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The quest for invariance

m Invariance to coordinate transformations

= Primary transformations (X): translation (T), scaling (S), rotation (R),
affine (similarity) (A=S+R)

= A continuous-domain operator L is X-invariant iff. it commutes with X i.e,
Vf € Ly(R?), XLf = Cx - LXf Cx: normalization constant

m All classical physical laws are TSR-invariant

m Classical signal/image processing operators are invariant
(to various extents)

= Filters (linear or non-linear): T-invariant
= Differentiators, wavelet transform: TS-invariant
= Contour/ridge detectors (Gradient, Laplacian, Hessian): TSR-invariant

= Steerable filters: TR-invariant




Invariant signals

m Natural signals/images often exhibit some degree of invariance
(at least locally, if not globally)

m Stationarity, texture: T-invariance

m Isotropy (no preferred orientation): R-invariance

m Self-similarity, fractality: S-invariance
(Pentland 1984; Mumford, 2001)
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General concept of an L-spline

L{-}: differential operator (translation-invariant)
d(x) = H?Zl d(x;): multidimensional Dirac distribution

Definition
The continuous-domain function s(x) is a cardinal L-spline iff.

L{s}(@) = ) alklé(z k)

kezd

= Cardinality: the knots (or spline singularities) are on the (multi-)integers

= Generalization: includes polynomial splines as particular case (L = ;x—NN)
Example: piecewise-constant splines
= Spline-defining operators
Continuous-domain derivative: D = di — jw
X
Discrete derivative: A {-} «— 11— ¥
= Piecewise-constant or D-spline At
+S
=~
s(z) =) s[k|B%.(x — k) D{s}(z) =) alk]d(z — k)
'»_ kCZ kez
| —> | - l - l v

= B-spline function

t (@) = A D6} (x) e




Splines and Green’s functions

Definition
p(x) is a Green function of the shift-invariant operator L iff L{p} = §

0

) [ o @ [y e

(+ null-space component?)

m Cardinal L-spline: L{s}(x) = Z alklé(x — k)

kezd
Formal integration

> alklb(@—k) — LTI s s(@) = > alklp(@ k)

kezd kczd

= VL =span{p(x — k) }ya

Example of spline synthesis

L=L =D = L™ integrator

5(x) 1 o(a)
— L_l{-} —

A

v

>

Green function = Impulse response

Translation invariance

6(x — o) p(z — o)
— L_l{-} —

S alk)o(e — k) Linearity s@) =3 alklp(z — k)

kEZ . kEZ
— L {} — —
t t . | r— .




Existence of a local, shift-invariant basis?

= Space of cardinal L-splines

VL= ¢ s(@): Li{s}(@) = > alk]d(x — k) p N Ly(RY)
kezd

= Generalized B-spline representation

A “localized” function p(x) € V1, is called generalized B-spline if it gen-
erates a Riesz basis of V1,; i.e., iff. there exists (A > 0, B < c0) s.t.

A el < || Snen cblol@ k)|, - < B llella
¢

VL =4 s(x) = Z clklo(x — k) : x € RY, ¢ € £5(Z%)

kczd \

. . discrete signal
continuous-domain signal

(B-spline coefficients)

Link with stochastic processes

Splines are in direct correspondence with stochastic processes
(stationary or fractals) that are solution of the same patrtial
differential equation, but with a random driving term.

Defining operator equation: L{s(:)}(x) = r(x)
m Specific driving terms
= r(x) = §(x) = s(x) =L Y{&}(zx) : Green function

s r(x) = Z alk]é(x — k) = s(x) : Cardinal L-spline
kezd

= r(x): white Gaussian noise = s(x): generalized stochastic process

A non-empty null space of L, boundary conditions

References: stationary proc. (U.-Blu, IEEE-SP 2006), fractals (Blu-U., IEEE-SP 2007) o




Example: Brownian motion vs. spline synthesis

L=4L4 = L1 integrator

white noise

o =LY} —

T T T T T T T T T
1 1 1

Brownian motion

T T T T T T
L 1 1 1 1 L 1 1 1

1

IMPOSING SCALE INVARIANCE

= Affine-invariant operators
= Polyharmonic splines

= Associated fractal random fields: fBms




Scale- and rotation-invariant operators

Definition: An operator L is affine-invariant (or SR-invariant) iff.
Vs(x), L{s(-)}(Roz/a) = Ca - L{s(Ry - /a)}(z)

where Ry is an arbitrary d x d unitary matrix and C, a constant

= Invariance theorem

The complete family of real, scale- and rotation-invariant
convolution operators is given by the fractional Laplacians

2 F
(87 S el

= Invariant Green functions (a.k.a. RBF) (Duchon, 1979)
() = x| "~“log ||z, if~y—diseven

|||7 4, otherwise




Polyharmonic splines

Spline functions associated with fractional Laplace operator (—A)W 2

m Distributional definition [Madych-Nelson, 1990]

s(x) is a cardinal polyharmonic spline of order  iff.

(—A)2s(@) = ) dlk]d(z — k)

kez?
m Explicit Shannon-like characterization
Vo = {s(w) = slklo,(z - k)}
kez?
¢~(): Unique polyharmonic spline interpolator s.t. ¢~ (k) = g
F ) 1

= Hl)= o\
L+ > keza\foy (m)
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Construction of polyharmonic B-splines

Laplacian operator: A <2 —[Jw||?

d
Discrete Laplacian: Aq <~ — Y 4sin®(w;/2) £ —||2sin(w/2)||?
1=1

o|-1]o0
A4
o|-1]o

= Polyharmonic B-splines (Rabut, 1992)

Discrete operator: localization filter Q(e/*)

[2sin(w/2)["  F
]l

By(x)

Continuous-domain operator: L (w)

16




Polyharmonic B-splines properties

m Stable representation of polyharmonic splines (Riesz basis)

Vicad) = s<w>=k§Zj c[k]f(z — k) : c[k] € £5(2%) 3 Condition: 7 > §
c d

m Two-scale relation: (3, (x/2) = Z h.[k]By(x — k)
kezd

m Order of approximation -y (possibly fractional)

m Reproduction of polynomials

The polyharmonic B-splines {¢., (& — k) } 74 reproduce the polynomials
of degree n = [y — 1]. In particular,
Z oy(x—k)=1  (partition of unity)

kent (Rabut, 1992; Van De Ville, 2005)
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Associated random field: multi-D fBm

Formalism: Gelfand’s theory of generalized stochastic processes

White noise

fractional Brownian field

fractional integrator
(appropriate boundary conditions)

Whitening Hurst exponent: H = v — g
(fractional Laplacian)

(Tafti et al., IEEE-IP 2009)
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LAPLACIAN-LIKE WAVELET BASES

= Operator-like wavelet design
= Fractional Laplacian-like wavelet basis
= Improving shift-invariance and isotropy

= Wavelet analysis of fractal processes
(multidimensional generalization of pioneering work
of Flandrin and Abry)

Multiresolution analysis of L>(R9)

't s € Vo - - , S —id2,, (®—2'k
s = Multiresolution basis functions: ¢; (x) = 2 %) (T)
T = Subspace at resolution i: V(;) = span {S"i,k}kezd
2 4 B 8

s1 € V)

ra

w e

Vi
3 € V(3) Two-scale relation = V{;) C V(;,fori > j

: \ Partition of unity < U,z Vi) = L2(RY)
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General operator-like wavelet design

Search for a single wavelet that generates a basis of Ly(R?) and that
is a multi-scale version of the operator L; i.e., » = L*¢ where ¢ is a
suitable smoothing kernel

m General operator-based construction

= Basic space V| generated by the integer shifts of the Green function p of L:

Vo = span{p(x — k) }xeza With Lp = 0

= Orthogonality between V and Wy = span{y(z — 5k)}keze\ 224

(W(—mo), p(- —k)) = (o, Lp(- =k +x0))
= (¢ 0(—k+z0)) =gk —x0) =0

(can be enforced via a judicious choice of ¢ (interpolator) and x)

m Works in arbitrary dimensions and for any dilation matrix D

21

Fractional Laplacian-like wavelet basis

)y () = (—A)? ¢2 (Dax)
¢2~(2): polyharmonic spline interpolator of order 2y > 1

D: admissible dilation matrix

= Wavelet basis functions: ¢, ) (x) £ | det(D)|/?4,, (Diz — D~ k)

s {¥(i k) }(iez, kez2\Dz2) forms a semi-orthogonal basis of Ly (R?)

VEELaR?), f=Y > (fitbuw) birw =2, > (Fdur) tur

i€7 keZ2\DZ? i€7 keZ2\DZ?
where {1(; 1} is the dual wavelet basis of {t); 1)}

= The wavelets v; x) and '(;(i,k) have [~] vanishing moments

= The wavelet analysis implements a multiscale version of the Laplace operator
and is perfectly reversible (one-to-one transform)

= The wavelet transform has a fast filterbank algorithm (based on FFT)

[Van De Ville, IEEE-IP, 2005]
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Laplacian-like wavelet decomposition

m Nonredundant transform

dilk] = (f, ¥ x))

dyadic sampling pattern

e @ @ @ ©

© e o eo0 ‘ first decomposition level (one-to-one)

e e @ @ © 1 .

0O e 0 ® O By(D™ x — k) V(D™ — k)
scaling functions wavelets
(dilated by 2) (dilated by 2)

S N

N O
[
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Improving shift-invariance and isotropy

Wavelet sampling patterns

m Wavelet subspace at resolution 7

W; = span {wiyk}(keZQ\Dzz) NonELedqu)dant
asis

m Augmented wavelet subspace at resolution ¢

Wj = span {w(ivk)}(kem) = Span{wiso,(@k)}(kezz) Mildly redundant
(frame)

m Admissible polyharmonic spline wavelets

= Operator-like generator: 1, () = (—A)Y/ 24y (Dx)
= More isotropic wavelet: 15, () = (—A)V/%zy(Dm)

= “Quasi-isotropic” polyharmonic B-spline  [Van De Ville, 2005]
B2(x) — Cy exp(—||z]*/(~/6))
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Building Mexican-Hat-like wavelets

Uy (@) = (—A)2 s, (22) Viso(®) = (=A)72 3y, (22)

Gaussian-like smoothing kernel: (2, (2x)

25

Mexican-Hat multiresolution analysis

m Pyramid decomposition: redundancy 4/3 Yiso(@) = (=A)"/? o, (Dar)

Dyadic sampling pattern

O @ O @ O
O O O O O
O @ O @ O

- First decomposition level:

°© 0000 P(D7 ' —k) (D (2~ k) £
Scaling functions Wavelets
(redundant by 4/3)

(U.-Van De Ville, IEEE-IP 2008)
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Wavelet analysis of fBm: whitening revisited

m Operator-like behavior of wavelet

= Analysis wavelet: 1., = (—A)2 ¢(x) = (—A)%+%w;, (x)

= Reduced-order wavelet: ¢/, (x) = (—A)%qu(m) withy' =y — (H+ %) >0

m Stationarizing effect of wavelet analysis
= Analysis of fractional Brownian field with exponent H:

(Bir. by (522)) oc (=) +4 By ot (=20)) = (W, 9, (=22))

a a

= Equivalent spectral noise shaping: Syave(€’“) = >, <74 |1Z/7(w + 27n) |2
= Extent of wavelet-domain whitening depends on flatness of Syayve(e/)

= “Whitening” effect is the same at all scales up to a proportionality factor

= fractal exponent can be deduced from the log-log plot of the variance

(Tafti et al., IEEE-IP 2009)

27

Wavelet analysis of fractional Brownian fields

Theoretical scaling law : Var{w,[k]} = o2 - a(?H+)

log-log plot of variance
He.e =031

2 2/2 4 42 8 82
Scale a

16
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Fractals in bioimaging: fibrous tissue

DDSM: University of Florida

(Digital Database for Screening Mammography)

(Laine, 1993; Li et al., 1997)
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Wavelet analysis of mammograms

log-log plot of variance
He.st =044

T 3

35r

301

logﬁ(Var{wa})
N
[6;]

20r

1ﬁ i 1 1 1 L L
V2 2 22 4 W28 82 16
Scale a

Fractal dimension: D =1+d — H = 2.56 with d =2 (topological dimension)
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Brain as a biofractal

(Bullmore, 1994)

Courtesy R. Mueller ETHZ
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Wavelet analysis of fMRI data

Brain: courtesy of Jan Kybic

Fractal dimension: D =1+4+d — H =2.65 with d =2 (topological dimension)
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...and some non-biomedical images...

H.t=0.53

2 2V2 4 142 8 8v/2 16
Scale a
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THE MARR WAVELET

= [ aplace/gradient operator Aot

= Steerable Marr wavelets

= Wavelet primal sketch

= Directional wavelet analysis

34




Complex TRS-invariant operators in 2D

= Invariance theorem
The complete family of complex, translation-, scale- and rotation-
invariant 2D operators is given by the fractional complex Laplace-
gradient operators
N
-~ (0 .0
Lo =877 (2 522)

8:131 J 81‘2

F —N /. N
" (w1 — w2)

with N e Nandy > N € R

= Key property: steerability
L, n{0}(Roz) = /N0 L, n{0}(z)

35

Simplifying the maths: Unitary Riesz mapping

m Complex Laplace-gradient operator

y—N 8 . (9 N YN
LV,N:(—A) 2 a_.iﬁ+ja_ll’2 :(—A)QR

where R =1L1, z (]wl—w2>

m Property of Riesz operator R

= R is shift- and scale-invariant
= R is rotation covariant (a.k.a. steerable)

= R is unitary
in particular, R will map a Laplace-like wavelet basis into
a complex Marr-like wavelet basis

36




Complex Laplace-gradient wavelet basis

a1 (0 0
(@) = (8% (5 + i ) 0n(D2) = R (o)
¢2(x): polyharmonic spline interpolator of order 2 > 1
D: admissible dilation matrix
= Wavelet basis functions: 9, ., () = Rt k) (2) = | det(D)["/?¢/ (D'z — D~ 'k)

" {wéi7k)}(i€Z, kez2\Dz2) forms a complex semi-orthogonal basis of Ly (R?)

VFELR?), f=3 Y (Fdlm)Uim =D, D F¥im) Yn

1€Z keZ?\DZ? 1€Z keZ?\DZ2

where {4, ,,} is the dual wavelet basis of {¢)(, , }

= The wavelet analysis implements a multiscale version of the Gradient-Laplace
(or Marr) operator and is perfectly reversible (one-to-one transform)

= The wavelet transform has a fast filterbank algorithm

[Van De Ville-U., IEEE-IP, 2008]
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Wavelet frequency responses

Laplacian-like / Mexican hat Marr pyramid (steerable)

Piso.i (W) PRe.i (W) Pt i (W)

Unitary mapping
(Riesz transform)
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Marr wavelet pyramid

m Steerable pyramid-like decomposition: redundancy 2 x %‘

0
V(@) = - A (20) (@) = 5 A, (22)

Basic dyadic sampling cell

() Yo | U1
Yo | Y3 Yo | Y3 =
¢(-/2) ¢(-/2) i =
+H
Wavelet basis Overcomplete by 1/3 39

Processing in early vision - primal sketch

m Wavelet primal sketch [Van De Ville-U., IEEE-IP, 2008]
= blurring — smoothing kernel ¢
= Laplacian filtering — A

m zero-crossings and orientation — V

segment detection and grouping — Canny edge detection scheme

Marr-like wavelet|—  Canny edge [—  wavelet
pyramid ] detector — primal sketch

o
<]

image —

e

0 o
[ ] o o
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Edge detection in wavelet domain

m Edge map (using Canny’s edge detector)

= Key visual information (Marr’s theory of vision)

Similar to Mallat’s representation from
wavelet modulus maxima [Mallat-Zhong, 1992]

... but much less redundant !

41

Iterative reconstruction

m Reconstruction from information on edge map only

= Better than 30dB PSNR

31.4dB

[Van De Ville-U., IEEE-IP, 2008]
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Wavelet-domain structure tensor

Marr wavelet pyramid - discussion

m Comparison against state-of-the-art

Steerable Complex Marr wavelet

pyramid dual-tree pyramid
Translation invariance ++ ++ ++
Steerability ++ + ++
Number of orientations 2K 6 2
Vanishing moments no yes, 1D 7]
Implementation filterbank/FFT filterbank FFT
Decomposition type tight frame frame complex frame
Redundancy 8K/3+1 4 8/3
Localization slow decay filterbank design fast decay
Analytical formulas no no yes
Primal sketch - - yes
Gradient/structure tensor - - yes

[Simoncelli, Freeman, 1995]

[Kingsbury, 2001]
[Selesnick et al, 2005]
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CONCLUSION

= Unifying operator-based paradigm
Operator identification based on invariance principles (TSR)
Specification of corresponding spline and wavelet families
Characterization of stochastic processes (fractals)

= |sofropic and steerable wavelet transforms
Riesz basis, analytical formulaes
Mildly redundant frame extension for improved TR invariance
Fractal and/or directional analyses
Fast filterbank algorithm (fully reversible)

= Marr wavelet pyramid
Multiresolution Marr-type analysis; wavelet primal sketch
Reconstruction from multiscale edge map

= |mplementation will be available very soon (Matlab)
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