
Steerable wavelet transforms
and monogenic image analysis

Michael Unser
Biomedical Imaging Group
EPFL, Lausanne, Switzerland

Joint work with
Daniel Sage and Dimitri Van De Ville

Engineering Science Seminar, Oxford Univ., January 15, 2010

Steerable filters
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(Freeman & Adelson, 1991)

Fast filterbank implementation

Definition. A 2D filter h(x), x ∈ R2 is steerable of order M iff. there exist

some basis filters ϕm(x) and coefficients am(θ) such that

∀θ ∈ [−π,π], hθ(x) := h(Rθx) =
M�

m=1

am(θ) ϕm(x)

...f(x) f ∗ hθ(x)

a1(θ)

aM (θ)

ϕ1

ϕM

Optimized ridge detector (M=3)

(Jacob-U., IEEE-PAMI, 2004)



Simoncelliʼs steerable pyramid (1995)
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! Many successful applications
! Contour detection
! Image filtering and denoising
! Orientation analysis
! Texture analysis and synthesis
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Figure 2: System diagram for the radial portion of the steerable pyramid, illustrating the filtering and
sampling operations, and the recursive construction. Boxes containing “2D” and “2U” correspond to
downsampling and upsampling by a factor of 2. All other boxes correspond to standard 2D convolution.
The circles correspond to the transform coefficients. The recursive construction of a pyramid is achieved by
inserting a copy of the diagram contents enclosed by the dashed rectangle at the location of the solid circle
(i.e., the lowpass branch).
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Figure 3: Idealized depiction of filters satisfying the constraints of the block diagram in figure 2. Plots show
Fourier spectra over the range 0 .

3. IMPLEMENTATION

We have designed filters using weighted least
squares techniques in the Fourier domain to ap-
proximately fit the constraints detailed above.
The resulting filters are fairly compact (typically
9 9 taps) and accurate (reconstruction error on
the order of 45dB). Such filters may be designed
for different values of , depending on the appli-
cation. For example, a design with a single band
at each scale ( 1) serves as a (self-inverting)
replacement for the Laplacian pyramid. A design
with two bands ( 2) will compute multi-scale
image gradients, which may be used for computa-
tions of local orientation, stereo disparity or opti-
cal flow. Higher values of correspond to higher
order terms in a multi-scale Taylor series.

Figure 4 illustrates a 3-level steerable pyramid de-
composition of a disk image, with 1. Shown
are the bandpass images and the final lowpass
image (the initial highpass image is not shown).
As noted above, this pyramid may be used in
applications where the Laplacian pyramid has
been found useful, such as in image coding. The
advantage is that the steerable pyramid is self-
inverting, and thus the errors introduce by quan-
tization of the subbands will not appear as out-
of-band distortions upon reconstruction.

Figure 5 illustrates a 3-level steerable pyramid
decomposition with 3. The filters are

Figure 4: A 3-level 1 (non-oriented) steer-
able pyramid. Shown are the bandpass images
and the final lowpass image.

directional second derivatives oriented at
2 3 0 2 3 . Such a decomposition can be

used for orientation analysis, edge detection, etc.

We have explored the use of this decomposition
in a number of applications, including image en-
hancement, orientation decomposition and junc-
tion identification, texture blending, depth-from-
stereo, and opticalflow. Space limitationsprevent
full description of these applications here; some
previous results are described in [5, 6].

3

 

Figure 5: A 3-level 3 (second derivative)
steerable pyramid. Shown are the three band-
pass images at each scale and the final lowpass
image.
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Laplacian Pyramid Dyadic QMF/Wavelet Steerable Pyramid

self-inverting (tight frame) no yes yes
overcompleteness 4 3 1 4 3
aliasing in subbands perhaps yes no
rotated orientation bands no only on hex lattice [9] yes

Table 1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.

Figure 1: Idealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with 4. Frequency axes range from

to . The basis functions are related by
translations, dilations and rotations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

idealized frequency response of the subbands, for
4. We write the the Fourier magnitude of

the th oriented bandpass filter in polar-separable
form:

where tan 1 , 2 and . Be-
low, we describe the constraints on the two com-
ponents and .

1. ANGULAR DECOMPOSITION

The angular portion of the decomposition, ,
is determined by the desired derivative order. A
directional derivative operation in the spatial do-
main corresponds to multiplication by a linear
ramp function in the Fourier domain, which we
rewrite in polar coordinates as follows:

cos

(note thatwehave described aderivative operator
in the direction). We ignore the imaginary con-
stant, and the factor of , which is absorbed into
the radial portion of the function. The relevant
angular portion of the first derivative operator (in
the direction) is thus cos .

Higher-order directional derivatives correspond
to multiplication in the Fourier domain by the

ramp raised to a power, and thus the angular
portion of the filter is cos for an th-order
directional derivative. Knuttson and Granlund
have also developed polar-separable filters with
such angular components [10]. The steerability of
such functions hasbeen discussed in our previous
work [5, 6].

2. RADIAL DECOMPOSITION

The radial function, , is constrained by both
the desire to build the decomposition recursively
(i.e., using a “pyramid” algorithm), and the need
to prevent aliasing from occurring during sub-
sampling operations. The recursive system dia-
gram for is given in figure 23.

The filters 0 and 0 are necessary for pre-
processing the image in preparation for the recur-
sion. The recursive portion of the diagram corre-
sponds to the subsystem contained in the dashed
box. This subsystem decomposes a signal into
two portions (lowpass and highpass). The low-
pass portion is subsampled, and the recursion is
performed by repeatedly applying the recursive
transformation to the lowpass signal.

The constraints on the filters in the diagram are
as follows:

1. Bandlimiting (to prevent aliasing in the sub-
sampling operation):

1 0 for 2

2. Flat System Response:

0
2

0
2

1
2 2 1

3. Recursion:

1 2 2
1 2 2

1
2 2

Typically, we choose 0 1 2 , so that
the initial lowpass shape is the same as that used
within the recursion. An idealized illustration
of filters that satisfy these constraints is given in
figure 3. Note that 1 is strictly bandlimited,
and is power-complementary.

3This system diagram is modified from that of [6].
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! Limitations
! Purely discrete framework (no functional counterpart)
! Does not extend to dimensions higher than two

CONTENT
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! Riesz transform and its higher-order extensions
! Hilbert transform
! Riesz transform and its properties
! Higher-order Riesz transform
! Steerability and directional Hilbert transform

! General construction of steerable wavelet frames
! Steerable Riesz-Laplace wavelet transforms
! Monogenic wavelet analysis



Hilbert transform

5

ω

f̂(ω) =
� +∞

−∞
f(x)e−jωxdx

Definition: Hf(x) = (h∗f)(x)
F←→ −jsgn(ω) f̂(ω) = −j

ω

|ω|
f̂(ω)

Key properties

Mapping of cosines into sines: H{cos(ω0·)}(x) = sin(ω0x)

Impulse response: h(x) = 1
πx

Unitary transform: ∀ϕk,ϕl ∈ L2(R), �ϕk,ϕl�L2 = �Hϕk,Hϕl�L2

Analytical signal: fana(x) = f(x) + jHf(x) = A(x)ejξ(x)

f̂ana(ω) = 0 for ω < 0

Riesz transform
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Definition: Rf(x) =




R1f(x)

...
Rdf(x)



 F←→ −j
ω

�ω� f̂(ω)

Multi-dimensional Fourier transform

f̂(ω) =
�

Rd

f(x)e−j�ω,x�dx1 · · · dxd

with ω = (ω1, . . . ,ωd) ∈ Rd

Multi-channel convolution

Rnf(x) = (hn ∗ f)(x) with hn = Rn{δ}
F←→ −j ωn

�ω�

Special case d = 1: the Hilbert transform

Hf(x) = (h ∗ f)(x) F←→ −jsgn(ω) f̂(ω) = −j
ω

|ω|
f̂(ω)



Space-domain characterization
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TABLE I

RIESZ TRANSFORM COMPONENTS AND RELATED DIFFERENTIAL OPERATORS FOR d = 1, 2, 3, 4

Operator (−∆)−
1
2 Rn = − ∂

∂xn
(−∆)−

1
2 (−∆)

1
2

Frequency response
1

�ω�
−jωn

�ω�
�ω�

Impulse responses

d = 1
log |x|

π

1

πx

−1

π|x|2

d = 2
1

2π�x�
xn

2π�x�3
−1

2π�x�3

d = 3
1

2π2�x�2
xn

π2�x�4
−1

π2�x�4

d = 4
1

4π2�x�3
3xn

4π2�x�5
−3

4π2�x�5

Property 1 (Invariances): The Riesz transform is translation- and scale-invariant:

∀x0 ∈ Rd, R{f(·− x0)}(x) = R{f(·)}(x− x0)

∀a ∈ R+, R{f(·/a)}(x) = R{f(·)}(x/a)

The translation invariance directly follows from the definition, while the scale invariance is easily verified in the

Fourier domain.

Remarkably, the Riesz transform is also rotation-invariant. To formalize this property, we consider the group

of rotation matrices in Rd
. Specifically, let Ru denote a d × d rotation matrix such that Ru · e1 = u where

e1 = (1, 0, . . . , 0) specifies the first coordinate axis (variable x1).

Property 2 (Steerability): The Riesz transform filterbank defined by (4) is steerable in the sense that

h1(Rux) = �u,Rδ(x)� =
d�

n=1

unhn(x),

while the component filters are 90◦ rotated versions
2

of each other; i.e., hn(x) = h1(Renx) where [en]k = δk.

This is shown by using the rotation property of the Fourier transform

h1(Rux) F←→ ĥ1(Ruω) = −j
[Ruω]1
�Ruω� =

d�

n=1

−j
unωn

�ω�

2
In general, a single vector (or direction) is not sufficient to specify a rotation matrix in d dimensions. In the present case, however, the

functions hi(x) are isotropic within the hyperplane perpendicular to the corresponding coordinate vector ei so that our “geometrical” statements

implicitly refer to a whole equivalence class of rotation matrices.

June 2, 2009 DRAFT

Riesz transform in maths, SP and optics
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! Riesz transform in mathematics
! Fonctions conjuguées (Riesz 1920)
! Singular integral operators

(Calderon-Zygmund, 1955; Stein, 1970)

! Hilbert and Riesz transform in signal processing
! Analytical signal (Gabor, 1946; Ville 1948)
! 2D extension: Monogenic signal analysis (Felsberg, 2001)
! Phased-based feature detection (Noble-Brady et al., 2004)

! Riesz transform in optics
! Radial Hilbert transform (Davis, 2000)
! Spiral phase quadrature transform (Larkin, 2001)



Steerability and directional Hilbert transform
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Gradient-like steerable filterbank

Directional Hilbert transform

Huf(x) =
d�

n=1

unRnf(x) = �u,Rf(x)�

Implementation in 2-D

u = (cos θ, sin θ)

Hilbert-like behavior in direction u: �Hu(ω)
���
ω=ωu

= −jsgn(ω)

Unit vector: u = (u1, · · · , ud)

f(x)

cos(θ)

sin(θ)

h1

h2

2-D Riesz transform

Huf(x)

Reversibility of the Riesz transform

10

Adjoint operator

R∗r(x) = R∗
1r1(x) + · · ·+R∗

drd(x) F←→ j
ωT

�ω� r̂(ω)

Self-reversibility

R∗Rf(x) =
d�

i=1

R∗
iRif(x) = f(x)

What about iterating ?

Combining N th-order components of the form Ri1Ri2 · · ·RiN f

with i1, · · · iN ∈ {1, · · · , d}

n-fold iteration: Rn
i = RiRn−1

i with R0
i = Id



Higher-order Riesz transform
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Proper definition of N th-order transform

p(N, d) =
�N+d−1

d−1

�
distinct Riesz components with n1 + · · ·+ nd = N

R(N)f(x) =





R(N,0,··· ,0)f(x)
...

R(n1,··· ,nd)f(x)
...

R(0,··· ,0,N)f(x)





where R(n1,...,nd) =
�

N !
n1! · · ·nd!

Rn1
1 · · ·Rnd

d

Theorem (Decomposition of the identity)

�

n1, . . . , nd ≥ 0
n1 + · · · + nd = N

N !
n1!n2! · · ·nd!

(Rn1
1 · · ·Rnd

d )∗ (Rn1
1 · · ·Rnd

d ) = Id

Properties of higher-order Riesz transform
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Scale invariance: ∀a ∈ R+, R(N){f(·/a)}(x) = R(N){f(·)}(x/a)

Shift invariance: ∀x0 ∈ Rd, R(N){f(·−x0)}(x) = R(N){f(·)}(x−x0)

Parseval-like identity: ∀f, φ ∈ L2(Rd)

�R(N)f,R(N)φ�L2 =
�

n1+···+nd=N

�R(n1,...,nd)f,R(n1,...,nd)φ�L2

= �f, φ�L2

Energy conservation: �R(N)f�2
L2

=
�

n1+···+nd=N

�R(n1,··· ,nd)f�2
L2

= �f�2
L2



Riesz transform and derivatives
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Composition rule

(−∆)α1(−∆)α2 = (−∆)α1+α2 with (−∆)0 = Identity

Fractional Laplacian

(−∆)αf(x) F←→ �ω�2αf̂(ω)

“Smoothed version of gradient”

Rn1
1 · · ·Rnd

d f(x) = (−1)N (−∆)−
N
2

∂Nf

∂n1x1 · · · ∂ndxd
(x)

Riesz transform and partial derivatives

Rf(x) = (−1)(−∆)−
1
2 ∇f(x)

∇f(x) = −R(−∆)
1
2 f(x)

Higher-order steerability
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R(N,0,··· ,0)

cN,0,··· ,0(u)

f(n1,··· ,nd)

R(n1,··· ,nd)

cn1,··· ,nd(u)

f(N,0,··· ,0)

R(0,··· ,0,N)
f(0,··· ,0,N)

H
N
u f(x)f(x)

...
...

...... c0,··· ,0,N (u)

Steerable filterbank

“steering” coefficients: cn1,...,nd(u) =
�

N !
n1!n2! · · · nd!

(un1
1 · · · und

d )

N th-order directional Hilbert transform along u = (u1, · · · , ud)

H
N
u f(x) F←→

�
−j

�u,ω�
�ω�

�N

f̂(ω)



CONTENT
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! Riesz transform and its higher-order extensions  !
! General construction of steerable wavelet frames
! Steerable Riesz-Laplace wavelet transform
! Monogenic wavelet analysis

Frame = redundant extension of a basis

16

Definition

A family of functions {φk}k∈Zd is called a frame of L2(Rd) iff.

∀f ∈ L2(Rd), A �f�2
L2

≤
�

k∈Zd

|�φk, f�L2 |
2 ≤ B �f�2

L2

Tight frame: A = B

Parseval frame: A = B = 1

Analysis/synthesis formula

∀f ∈ L2(Rd), f =
�

k∈Zd

�φk, f�L2 φ̃k

{φ̃k}k∈Zd : dual frame (minimum-norm inverse)

Parseval frame: φ̃k = φk



Construction of steerable wavelet frames
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Wavelet frame of L2(Rd)

∀f ∈ L2(Rd), f(x) =
�

i∈Z

�

k∈Zd

�f, ψi,k�L2 ψ̃i,k(x)

Wavelet property: ψi,k(x) = 2− id
2 ψ0,k(x/2i)

Multi-index: n = (n1, . . . , nd) with |n| =
�d

i=1 ni = N

Theorem
Let {ψi,k} be a primal wavelet frame of L2(Rd). Then, {ψn

i,k = Rnψi,k}|n|=N

and {ψ̃n
i,k = Rnψ̃i,k}|n|=N form a dual set of wavelet frames such that

∀f ∈ L2(Rd), f(x) =
�

i∈Z

�

k∈Zd

�

|n|=N

�f, ψn
i,k�L2 ψ̃n

i,k(x)

Justification

Inner product preservation ⇒ �ψi,k, ψi�,k��L2 = �R(N)ψi,k,R(N)ψi�,k��L2

Shift and scale invariance ⇒ Rnψi,k(x) = 2− id
2 ψn(x/2i − k) with ψn = Rnψ

CONTENT
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! Riesz transform and its higher-order extensions  !
! General construction of steerable frames !
! Steerable Riesz-Laplace wavelet transforms

! Construction of quasi-isotropic wavelet bases
! Nth-order Riesz-Laplace wavelets
! Marr wavelets  (primal wavelet sketch)

! Monogenic wavelet analysis



Primary (fractional) Laplacian wavelet

19

ψiso(x) = (−∆)γ/2β2γ(2x) Gaussian-like smoothing kernel: β2γ(2x)

(U.-Van De Ville, IEEE-IP 2008)

Quasi-isotropic, Mexican-hat-like wavelet frame

Single analysis wavelet: ψiso(x)

Polyharmonic B-spline smoothing kernel

β2γ(x) → Cγ exp(−�x�2/(γ/6))

Multiscale version of (fractional) Laplace operator

Fast, reversible filterbank algorithm

(Van De Ville, IEEE-IP 2005)

Laplacian-like multiresolution analysis

20

ψiso(x) = (−∆)γ/2β2γ(Dx)Pyramid decomposition: redundancy 4/3

Dyadic sampling pattern

First decomposition level:

ϕ(D−1x− k)

Scaling functions

(U.-Van De Ville, IEEE-IP 2008)

ψ(D−1(x− k))
Wavelets

(redundant by 4/3)



Steerable Riesz-Laplace wavelets
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Analysis wavelets: ψn
(i,k)(x) � | det(D)|i/2ψn

γ

�
Dix −D−1k

�

The Riesz-Laplace wavelets form a frame of L2(Rd)

The Riesz-Laplace wavelets and their duals have �γ� vanishing moments

The Riesz-Laplace wavelet transform provides multiscale estimates of the N th-
order derivatives of the signal

�f, ψ(n1,...,nd)
γ,i (· − x0)�L2 ∝

∂N (f ∗ ξi)(x)
∂n1x1 · · · ∂ndxd

����
x=x0

where ξ is a suitable smoothing kernel.

The wavelet transform has a fast, reversible filterbank algorithm

ψ(n1,...,nd)
γ (x) =

�
N !

n1! · · ·nd!
Rn1

1 · · ·Rnd
d (−∆)

γ
2 β2γ(Dx)

β2γ(x): “quasi-isotropic” B-spline of order 2γ > d

D: admissible dilation matrix
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Riesz-Laplace

(b)

(1,0) (0,1)

Laplace

(a)

γ =3

First-order Riesz-Laplace transform
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(0,2)

Frequency responses

(Van De Ville-U., IEEE-IP 2008)

Equivalent to Marr wavelets

ψ(1,0)(x) =
∂

∂x
∆β2γ(2x)

ψ(0,1)(x) =
∂

∂y
∆β2γ(2x)

γ =4

(a)

(2,0) (1,1) (0,2)

(b)

Second-order Riesz-Laplace transforms
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(2,0) (0,2)(1,1)

Frequency responses



γ =5

(a)

(3,0) (2,1) (1,2) (3,0)

(b)

Steerable third-order Riesz-Laplace transform
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Frequency responses

3-D Gradient and Hessian-like wavelets
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∆
�

∂2

∂x2
1

+
∂2

∂x2
2

�

(a) surface detector (b) line detector

∆
∂

∂x1



Processing in early vision - primal sketch
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Wavelet primal sketch

blurring — smoothing kernel φ

Laplacian filtering — ∆

zero-crossings and orientation — ∇

segment detection and grouping — Canny edge detection scheme

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 11

Fig. 7. Marr-like pyramid (J = 3 decomposition levels) of the “Einstein” image.

image ✲ Marr-like wavelet
pyramid ✲✲

✲ Canny edge
detector ✲✲

✲ wavelet
primal sketch

Fig. 8. Flowchart of how to extract the “wavelet primal sketch” from the Marr-like wavelet pyramid. The Canny edge detection procedure is applied to
every subband. Real and imaginary part of the wavelet coefficients are interpreted as vertical and horizontal derivatives, respectively.

subband ✲

✲×❄

gradient
extraction

❄
phase

✲ non-maximum
suppression

✲ hysteresis
thresholding

✲ edge
mask

✻

subband
primal sketch

Fig. 9. Flowchart of how the “Canny edge detector” is applied to a subband of the Marr-like pyramid decomposition. First, the gradient is extracted by
considering real and imaginary parts of the wavelet coefficients. Then, non-maximum suppression is applied along the gradient direction, followed by hysteresis
thresholding. Finally, a complex coefficient is restored for the coefficients that are detected.

complete directional control of the transform thanks to the
steerability of the basis functions; in other words, we could as
well have extracted an angular wedge in any other direction.

B. Significance of phase and modulus

It is a well-known property of the Fourier transform that
the main perceptual information of the image is carried by
the phase of the Fourier coefficients rather than their magni-
tude. As a consequence, interchanging phase and magnitude
between two images reveals the image from which the phase
was selected. An example is shown in Fig. ?? (b), using
the “cameraman” (magnitude) and “Einstein” (phase) images.
It is informative to perform the equivalent experiment with
our complex-valued wavelet coefficients. In Fig. ?? (a), we

interchanged the phases and magnitudes of the Marr-like
wavelet pyramid of the same images. As with the Fourier
transform, the reconstruction mainly reveals the image from
which the phase was selected. However, since the wavelet
basis functions are more localized, the magnitude retains
some “diffuse” spatial content from; i.e., the halo from the
“cameraman” can be recognized as well.

C. Shift-invariance and rotation-covariance
Due to the rotation-covariance of the operator L, we know

that
Ls(Rθ·)(x) = ejθLs(Rθ·). (40)

Since the Marr-like wavelet pyramid is a multiscale version of
the operator, it should approximately maintain this property.

[Van De Ville-U., IEEE-IP 2008]

Marr wavelet pyramid
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Pyramid-like decomposition: redundancy 2× 4
3

ψ(1,0)
3 (x) =

∂

∂x
∆β6(2x) ψ(0,1)

3 (x) =
∂

∂y
∆β6(2x)



Edge detection in Marr wavelet domain
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Edge map (using Canny’s edge detector)

Key visual information (Marr’s theory of vision)

Similar to Mallatʼs representation from
wavelet modulus maxima [Mallat-Zhong, 1992]

... but much less redundant !

Iterative reconstruction
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31.4dB

Reconstruction from information on edge map only

Better than 30dB PSNR

[Van De Ville-U., IEEE-IP 2008]



CONTENT
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! Riesz transform and its higher-order extensions  !
! General construction of steerable wavelet frames  !
! Steerable Riesz-Laplace wavelet transform  !
! Monogenic wavelet analysis

! Directional AM/FM signal analysis

Monogenic splines and wavelets
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Real part

↓ (−∆)γ/2 (fractional Laplacian)
Isotropic wavelet: ψiso(x)

Imaginary part

Gaussian-like kernel: β2γ(2x)

γ = 4

Complex Riesz wavelet: ψRiesz(x) = R1ψiso(x) + jR2ψiso(x)

↓ R (Riesz transform)



Felsbergʼs monogenic signal analysis
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Local phase and wavenumber

Local phase: ξ(x) = ∠(fθ(x))

Local wavenumber: ν(x) = Dθξ(x) = �θ,∇ξ(x)� with θ = (cos θ, sin θ)

Directional Hilbert analysis: fθ(x) = f(x) + jHθf(x) = A ejξ

Local Orientation: θ(x) = ∠(Rf(x))

Local Amplitude: A(x) = |fθ(x)| =
�
|f(x)|2 + |R1f(x)|2 + |R2f(x)|2

Three-component monogenic signal

Input signal: f(x)

Complex Riesz transform: Rf(x) = (R1 + jR2)f(x) = r(x) ejθ(x)

Monogenic signal: fm(x) = (f(x), R1f(x), R2f(x)) = (f, r cos θ, r sin θ)

Wavelet-domain monogenic analysis
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Local Orientation: θi(k) = arg(wRiesz,i(k))

Local Amplitude: Ai(k) = �wi(k)� =
�

|wi(k)|2 + |wRiesz,i(k)|2

Three-component monogenic wavelet transform

Real wavelet coefficients: wi[k] = �f,ψiso(i,k)�

Complex wavelet coefficients: wRiesz,i[k] = �f,Rψiso(i,k)� = r ejθ

Monogenic wavelet vector: wi[k] = (wi[k],Re(wRiesz,i[k]), Im(wRiesz,i[k]))

= (A cos ϕ, A sin ξ� �� �
r

cos θ, A sin ξ� �� �
r

sin θ)

Local phase: ξi[k] = arctan

�
|wRiesz,i(k)|

wi(k)

�

(U.-Sage-Van De Ville, IEEE-IP 2009)
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(b)

Laplacian

Riesz X

Riesz Y

Psychedelic Lena

6-Unser: Image processing

Wavelet-domain structure analysis
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Local features

Hilbert energy: E = trace(J) = Juu + Jvv

Orientation: u1 = (cos θ, sin θ) with θ =
1
2

arctan
�

2Juv

Jvv − Juu

�

Coherency: 0 ≤ C =
λmax − λmin

λmax + λmin
=

�
(Jvv − Juu)2 + 4J2

uv

Jvv + Juu
≤ 1

with Juv[k] =
�

n∈Z2

e−
�n�2

2σ2 u[k + n]v[k + n]

Structure tensor: Ji(k) =

�
Juiui Juivi

Juivi Jvivi

�

Gradient-like Marr wavelet transform

ui[k] = �f, ψ(1,0)
(i,k)� and vi[k] = �f, ψ(0,1)

(i,k)�



Example: Psychedelic Lena
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Orientation

Amplitude
Coherency in saturation

Hilbert energy in brightness
Pointwise orientation tensor orientation

Example: Zoneplate
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wavenumberOrientation (tensor)

Synthetic zoneplate

Local phase: ξi[k] = arctan
�

|wRiesz,i(k)|
wi(k)

�

Local wavenumber: νi = Dθξi



Example: Modulated Cameraman
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Orientation

tensor orientationamplitude

Example: Coherence analysis of Barbara

40

HSB
Hue: Orientation
Saturation: Coherency
Brightness: Modulus

Orientation

γ = 2,σ = 2

Coherency



Example: Digital holography microscopy
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DHM image

Amplitude WavenumberOrientation (smoothed)

Data courtesy of Prof. Depeursinge, EPFL

Wavenumber

Example: Digital holography microscopy
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Original DHM image

Amplitude Orientation (tensor)

Data courtesy of Prof. Depeursinge, EPFL



Color HSB
H: Orientation
S: Coherency
B: Input
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Examples of multiscale orientation analysis

Fluorescence micrograph

Directional wavelet analysis: Fingerprint
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Wavenumber Orientation
Modulus

Amplitude OrientationOrientation (tensor)

Wavelet-domain monogenic and structure analysis



MonogenicJ: a plugin for ImageJ (JAVA)

45http://bigwww.epfl.ch/demo/monogenic/

Author: Daniel Sage

CONCLUSION
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! General operator-based design of steerable wavelets
! Key features of the approach

! Decoupling between multiresolution and multiorientation properties
! Simplicity of implementation (FFT, multirate filterbank)
! Exact reconstruction property
! Generalization to higher dimensions

! Riesz-Laplace wavelet transform 
! Quasi-isotropic generator (polyharmonic B-spline)
! Multiscale partial derivatives
! Directional Hilbert transform

! Novel perspectives for wavelet-domain image processing
! Rotation-invariant processing/feature extraction
! Primal wavelet sketch (Marr wavelets)
! Wavelet-domain monogenic analysis
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