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The quest for invariance
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Invariance to coordinate transformations

Primary transformations (X): translation (T), scaling (S), rotation (R),
affine (similarity) (A=S+R)

A continuous-domain operator L is X-invariant iff. it commutes with X; i.e,

∀f ∈ L2(Rd),XLf = CX · LXf CX: normalization constant

All classical physical laws are TSR-invariant

Classical signal/image processing operators are invariant
(to various extents)

Filters (linear or non-linear): T-invariant

Differentiators, wavelet transform: TS-invariant

Contour/ridge detectors (Gradient, Laplacian, Hessian): TSR-invariant

Steerable filters: TR-invariant



Invariant signals
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Natural signals/images often exhibit some degree of invariance
(at least locally, if not globally)

Stationarity, texture: T-invariance

Isotropy (no preferred orientation): R-invariance

Self-similarity, fractality: S-invariance
(Pentland 1984; Mumford, 2001)
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OUTLINE

! Splines and T-invariant operators
! Green functions as elementary building blocks
! Existence of a local B-spline basis
! Link with stochastic processes

! Imposing affine (TSR) invariance
! Fractional Laplace operator & polyharmonic splines
! Fractal processes

! Laplacian-like, quasi-isotropic wavelets
! Polyharmonic spline wavelet bases
! Analysis of fractal processes

! The Marr wavelet
! Complex Laplace/gradient operator
! Steerable complex wavelets 
! Wavelet primal sketch
! Directional wavelet analysis
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General concept of an L-spline

Cardinality: the knots (or spline singularities) are on the (multi-)integers

Generalization: includes polynomial splines as particular case (L = dN

dxN )

L{·}: differential operator (translation-invariant)
δ(x) =

∏d
i=1 δ(xi): multidimensional Dirac distribution

Definition
The continuous-domain function s(x) is a cardinal L-spline iff.

L{s}(x) =
∑

k∈Zd

a[k]δ(x− k)
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Example: piecewise-constant splines

! Spline-defining operators

! Piecewise-constant or D-spline

! B-spline function

Continuous-domain derivative: D =
d
dx

←→ jω

Discrete derivative: ∆+{·} ←→ 1− e−jω

s(x) =
∑

k∈Z
s[k]β0

+(x− k) D{s}(x) =
∑

k∈Z

∆+s(k)
︷︸︸︷
a[k] δ(x− k)

β0
+(x) = ∆+D−1{δ}(x) ←→ 1− e−jω

jω



Splines and Green!s functions
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ρ(x) δ(x)L{·} ρ(x)δ(x)
L−1{·}

(+ null-space component?)

L−1{·} s(x) =
∑

k∈Zd

a[k]ρ(x− k)
∑

k∈Zd

a[k]δ(x− k)

Formal integration

Definition
ρ(x) is a Green function of the shift-invariant operator L iff L{ρ} = δ

⇒

⇒ VL = span {ρ(x− k)}k∈Zd

Cardinal L-spline: L{s}(x) =
∑

k∈Zd

a[k]δ(x− k)

Green function = Impulse response 

Translation invariance 

Linearity 

Example of spline synthesis
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δ(x)

δ(x− x0)

ρ(x)
L−1{·}

∑

k∈Z
a[k]δ(x− k)

ρ(x− x0)

L−1{·}

L−1{·}

s(x) =
∑

k∈Z
a[k]ρ(x− k)

L = d
dx = D ⇒ L−1: integrator
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continuous-domain signal
discrete signal

(B-spline coefficients)

Existence of a local, shift-invariant basis?

! Space of cardinal L-splines

! Generalized B-spline representation

VL =




s(x) : L{s}(x) =
∑

k∈Zd

a[k]δ(x− k)




 ∩ L2(Rd)

A “localized” function ϕ(x) ∈ VL is called generalized B-spline if it gen-
erates a Riesz basis of VL; i.e., iff. there exists (A > 0, B < ∞) s.t.

A · ‖c‖!2(Zd) ≤
∥∥∥

∑
k∈Zd c[k]ϕ(x− k)

∥∥∥
L2(Rd)

≤ B · ‖c‖!2(Zd)

⇓

VL =




s(x) =
∑

k∈Zd

c[k]ϕ(x− k) : x ∈ Rd, c ∈ "2(Zd)






Link with stochastic processes
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Splines are in direct correspondence with stochastic processes 

(stationary or fractals) that are solution of the same partial 

differential equation, but with a random driving term.

References: stationary proc. (U.-Blu, IEEE-SP 2006), fractals (Blu-U., IEEE-SP 2007)

non-empty null space of L, boundary conditions

Defining operator equation: L{s(·)}(x) = r(x)

Specific driving terms

r(x) = δ(x) ⇒ s(x) = L−1{δ}(x) : Green function

r(x) =
∑

k∈Zd

a[k]δ(x− k) ⇒ s(x) : Cardinal L-spline

r(x): white Gaussian noise ⇒ s(x): generalized stochastic process



Example: Brownian motion vs. spline synthesis
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L−1{·}

Brownian motion

Cardinal spline (Schoenberg, 1946)

white noise
or

stream of Diracs

 

L = d
dx ⇒ L−1: integrator
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IMPOSING SCALE INVARIANCE

! Affine-invariant operators

! Polyharmonic splines

! Associated fractal random fields: fBms
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Scale- and rotation-invariant operators

(Duchon, 1979)

Definition: An operator L is affine-invariant (or SR-invariant) iff.

∀s(x), L{s(·)}(Rθx/a) = Ca · L{s(Rθ · /a)}(x)

where Rθ is an arbitrary d× d unitary matrix and Ca a constant

Invariant Green functions (a.k.a. RBF)

ρ(x) =

{
‖x‖γ−d log ‖x‖, if γ − d is even
‖x‖γ−d, otherwise

Invariance theorem
The complete family of real, scale- and rotation-invariant
convolution operators is given by the fractional Laplacians

(−∆)
γ
2

F←→ ‖ω‖γ



Polyharmonic splines
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[Madych-Nelson, 1990]

Explicit Shannon-like characterization

V0 =

{
s(x) =

∑

k∈Z2

s[k]φγ(x− k)

}

φγ(x): Unique polyharmonic spline interpolator s.t. φγ(k) = δk

F←→ φ̂γ(ω) =
1

1 +
∑

k∈Zd\{0}

(
‖ω‖

‖ω+2πk‖

)γ

Spline functions associated with fractional Laplace operator (−∆)γ/2

Distributional definition

s(x) is a cardinal polyharmonic spline of order γ iff.

(−∆)γ/2s(x) =
∑

k∈Z2

d[k]δ(x− k)
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Construction of polyharmonic B-splines

Discrete Laplacian:

! Polyharmonic B-splines        (Rabut, 1992)

Laplacian operator: ∆ F←→ −‖ω‖2

Discrete operator: localization filter Q(ejω)

Continuous-domain operator: L̂(ω)

∆d
F←→ −

d∑

i=1

4 sin2(ωi/2) != −‖2 sin(ω/2)‖2

0 -1 0

-1 4 -1

0 -1 0

‖2 sin(ω/2)‖γ

‖ω‖γ

F−1

−→ βγ(x)
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Polyharmonic B-splines properties

(Rabut, 1992; Van De Ville, 2005)

Condition: γ > d
2

Reproduction of polynomials
The polyharmonic B-splines {ϕγ(x − k)}k∈Zd reproduce the polynomials
of degree n = "γ − 1#. In particular,

∑

k∈Zd

ϕγ(x − k) = 1 (partition of unity)

Two-scale relation: βγ(x/2) =
∑

k∈Zd

hγ[k]βγ(x− k)

Order of approximation γ (possibly fractional)

Stable representation of polyharmonic splines (Riesz basis)

V
(−∆

γ
2 )

=




s(x) =
∑

k∈Zd

c[k]βγ(x− k) : c[k] ∈ "2(Zd)






Associated random field: multi-D fBm
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fractional integrator

(appropriate boundary conditions)

White noise fractional Brownian field

Whitening

(fractional Laplacian)

Formalism: Gelfand!s theory of generalized stochastic processes

Hurst exponent: H = γ − d
2

(Tafti et al., IEEE-IP 2009)

(−∆)−
γ
2

(−∆)
γ
2
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LAPLACIAN-LIKE WAVELET BASES

! Operator-like wavelet design

! Fractional Laplacian-like wavelet basis

! Improving shift-invariance and isotropy 

! Wavelet analysis of fractal processes
(multidimensional generalization of pioneering work 

of Flandrin and Abry)

Multiresolution analysis of L2(Rd)

20

  

  

  

  

s ∈ V(0)

s1 ∈ V(1)

Two-scale relation ⇒ V(i) ⊂ V(j), for i ≥ j

s2 ∈ V(2)

s3 ∈ V(3)

Partition of unity ⇔
⋃

i∈Z V(i) = L2(Rd)

Multiresolution basis functions: ϕi,k(x) = 2−id/2ϕ
(

x−2ik
2i

)

Subspace at resolution i: V(i) = span {ϕi,k}k∈Zd



General operator-like wavelet design
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Search for a single wavelet that generates a basis of L2(Rd) and that
is a multi-scale version of the operator L; i.e., ψ = L∗φ where φ is a
suitable smoothing kernel

General operator-based construction

Basic space V0 generated by the integer shifts of the Green function ρ of L:

V0 = span{ρ(x− k)}k∈Zd with Lρ = δ

Orthogonality between V0 and W0 = span{ψ(x− 1
2k)}k∈Zd\2Zd

〈ψ(· − x0), ρ(· − k)〉 = 〈φ, Lρ(· − k + x0)〉

= 〈φ, δ(· − k + x0)〉 = φ(k − x0) = 0

(can be enforced via a judicious choice of φ (interpolator) and x0)

Works in arbitrary dimensions and for any dilation matrix D

Fractional Laplacian-like wavelet basis
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ψγ(x) = (−∆)
γ
2 φ2γ(Dx)

φ2γ(x): polyharmonic spline interpolator of order 2γ > 1

D: admissible dilation matrix

[Van De Ville, IEEE-IP, 2005]

Wavelet basis functions: ψ(i,k)(x) ! |det(D)|i/2ψγ

(
Dix −D−1k

)

{ψ(i,k)}(i∈Z, k∈Z2\DZ2) forms a semi-orthogonal basis of L2(R2)

∀f ∈ L2(R2), f =
∑

i∈Z

∑

k∈Z2\DZ2

〈f,ψ(i,k)〉 ψ̃(i,k) =
∑

i∈Z

∑

k∈Z2\DZ2

〈f, ψ̃(i,k)〉 ψ(i,k)

where {ψ̃(i,k)} is the dual wavelet basis of {ψ(i,k)}

The wavelets ψ(i,k) and ψ̃(i,k) have &γ' vanishing moments

The wavelet analysis implements a multiscale version of the Laplace operator
and is perfectly reversible (one-to-one transform)

The wavelet transform has a fast filterbank algorithm (based on FFT)



Laplacian-like wavelet decomposition
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dyadic sampling pattern

Nonredundant transform

first decomposition level (one-to-one)

f(x)

D =

[
2 0
0 2

]

ψγ(D−1x− k)
wavelets

(dilated by 2)

βγ(D−1x− k)
scaling functions

(dilated by 2)

di[k] = 〈f, ψ(i,k)〉

Improving shift-invariance and isotropy
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Wavelet subspace at resolution i

Wi = span {ψi,k}(k∈Z2\DZ2)

Wavelet sampling patterns

Non-redundant

(basis)

Mildly redundant

(frame)

Augmented wavelet subspace at resolution i

W+
i = span

{
ψ(i,k)

}
(k∈Z2)

= span{ψiso,(i,k)}(k∈Z2)

Admissible polyharmonic spline wavelets

Operator-like generator: ψγ(x) = (−∆)γ/2φ2γ(Dx)

More isotropic wavelet: ψiso(x) = (−∆)γ/2β2γ(Dx)

“Quasi-isotropic” polyharmonic B-spline [Van De Ville, 2005]

β2γ(x) → Cγ exp(−‖x‖2/(γ/6))



Building Mexican-Hat-like wavelets
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ψγ(x) = (−∆)γ/2φ2γ(2x) ψiso(x) = (−∆)γ/2β2γ(2x)

Gaussian-like smoothing kernel: β2γ(2x)

Mexican-Hat multiresolution analysis
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ψiso(x) = (−∆)γ/2β2γ(Dx)Pyramid decomposition: redundancy 4/3

Dyadic sampling pattern

First decomposition level:

ϕ(D−1x− k)

Scaling functions

(U.-Van De Ville, IEEE-IP 2008)

ψ(D−1(x− k))
Wavelets

(redundant by 4/3)



Wavelet analysis of fBm: whitening revisited
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(Tafti et al., IEEE-IP 2009)

Operator-like behavior of wavelet

Analysis wavelet: ψγ = (−∆)
γ
2 φ(x) = (−∆)H

2 + d
4 ψ′

γ′(x)

Reduced-order wavelet: ψ′
γ′(x) = (−∆)

γ′
2 φ(x) with γ′ = γ − (H + d

2 ) > 0

Stationarizing effect of wavelet analysis

Analysis of fractional Brownian field with exponent H :

〈BH , ψγ

( ·−x0
a

)
〉 ∝ 〈(−∆)H

2 + d
4 BH , ψ′

γ′

( ·−x0
a

)
〉 = 〈W,ψ′

γ′

( ·−x0
a

)
〉

Equivalent spectral noise shaping: Swave(ejω) =
∑

n∈Zd |ψ̂′
γ(ω + 2πn)|2

⇒ Extent of wavelet-domain whitening depends on flatness of Swave(ejω)

“Whitening” effect is the same at all scales up to a proportionality factor

⇒ fractal exponent can be deduced from the log-log plot of the variance

Wavelet analysis of fractional Brownian fields

1 2 3 4 5 6 7 8
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Theoretical scaling law : Var{wa[k]} = σ2
0 · a(2H+d)
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Fractals in bioimaging: fibrous tissue 

DDSM: University of Florida

(Digital Database for Screening Mammography)

(Laine, 1993; Li et al., 1997)

Wavelet analysis of mammograms
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Fractal dimension: D = 1 + d−H = 2.56 with d = 2 (topological dimension)
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Brain as a biofractal

Courtesy R. Mueller ETHZ

(Bullmore, 1994)
1mm
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Wavelet analysis of fMRI data
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Brain: courtesy of Jan Kybic

Fractal dimension: D = 1 + d−H = 2.65 with d = 2 (topological dimension)



...and some non-biomedical images...
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THE MARR WAVELET

! Laplace/gradient operator

! Steerable Marr wavelets

! Wavelet primal sketch

! Directional wavelet analysis
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Complex TRS-invariant operators in 2D

Invariance theorem
The complete family of complex, translation-, scale- and rotation-
invariant 2D operators is given by the fractional complex Laplace-
gradient operators

Lγ,N = (−∆)
γ−N

2

(
∂

∂x1
+ j

∂

∂x2

)N

F←→ ‖ω‖γ−N (jω1 − ω2)
N

with N ∈ N and γ ≥ N ∈ R

Key property: steerability

Lγ,N{δ}(Rθx) = ejNθ Lγ,N{δ}(x)

Simplifying the maths: Unitary Riesz mapping
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Complex Laplace-gradient operator

Lγ,N = (−∆)
γ−N

2

(
∂

∂x1
+ j

∂

∂x2

)N

= (−∆)
γ
2RN

where R = L 1
2 ,1

F←→
(

jω1 − ω2

‖ω‖

)

Property of Riesz operatorR

R is shift- and scale-invariant

R is rotation covariant (a.k.a. steerable)

R is unitary
in particular,R will map a Laplace-like wavelet basis into
a complex Marr-like wavelet basis



Complex Laplace-gradient wavelet basis
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ψ′
γ(x) = (−∆)

γ−1
2

(
∂

∂x1
+ j

∂

∂x2

)
φ2γ(Dx) = Rψγ(x)

φ2γ(x): polyharmonic spline interpolator of order 2γ > 1

D: admissible dilation matrix

[Van De Ville-U., IEEE-IP, 2008]

Wavelet basis functions: ψ′
(i,k)(x) = Rψ(i,k)(x) = |det(D)|i/2ψ′

γ

(
Dix −D−1k

)

{ψ′
(i,k)}(i∈Z, k∈Z2\DZ2) forms a complex semi-orthogonal basis of L2(R2)

∀f ∈ L2(R2), f =
∑

i∈Z

∑

k∈Z2\DZ2

〈f, ψ′
(i,k)〉 ψ̃′

(i,k) =
∑

i∈Z

∑

k∈Z2\DZ2

〈f, ψ̃′
(i,k)〉 ψ′

(i,k)

where {ψ̃′
(i,k)} is the dual wavelet basis of {ψ′

(i,k)}

The wavelet analysis implements a multiscale version of the Gradient-Laplace
(or Marr) operator and is perfectly reversible (one-to-one transform)

The wavelet transform has a fast filterbank algorithm

Wavelet frequency responses
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ψ̂iso,i(ω) ψ̂Re,i(ω) ψ̂Im,i(ω)

γ = 4

Laplacian-like / Mexican hat Marr pyramid (steerable)

Unitary mapping
(Riesz transform)



Marr wavelet pyramid
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Basic dyadic sampling cell

ψ1

ψ2 ψ3

Wavelet basis

ψ1

ψ2 ψ3

Overcomplete by 1/3

ψ0

ϕ(·/2) ϕ(·/2)

ψRe(x) =
∂

∂x
∆β2γ(2x) ψIm(x) =

∂

∂y
∆β2γ(2x)

Steerable pyramid-like decomposition: redundancy 2× 4
3

Processing in early vision - primal sketch
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[Van De Ville-U., IEEE-IP, 2008]Wavelet primal sketch

blurring — smoothing kernel φ

Laplacian filtering — ∆

zero-crossings and orientation — ∇

segment detection and grouping — Canny edge detection scheme

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 11

Fig. 7. Marr-like pyramid (J = 3 decomposition levels) of the “Einstein” image.

image ! Marr-like wavelet
pyramid !!

! Canny edge
detector !!

! wavelet
primal sketch

Fig. 8. Flowchart of how to extract the “wavelet primal sketch” from the Marr-like wavelet pyramid. The Canny edge detection procedure is applied to
every subband. Real and imaginary part of the wavelet coefficients are interpreted as vertical and horizontal derivatives, respectively.

subband !

!×"

gradient
extraction

"
phase

! non-maximum
suppression

! hysteresis
thresholding

! edge
mask

#

subband
primal sketch

Fig. 9. Flowchart of how the “Canny edge detector” is applied to a subband of the Marr-like pyramid decomposition. First, the gradient is extracted by
considering real and imaginary parts of the wavelet coefficients. Then, non-maximum suppression is applied along the gradient direction, followed by hysteresis
thresholding. Finally, a complex coefficient is restored for the coefficients that are detected.

complete directional control of the transform thanks to the
steerability of the basis functions; in other words, we could as
well have extracted an angular wedge in any other direction.

B. Significance of phase and modulus

It is a well-known property of the Fourier transform that
the main perceptual information of the image is carried by
the phase of the Fourier coefficients rather than their magni-
tude. As a consequence, interchanging phase and magnitude
between two images reveals the image from which the phase
was selected. An example is shown in Fig. ?? (b), using
the “cameraman” (magnitude) and “Einstein” (phase) images.
It is informative to perform the equivalent experiment with
our complex-valued wavelet coefficients. In Fig. ?? (a), we

interchanged the phases and magnitudes of the Marr-like
wavelet pyramid of the same images. As with the Fourier
transform, the reconstruction mainly reveals the image from
which the phase was selected. However, since the wavelet
basis functions are more localized, the magnitude retains
some “diffuse” spatial content from; i.e., the halo from the
“cameraman” can be recognized as well.

C. Shift-invariance and rotation-covariance
Due to the rotation-covariance of the operator L, we know

that
Ls(Rθ·)(x) = ejθLs(Rθ·). (40)

Since the Marr-like wavelet pyramid is a multiscale version of
the operator, it should approximately maintain this property.



Edge detection in wavelet domain
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Edge map (using Canny’s edge detector)

Key visual information (Marr’s theory of vision)

Similar to Mallat!s representation from

wavelet modulus maxima [Mallat-Zhong, 1992]

... but much less redundant !

Iterative reconstruction

42

31.4dB

Reconstruction from information on edge map only

Better than 30dB PSNR

[Van De Ville-U., IEEE-IP, 2008]



Directional wavelet analysis: Fingerprint
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Wavenumber Orientation
Modulus

Modulus OrientationOrientation

γ = 2,σ = 2Wavelet-domain structure tensor

Marr wavelet pyramid - discussion
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[Simoncelli, Freeman, 1995] [Kingsbury, 2001]

[Selesnick et al, 2005]

Comparison against state-of-the-art

Steerable Complex Marr wavelet
pyramid dual-tree pyramid

Translation invariance ++ ++ ++

Steerability ++ + ++

Number of orientations 2K 6 2

Vanishing moments no yes, 1D !γ"
Implementation filterbank/FFT filterbank FFT

Decomposition type tight frame frame complex frame

Redundancy 8K/3 + 1 4 8/3

Localization slow decay filterbank design fast decay

Analytical formulas no no yes

Primal sketch - - yes

Gradient/structure tensor - - yes
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CONCLUSION

! Unifying operator-based paradigm
! Operator identification based on invariance principles (TSR)

! Specification of corresponding spline and wavelet families

! Characterization of stochastic processes (fractals)

! Isotropic and steerable wavelet transforms
! Riesz basis, analytical formulaes

! Mildly redundant frame extension for improved TR invariance

! Fractal and/or directional analyses

! Fast filterbank algorithm (fully reversible) 

! Marr wavelet pyramid
! Multiresolution Marr-type analysis; wavelet primal sketch

! Reconstruction from multiscale edge map

! Implementation will be available very soon (Matlab)
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