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The digital divide

Is continuous-domain signal processing dead ?

ia O

= Arguments in favor of its suppression:

The modern world is discrete and ruled by computers

Modern SP courses concentrate on digital signal processing
Most processing is discrete
Students don't like the Laplace transform...
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The digital divide (Cont’d)

= However...

Most real-world objects, phenomena or signals __
are continuous

Often, the end product/goal is analog
Don’t forget the interface: A-to-D and D-to-A

Many discrete algorithms require “continuous” thinking
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Part of scientific computing is ...

Think analog, act digital !




OUTLINE

= Introduction
= Cardinal-spline formalism

= Ten+ good reasons for using B-splines
Computational
Theoretical
Conceptual
Practical

= Application examples in image processing
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Basic interpolation problem

Find an interpolating function s(z), xz € R such that
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Splines: a unifying framework

Linking the discrete and the continuous .....
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IEEE Signal Processing Magazine

©Annette Unser

Splines

A Perfect Fit for Signal and Image Processing

November 1999




CARDINAL SPLINE FORMALISM

= Distributional definition: L-splines

= Basic atoms
= Polynomial B-splines n

1-9

General concept of an L-spline

L{-}: differential operator (translation-invariant)
d(x) = Hle d(x;): multidimensional Dirac distribution

Definition
The continuous-domain function s(x) is a cardinal L-spline iff.

L{s}(x) = > alk]é(z — k)

kezd

= Cardinality: the knots (or spline singularities) are on the (multi-)integers
= ideal framework for signal processing
= Generalization: includes polynomial splines as particular case (L = (ﬁE—NN)
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Example: piecewise-constant splines

= Spline-defining operators

d
Continuous-domain derivative: Dzd— — Jw
i

Discrete derivative: A, {} «— 1—¢e ¥

= Piecewise-constant or D-spline Ao
+S k

 s(2) = 3 sk (= — k) Dis}e) =Y Al é(z — k)
keZ keZ
H— > I f ? ¥ >
I
= B-spline function
A 1 — e—dw
| B (2) = Ay D™ {5} (=) -

Existence of a local, shift-invariant basis?

® Space of cardinal L-splines

Vi = {s(:c) Li{shz) = Y alkl(z k)} N Ly(RY)

kczd

= Generalized B-spline representation

A “localized” function ¢(x) € V1, is called generalized B-spline if it gen-
erates a Riesz basis of V7; i.e., iff. there exists (A > 0, B < o0) s.t.

A Nelleyqzay < || Sneza clllo(@ — k)

<B-
Lo(Rd) — ||C\|e2(zd)

J
Vi = {s<w> =" clklp(x —k) iz R c € €2<Zd>}
kczd \\

: L discrete signal
continuous-domain signal

(B-spline coefficients)
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Polynomial B-splines

dnt!
= B-spline of degree n '| L=
FL(z) = By By # - B (x)
) (n+ 17times ’
& % ] 5 3 > .
P () = { é ofihir\[:/)i,sle).

m Key properties
= Riesz basis generator for the cardinal polynomial splines

= Shortest polynomial spline of degree n

= Symmetric B-spline
5 (@)= B (w+ 25)

B-spline representation of images

m Symmetric, tensor-product B-splines
Bz, ,xq) = 0" (1) X oo X B (xg) wep

02

o

8d’l’b+d 02

L =
ozt 9t

08

= Multidimensional spline function

sy, aa)= Y |elknyeee k] B (21— ki, ,2q— ka)
(k1,--kq)EZd \
continuous-space image image array Compactly supported
(B-spline coefficients) basis functions
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TEN REASONS FOR USING SPLINES

= Mathematical elegance

= Fast algorithms

= Approximation theory

= Link with theory

1. B(eautiful) basis functions

m Polynomial B-splines (centered)

n+1l,..n
_A x

8'() = Loy = (8 070 @)

m Attractive properties for image processing 2

= Compact support: shortest polynomial spline of degree n

Symmetry

Positivity

Controlled smoothness: Holder-continuous of order n

Bell-shaped (optimal space-frequency localization)
2

n 1 —Z ; n
B(x) = o ep(gy)  withoy, = /3

Reference: (Schoenberg, 1946)
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2. Fast digital-filtering algorithms

All classical spline interpolation and approximation problems
can be solved efficiently using recursive digital filtering

m Interpolation problem
Given the signal samples f[k], find the B-spline coefficients c[k] such that

[(@)|omr = fK] = > clkilo(k — k1)

k1 €7ZP

= Inverse filtering solution
fIK] olk] = (hiwe * )] With  Hine(2) = B%Z) - ;(k)z_k
€7Zp

— Digital filter ——

Note: p(x) separable = hiu[k] separable

Reference: B-spline signal processing (Unser, IEEE-SP 1993) 17

Example: cubic-spline interpolation

m Cubic B-spline

2—3lz?2—z]), 0< |zl <1

p(z) = B(x) = ¢ §(2- |z, 1< 2| <2
0, otherwise
4 -1
m Discrete B-spline kernel: B(z) = H%

m Interpolation filter
_a)? _
6 = (1=a) z hing[k] = (1 a> alk!
14+«

a=-2++3=-0.171573

Cascade of first-order recursive filters

» 1 1 »

1—az! 1—az

causal anti-causal

z4+4+271 (1—az)(l—azl)
(symmetric exponential)
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3. Simple manipulations

The polynomial spline family is closed with respect to differentiation

m Derivative operator

Df(r) = 41

m Finite-difference operator (centered)

Af(z) = fla+3) - flz—1)

m Derivative of a B-spline (exact)

Reduction of degree

Discrete operator

Reference: (Schoenberg, 1946)

4. Link with system theory: C-to-D converters

Exponential B-splines = the mathematical translators between
continuous-time and discrete-time LS| system theories

Continuous domain
- differential equations
- circuits, analog filters
- Laplace transform:

2eros
Hle(S_’Ym)
Ho(s) = —=2
=T (s )

Discrete domain

- difference equations
- digital filters

- z-transform:

mapping: z, = e“"

Associated B-spline: 35(t) = £7! { Ho(s) } (1)

HD(€S>

Reference: “Think analog, act digital” (Unser, IEEE-SP 2006) 1-20




Example: 1st order system

Continuous-time impulse response

‘ et >0 c 1
ho(t) =14(t) - e = T H =
1st-order exponential B-spline
_ _ Balt)
Discrete-time counterpart
z 1 et
hD[kj]:hc(l{j) «—> HD(Z): po— [\'\\‘;;;; t

.. “]ITT-

400
ho(t) = 10(t) - e = e Bo(t —k) = > hplk] Balt — k)
/ k=0 keZ /

Continuous-time signal Compactly-supported basis functions
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5. Best cost-performance tradeoff

Polynomial B-splines have

- maximum order of approximation for a minimum support (MOMS)
- a low asymptotic approximation constant.

This explains their superior performance in imaging applications.

m Approximation of a function at scale a W
Va(p) = {sa(x):Zc[k]go (g—k:) :0662} AAVANVA VA NEREN

keZ a 2a 3a 4a

Definition: A generating function ¢ has order of approximation ~ iff.

vfeWs, arg min |If = sallz, < Cy a7 IF L,

a

2¢(27)

m (3"(x) has order of approximation v = n + 1 and C., jin = o

Reference: (Strang-Fix, 1973; Blu-U., IEEE-SP 1999) 1-22




Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins !

Bilinear Windowed-sinc Cubic spline
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- L] - L] -
High-quality image interpolation

35
% 1 Bspline(6)
= J
% 30 — Bspline(5)
§ i Bspline(4)
<
& . Bspline(3)
E J
=
CE Bspline(2)
& 254 4, Schaum(2) [1993] Meijering(7) [1999] A
"
ke 1 % Keys [1981] A Meijering(5) [1999]
g i Schaum(3) [1993
§ IIIIIIIII
o -
e

: Dod; 1997
E i A odgson [ 1
3 20
& A\ Linear
a J
5
= i
Sinc Hamming(4) A
A Nearest-neighbor A
] o German [1997]
15
T T T T T T T T
0.0 02 0.4 0.6 0.8 10 12 14

Execution time (s rot l)

Thévenaz et al., Handbook of Medical Image Processing, 2000
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6. Link with wavelet theory

Polynomial B-splines have remarkable dilation properties.
They play a fundamental role in wavelet theory.

m Generalized Lego™/Duplo™ relation

. O
» ’
’ a2 B9 (2/2) = A (x) + B2 (x — 1)

B-spline dilation property: (3% (x/2) = Z hy (k)8 (x — k)
kEZ

N . 1 & n+1\ _, 1 _\n4l
Binomial filter: HJ(z) = o Z T (1+271)
k=0
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B-spline factorization theorem

Theorem: A valid scaling function ¢ () has order of approximation - iff.

p(x) = (8L * po) ()

where 3¢ with a = v — 1: regular, B-spline part

o € S’:irregular, distributional part

/ N

/o /N
[ N = N

(U.-Blu, IEEE-SP, 2003)
|

I

1+ 271\" . .
e = (F5) - e with [ Q(e)] < +oc
v distributional part
spline part

m Refinement filter: general case
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Splines: the key to wavelet theory

Sobolev smoothness
0°p € Lo

Uvzs

Multi-scale differentiator

B-spline factorization: Approximation order:

o =B1"%p = | If = Paflle, =0@) | | d(w) x (—jw)?, w — 0

U 'ﬂ‘ generalcase: N <y < N +1
compact support: v = N + 1 (Strang-Fix)

Polynomial reproduction
degree: N = [y —1]

g

Vanishing moments:
/x"i(m)dx =0, n=0,---,N

Reference: Wavelet theory demystified (Unser-Blu, IEEE-SP, 2003) 1-27
7. Link with regularization theory
Spline estimators are optimal from a variational point of view.
. SmOOthing'Sp"ne estimator Continuous-domain estimate:
Discrete, noisy input: s(a;) _ Z c[k]ﬂ”(a: . k:)

f[k] = sref(k) +noise —, Smoothing =~
algorithm

Theorem: The solution (among all functions) of the smoothing-spline problem

400

gg;{Dﬁk] —sP+A [ D) dx}

keZ
is a cardinal spline of degree 2m — 1. In addition, its coefficients c[k] = hy * f[k]
can be obtained by suitable digital filtering of the input samples f[].

References: theory (Schoenberg, 1964), recursive filtering algorithm (Unser, 1993)
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Courtesy of Carl de Boor

8. Link with Shannon’s sampling theory

The Hilbert-space formulation of polynomial spline approximation
provides an extension of Shannon’s classical sampling theorem.

= Polynomial spline interpolator . o
Impulse response Frequency response 1 2
X . 2 n+1 . "
fule) o e = () e
Br(w)

= Asymptotic property

The cardinal-spline interpolators converge to the sinc interpolator (ideal filter) as the
degree goes to infinity:

o oy w ) . )
nh_)n;o o (z) = sine(x), nh_)n;o i (w) = rect (27T (inall L,-norms)

References: (Schoenberg, 1973; Unser, Proc. IEEE, 2000) 1-30




Splines and stochastic processes

Splines are in direct correspondence with stochastic processes
(stationary or fractals) that are solution of the same partial
differential equation, but with a random driving term.

Defining operator equation: L{s(:)}(x) = r(x)
m Specific driving terms
w r(x) = () = s(x) =L~ '{d}(x) : Green function

s r(x) = Z alk]o(x — k) = s(x) : Cardinal L-spline
kezd

= 7(x): white noise = s(x): generalized stochastic process

& non-empty null space of L, boundary conditions

References: stationary proc. (Unser, IEEE-SP 2006), fractals (Blu, IEEE-SP 2007) 5

Example: Brownian motion synthesis

L=< = L~!:integrator

r(x) =w(r) — L_l{.} — s(x)

white Gaussian noise _
Brownian motion

(Wiener, 1926)
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Example: going fractional (fBm)
L <& (jw)H+: = L~ fractional integrator
r(x) =w(r) — L_l{.} — s(z)

white Gaussian noise

fractional Brownian motion
H=0.10

1 1 1 L 1
0 50 100 150 200 250
X

L 1 L - 1
300 350 400 450 500

fractional B-splines (2000)

(Mandelbrot, 1968)
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Example: Compound Poisson process (sparse)
L=< = L~!:integrator
r(x) = Zaké(x —Tp) —» L—l{.} — s(z)
k

random stream of Diracs Compound Poisson process

Random jumps with rate A\ (Poisson point process)

Jump size distribution: a -~ dP(a)

(Paul Lévy, 1934)




2D generalization: the Mondrian process
L=D,D, <= (jwa)(jw,)
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10. Link with estimation theory

Smoothing splines are minimum-mean-square-error estimators
(e.g., hybrid Wiener filters) for a corresponding class
of stochastic processes (stationary and fractal)

= Measurement model:  f[k] = s(x)|,_, + n[k]

m s(x): realization of a Gaussian stationary or fractal (fBm) process s.t.
E[Ls(x1) - Ls(xa)] = 02 6(x1 — x2) (whitening operator L)
= n|k]: white Gaussian noise with variance o

m MMSE spline estimator of signal s(x): o1-1(x): L*L-spline generator

Els(x)|f] = Z (hx = [)[k] prov(z — k) hlk]: smoothing spline filter
d

her A\ = 02 /02 regularization factor

References: stationary proc. (Unser, IEEE-SP 2006), fBm (Blu, IEEE-SP 2007) 136




... ADDITIONAL ONES ...

= Attractive Hilbert-space framework for
continuous/discrete signal and image processing

= Splines are “m times” better than Daubechies
wavelets

= Polynomial splines can be extended to fractional
(and even complex) exponents

= Scale invariance and link with fractals (polynomial
and fractional splines)

= (Generalized (non-stationary) wavelet bases
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Splines and biomedical imaging

Image processing task

Tomographic
reconstruction

Specific operation

« Filtered backprojection
* Fourier reconstruction
« Iterative techniques

Imaging modality

Commercial CT (X-rays)
EM

PET, SPECT
Dynamic CT, SPECT, PET

* Projective mapping
* Aspect ratio, tilt
« Magnetic field distortions

* 3D +time
Sampling grid * Polar-to-cartesian coordinates Ultrasound (endovascular)
conversion + Spiral sampling Spiral CT, MRI
* k-space sampling MRI
* Scan conversion
Visualization 2D operations
* Zooming, panning, rotation All
* Re-sizing, scaling
* Stereo imaging Fundus camera
* Range, topography oCcT
3D operations
* Re-slicing CT, MRI, MRA
* Max. intensity projection
* Simulated X-ray projection
Surface/volume rendering
* Iso-surface ray tracing CT
« Gradient-based shading MRI
« Stereogram
Geometrical correction * Wide-angle lenses Endoscopy

C-Arm fluoroscopy
Dental X-rays
MRI

Registration

* Motion compensation

* Image subtraction

* Mosaicking

« Correlation-averaging

« Patient positioning

* Retrospective comparisons

fMRI, fundus camera
DSA

Endoscopy, fundus camera,

EM microscopy
Surgery, radiotherapy

« Differential geometry

. L R CT/PET/MRI
* Multi-modality imaging
« Stereotactic normalization
* Brain warping
Feature detection « Contours All
* Ridges

Contour extraction
* Snakes and active contours

MRI, Microscopy (cytology)
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Spline approximation: LS resizing

Approximation at arbitrary scales: differential approach using splines

a=1—10

Minimum error approximation (orthogonal projection)

fa(z) = argmin || f(z) — > calklB(@/a = k)12, @)

keZ
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Application: image resizing

m Resizing algorithm
Interpolation
Linear splines

scaling= 70%

SNR=22.94 dB




Application: image resizing (LS)

m Resizing algorithm
Orthogonal projector
Linear splines

scaling= 70%

RI@AR/R)

SNR=28.359 dB

+5.419 dB

(Munoz et al., IEEE Trans. Imag. Proc, 2001)

Elastic registration problem

Find a diffeomorphism (warping): @ — g(x) suchthat fs( g(x) ) =~ fr(x)

= fs(x): source image
= fp(x): target image (or reference)

= g(x) = g(x|®): parametric deformation map

m Problem constraints

= Similarity measure to compare images
= Smooth deformation field (regularization)
= Parametric model (for better efficiency)

= Optional specification of landmarks: azén) — :z:(T”)
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Cubic-spline deformation map

Transformed image: fs (g(x|©},))

Deformation map: g(xz|®;) = <g1g;> - k%zjz (Z; {:D F (% a k)

g2

= Parametric model (control points)
C)h - ("' 7cl[k7l]7c2[k7l]"")

N
[
2

Resolution controlled by mesh size h

i
S wSEEEREN

= Smooth deformation (cubic splines)

Emn
gass

Rich variety of spatial mappings,
including rigid body, affine, etc.

H

.
-
Ra=
-+
mi
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Registration as an optimization problem

fS(w) - fS <g(w|®opt)) where ®opt = arg m®in {Ereg(f87 fTu @)}

Ereg(fSa fT7 6) — Eimage(fS7 fTa G)) + Erough(e) + Elandmark(@)

= Least-squares similarity criterion
Eimage(fSa fT7 ®) - Z ’fS(g(k’(-))) - fT[k]|2
k
= Vector-spline roughness penalty

2
Erough(@) — >\div V div g(%‘@)”

2
L) + Aot ||V Tot g(sc\@)HLQ(RQ)

(n) (n)
S

» Landmark contraints: x — T

A ZN (n) (n)]|
Elandmark((-)) — N Hg(XS |®) — X7
n=1
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UnwarpdJ: Implementation details
= Continuous image representation
- cubic splines

= Consistent implementation
- analytical derivatives
- multilevel B-spline discretization

= Quasi-Newton optimization

- exact gradient of criterion T;g§§f=2;§><256 T -
. . Flx/knot: 32x3Z2 4 1T |
= Full multiresolution strategy E: 23.055 4+
- coarse-to-fine on images B ‘\\ \\ |
- coarse-to-fine on deformation } } |
[ 1]
[] L1
[
H

CONCLUSION

= B-splines are attractive computationally
Simple to manipulate; smooth and well-behaved
Fast recursive filtering algorithms (O(1) per sample)
Multiresolution properties (pyramid, multigrid, wavelets)

= Splines: a unifying conceptual framework
Approximation theory
Link with wavelet theory
Signals and systems, sampling theory
Stochastic processes; regularization and estimation theories

= Practical Hilbert-space framework (SP counterpart of FE) for
continuous/discrete image processing
“Think analog, act digital”
Toolbox: digital filters, convolution operators

Flexibility: piecewise-constant to bandlimited
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