L{f} ¢) < oo}

lelloo <1

Generalized total variation : ¢TV(f) = ||[L{f}||z, when L{f} € L;(R?)

Linear measurement operator My, (R) — RM : f s z = v(f)
And Zm = <f7 Vm>

Theorem [U.-Fageot-Ward, 2015]: The generic linear-inverse problem

cmin(ly = w(£)IE + AL ev)

K Ny
admits a global solution of the form f(z) = > " axpr(x — @) + > bppn(®
k=1 n=1

with K < M, which is a non-uniform L-spline with knots (xx )X, .

)
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Optimality result for Dirac measures

= F: linear continuous map M(R9) — RM
= C: convex compact subset of R

= Generic constrained TV minimization problem

Y = arg min |wl|Tv
weM(RE) : F(w)eC

Generalized Fisher-Jerome theorem
The solution set V is a convex, weak+-compact subset of M (R?) with
extremal points of the form

K
Ws = Zaké(- —x))
k=1

with K < M and ), € R?.

Jerome-Fisher, 1975: Compact domain & scalar intervals
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Existence of stable right-inverse operator
Loono (RY) = {f R = R sup ([f@)|(1+ [le])™) < +oc)

Theorem 1 [U.-Fageot-Ward, preprint]

Let L be spline-admissible operator with a Ny-dimensional null space N, C iss, — (Rd)
such that p = Zi:]il(p, ¢n)pp for all p € N7,. Then, there exists a unique and sta-
ble operator L' : M(R?) — Loo _p,(R) such that, for all w € M(R?),

e Right-inverse property: LL,'w = w,
e Boundary conditions: (¢, L, w) = 0 with ¢ = (¢1, -+ , pny)-
Its generalized impulse response g4 (x,y) = L;l{é(- — y)}(x) is given by
No
g¢<w7y) = pL(‘f'C - y) - an(w>Qn<y)
n=1

with pr, such that L{pr.} = 6 and ¢, (y) = (¢, pL(- — ¥)).
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Characterization of generalized Beppo-Levi spaces
= Regularization operator L : My,(R%) — M(R%)
fe MLRY) & gTV(f)=|L{f}rv <o

Theorem 2 [U.-Fageot-Ward, preprint]
Let L. be a spline-admissible operator that admits a stable right-inverse L;l of the

form specified by Theorem 1. Then, any f € ML(Rd) has a unique representation
as

f=0 'w+tp,

where w = L{f} € M(R%) and p = 3N° (én, f)pn € Ny, with ¢, € (M, (RY))".
Moreover, My, (R?) C Lo, _n,(R?) and is a Banach space equipped with the norm

[ llme,e = ILfllov + I1(f; &)z
= Generalized Beppo-Levi space: M, (RY) = My, »(RY) @ A,
Mrp®R?) = {f € ML(R?): (¢, f) =0}
N = {p e MLRY) : L{p} = 0}
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sparse stochastic

processes
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Random spline: archetype of sparse signal

non-uniform spline of degree 0

0 2 4 6 8 10

Ds(t) =Y and(t —tn) = w(t)

Random weights {a,, } i.i.d. and random knots {¢,,} (Poisson with rate \)

m Anti-derivative operators

t
Shift-invariant solution: D™ (t) = (1, * ©)(t) = / o(T)dr

t
Scale-invariant solution: D '¢(t) = / o(T)dr (see Theorem 1 with ¢; = 9)
0

20




Compound Poisson process

m Stochastic differential equation
Ds(t) = w(t)
with boundary condition s(0) = (¢1,s) = 0 with ¢ =9

Innovation: w(t) = Z and(t

m Formal solution

s(t) = Zan o 100 — ta) }(1) [

]
:b1+2an]l+t—tn) '_:
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Lévy processes: all admissible brands of innovations

Generalized innovations : white Lévy noise with E{w(t)w(t')} = 02 6(t — t')

Ds=w (perfect decoupling!)
White noise (innovation) Lévy process
. 0 Brownian motion 0 (Wiener 1923)
Gaussian
Integ rator 00 02 04 0.6 08 10

Impulsive w(t) ot s(t) Compound Poisson

E— dr —— 0

07 0.0 02 04 0.6 08 10

SaS (Cauchy) iw

(Paul Lévy circa 1930) 2o




Generalized innovation model

Theoretical framework: Gelfand’s theory of generalized stochastic processes

Generic test function ¢ € S plays the role of index variable

Solution of SDE (general operator)

@

innovation process sparse stochastic process
L—l N

@ White noise s=L"'w 4—\_1 — @
—-

w

X = (p,w) J% < L «— Y ={(p,s)= <(PaL_1w> - <L_1*(‘0’w>

@ Approximate
decoupling

_ Proper definition of Regularization operator vs. wavelet analysis
continuous-domain white noise

Main feature: inherent sparsity

U t al, IEEE-IT 2014 N .
(Unseret a 014) (few significant coefficients)
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From Dirac impulses to innovation processes

w is a generalized innovation process (or continuous-domain white noise) in S’(R?) if
1. Observability: X = (,p,w) is an ordinary random variable for any € S(R9).
2. Stationarity : X,, = (¢(- — =), w) is identically distributed for all x5 € R<,

3. Independent atoms : X; = (p1,w) and X5 = (¢2, w) are independent
whenever ; and - have non-intersecting support.

Theorem (under mild technical conditions) (Amini-U., IEEE-IT 2014)
w is an innovation process in &’ (R4)

= X = (p,w) is well defined and infinitely divisible for any » € L,(R%)

Definition: A random variable X with generic pdf p;q(x) is infinitely divisible (id) iff., for
any N € Z™, there exist i.i.d. random variables X1, ..., X such that X < X1+ -+ Xn.

X = (w,rect) =

24




Probability laws of innovations are infinite divisible
m Canonical observation through a rectangular test function
Xiq = (w,rect) = (e ;L L)
w innovation process < Xjq = (w, rect) infinitely divisible

with canonical Lévy exponent f(w) = log pia(w)

m Statistical description of white Lévy noise w (innovation)

= Generic observation: X = (p, w) with ¢ € L,(R?)

X =(wg) = (wwmdJ \_)2 lim o 1

n— oo w

= hm(MMWMﬂ—> + (o —r )

n— oo -

s X is infinitely divisible with (modified) Lévy exponent

fo(w) =logpx (w) = /Rd f(we(x))de
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X Probability laws of sparse processes are id

m Analysis: go back to innovation process: w = Ls
= Generic random observation: X = (p,w) with ¢ € S(RY) or ¢ € L,(R?) (by extension)

—N
= Linear functional: Y = (1, 5) = (¢, L~ 'w) = (L™, w)

If g = L= € L,(R?) then Y = (3, s) = (¢, w) is infinitely divisible
with (modified) Lévy exponent fy(w) = [pu f(wd(x))da

— w w)—jw dw
S () = F U ON () :/em )iy %
R T

= explicit form of pdf

- An Introduction to CABRIGE

Sparse Stochastic Processes
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Examples of infinitely divisible laws
pia(z)

(a) Gaussian

(b) Laplace

(c) Compound Poisson
A

PPoisson (I’) = f_l{ek(ﬁ,q(w)—l)}

lasiedg

=

(d) Cauchy (stable)

o
01
o0
0o

Characteristic function: piq(w) = /pid(x)ej“""”dm = of @)
R

1

PCauchy (!17) = m
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Examples of id noise distributions
pia() Observations:  X,, = (w, rect(- — n))

(a) Gaussian

(b) Laplace

(c) Compound Poisson
A

lasiedg

_/

— -2 o 2 4 -5

(d) Cauchy (stable)

Complete mathematical characterization: 22, () = exp ( / f (go(a:))da:)
R4

28




Aesthetic sparse signal: the Mondrian process

F ) .
L=D,D, <= (jwz)(jwy)

< I @& google.fr &
v Banque v Weekend v Phone v  Bing Work/refs v Luci v Reference v Committees v CHAEL v Reviews v EPFL v Editor v
+

Google

S

Recherche Google J'ai de la chance
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Scale- and rotation-invariant processes
Stochastic partial differential equation : (—A)%s(w) = w(x)

Gaussian

Sparse (generalized Poisson)

AT,

(U.-Tafti, IEEE-SP 2010) 30




Powers of ten: from astronomy to biology

o0 1986 Jériy Lodriguss and John Martinez
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High-level properties of SSP

= Infinite divisible probability laws: broadest class of distributions
preserved through linear transformation.

m Explicit calculations: Analytical determination of transform-domain
statistics (including, joint pdfs).

m Unifying framework: includes all traditional families of stochastic
processes (ARMA, fBm), as well as their non-Gaussian generalizations.

m Sparsifying transforms / ICA: SSP are (approximately) decoupled in a
matched operator-like wavelet basis. (Pad-U., IEEE-SP 2015)

m N-term approximation properties: SSP are truly “sparse” as described
by their inclusion in (weighted) Besov spaces. (Fageot et al., ACHA 2015)

g An Introduction to CABRIDGE

Sparse Stochastic Processes
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STATISTICAL SIGNAL RECONSTRUCTION

= Discretization of reconstruction problem
= Signal reconstruction algorithm (MAP)

33

Discretization of reconstruction problem

Spline-like reconstruction model: s(r) = Z slk|Pe(r) <+— s =(s[k])ken
ke
®m Innovation model

ks = w Discretization u = Ls (matrix notation)
s = L7lw

py is part of infinitely divisible family

m Physical model: image formation and acquisition

s = / 51(2) 0 ()dz + nlm] = (s1,7m) +nml, (m=1,..., M)
Rd

y=Yo+tn=Hs+n n: i.i.d. noise with pdf py

Mk = (Nm, Br) = /Rd N (1) Bre(r)dr: (M x K) system matrix

34




Posterior probability distribution

y) = pyis(yls)ps(s) _ pn(y — Hs)ps(s) (Bayes’ rule)

Psiy (sly 7 A )

1

= EPN(Y — Hs)ps(s)

u=_Ls = ps(s) < pu(Ls) = [lpeqpu([Ls]k)

m Additive white Gaussian noise scenario (AWGN)

psy (sly) o exp GW) 1 pu((Lslk)

... and then take the log and maximize ...
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General form of MAP estimator

suap = argmin (§ [ly - Hs|3 + 0> ¥, @u([Ls],))

= Gaussian: py(z) = \/QL 0(3—962/(203) = By(x) = ge12+ G
s« &)
= Laplace: py(x) = %e—klﬂ = Oy(x) = Nz| + Oy
student: po(e) = — - (= 1) T S au@) = (r+ Dlogl1 44t 4 C
- spulr) = z)=(r+=)lo x
bu B(r ) \#?+1 u p) 08 3

N
e,
o
1 Potential: &y (z) = —log py ()

36




3D deconvolution with sparsity constraints

*" 5 '

Maximum intensity projections of 384 <448 x260 image stacks;
Leica DM 5500 widefield epifluorescence microscope with a 63 x oil-immersion objective;
C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

(Vonesch-U. IEEE Trans. Im. Proc. 2009)

Cryo-electron tomography (real data)

Standard Fourier-based High-resolution Fourier-based High-resolution
reconstruction reconstruction reconstruction with sparsity

} ?2 % 'c
R R

<

T
SR

*

slice 36

slice 68 38




SUMMARY: Sparsity in infinite dimensions

= Continuous-domain formulation seX
Linear measurement model s+—y = H{s}
Linear signal model: PDE Ls =w

L-splines = signals with “sparsest” innovation = s=L"1tw

= Deterministic optimality result gTV(s) = ||Ls|lrv
gTV regularization: favors “sparse” innovations
Non-uniform L-splines: universal solutions of linear inverse problems

= Statistical model that supports sparsity

Statistical decoupling:
Gaussian vs. sparse innovations (Poisson, student, SaS)

Unifying framework: “sparse stochastic processes” s=L"1w
MAP enforces sparsity through non-quadratic regularization
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