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The digital divide

! Arguments in favor of its suppression:
! The modern world is discrete and ruled by computers
! Modern SP courses concentrate on digital signal processing
! Most processing is discrete
! Students donʼt like the Laplace transform...

2

Is continuous-domain signal processing dead ?
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! However…

The digital divide (Contʼd)

3

! Most real-world objects, phenomena or signals
are continuous

! Often, the end product/goal is analog
! Donʼt forget the interface: A-to-D and D-to-A
! Many discrete algorithms require “continuous” thinking  

Are continuous mathematics obsolete ?
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Part of scientific computing is ...

4

Think analog, act digital !
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OUTLINE
! Introduction
! Cardinal-spline formalism
! Ten+ good reasons for using B-splines

! Computational
! Theoretical
! Conceptual
! Practical

! Application examples in image processing
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Basic interpolation problem

s(x) is piecewise-polynomial, continuous, ...

Find an interpolating function s(x), x ∈ R such that

s(k) = f [k], k ∈ Z

s(x) =
�

k∈Z
f [k]ϕint(x− k)c[k]ϕ(x− k)
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Splines: a unifying framework
Linking the discrete and the continuous …..

Splines

      WaveletsMultiresolution        
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CARDINAL SPLINE FORMALISM
! Distributional definition: L-splines
! Basic atoms
! Polynomial B-splines
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General concept of an L-spline

L{·}: differential operator (translation-invariant)
δ(x) =

�d
i=1 δ(xi): multidimensional Dirac distribution

Definition
The continuous-domain function s(x) is a cardinal L-spline iff.

L{s}(x) =
�

k∈Zd

a[k]δ(x− k)

Cardinality: the knots (or spline singularities) are on the (multi-)integers
⇒ ideal framework for signal processing

Generalization: includes polynomial splines as particular case (L = dN

dxN )
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Example: piecewise-constant splines

■ Spline-defining operators

■ Piecewise-constant or D-spline

■ B-spline function

Continuous-domain derivative: D =
d
dx

←→ jω

Discrete derivative: ∆+{·} ←→ 1− e−jω

s(x) =
�

k∈Z
s[k]β0

+(x− k) D{s}(x) =
�

k∈Z

∆+s(k)
����
a[k] δ(x− k)

β0
+(x) = ∆+D−1{δ}(x) ←→ 1− e−jω

jω
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continuous-domain signal discrete signal
(B-spline coefficients)

Existence of a local, shift-invariant basis?
■ Space of cardinal L-splines

■ Generalized B-spline representation

VL =




s(x) : L{s}(x) =
�

k∈Zd

a[k]δ(x− k)




 ∩ L2(Rd)

A “localized” function ϕ(x) ∈ VL is called generalized B-spline if it gen-
erates a Riesz basis of VL; i.e., iff. there exists (A > 0, B < ∞) s.t.

A · �c��2(Zd) ≤
���

�
k∈Zd c[k]ϕ(x− k)

���
L2(Rd)

≤ B · �c��2(Zd)

⇓

VL =




s(x) =
�

k∈Zd

c[k]ϕ(x− k) : x ∈ Rd, c ∈ �2(Zd)





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Polynomial B-splines

! !…
1 2 3 4 5

1

β0
+(x) =

�
1, x ∈ [0, 1)
0, otherwise.

!2 !1 1 2

1

Symmetric B-spline
βn(x) = βn

+

�
x + n+1

2

�

B-spline of degree n

βn
+(x) = β0

+ ∗ β0
+ ∗ · · · ∗ β0

+� �� �
(n + 1) times

(x)

Key properties

Riesz basis generator for the cardinal polynomial splines

Shortest polynomial spline of degree n

L =
dn+1

dxn+1

1-

continuous-space image image array
(B-spline coefficients)

Compactly supported
basis functions

B-spline representation of images
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! Symmetric, tensor-product B-splines
βn(x1, · · · , xd) = βn(x1)× · · ·× βn(xd)

! Multidimensional spline function

s(x1, · · · , xd) =
�

(k1,···kd)∈Zd

c[k1, · · · , kd] βn(x1 − k1, · · · , xd − kd)

L =
∂dn+d

∂xn+1
1 · · · ∂xn+1

d
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TEN REASONS FOR USING SPLINES

! Mathematical elegance
! Fast algorithms
! Approximation theory
! Link with <your favorite> theory

...

1-

1. B(eautiful) basis functions

16

!2 !1 1 2

1
Polynomial B-splines (centered)

βn(x) =
∆n+1xn

+

(n + 1)!
= (β0 ∗ βn−1)(x)

Reference: (Schoenberg, 1946)

Attractive properties for image processing

Compact support: shortest polynomial spline of degree n

Symmetry

Positivity

Controlled smoothness: Hölder-continuous of order n

Bell-shaped (optimal space-frequency localization)

βn(x)→ 1√
2πσn

exp(
−x2

2σ2
n

) with σn =
�

n+1
12
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2. Fast digital-filtering algorithms
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Digital filter
f [k] c[k] = (hint ∗ f)[k] with Hint(z) =

1
B(z)

=
1�

k∈Zp ϕ(k)z−k

Note: ϕ(x) separable ⇒ hint[k] separable

All classical spline interpolation and approximation problems
can be solved efficiently using recursive digital filtering

Interpolation problem

Given the signal samples f [k], find the B-spline coefficients c[k] such that

f(x)|x=k = f [k] =
�

k1∈Zp

c[k1]ϕ(k − k1)

Reference: B-spline signal processing (Unser, IEEE-SP 1993)

⇒ Inverse filtering solution
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Example: cubic-spline interpolation
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B-spline interpolation

bn
1 [k] = βn(x)|x=k

z←→ Bn
1 (z) =

�n/2��

k=−�n/2�

βn(k)z−k

f [k] =
�

k∈Z
c[l] βn(x− l)|x=k = (bn

1 ∗ c) [k] ⇒ c[k] = (bn
1 )−1 ∗ f [k]

(bn
1 )−1 [k] z←→ 6

z + 4 + z−1
=

(1− α)2

(1− αz)(1− αz−1)
1

1− αz−1

1
1− αz

7

B-spline interpolation

bn
1 [k] = βn(x)|x=k

z←→ Bn
1 (z) =

�n/2��

k=−�n/2�

βn(k)z−k

f [k] =
�

k∈Z
c[l] βn(x− l)|x=k = (bn

1 ∗ c) [k] ⇒ c[k] = (bn
1 )−1 ∗ f [k]

(bn
1 )−1 [k] z←→ 6

z + 4 + z−1
=

(1− α)2

(1− αz)(1− αz−1)
1

1− αz−1

1
1− αz

7

Cascade of first-order recursive filters

causal anti-causal

1/6 1/6

4/6

(symmetric exponential)

Interpolation filter

6
z + 4 + z−1

=
(1− α)2

(1− αz)(1− αz−1)
z←→ hint[k] =

�
1− α

1 + α

�
α|k|

α = −2 +
√

3 = −0.171573

Discrete B-spline kernel: B(z) =
z + 4 + z−1

6

Cubic B-spline

ϕ(x) = β3(x) =






2
3 −

1
2 |x|2(2− |x|), 0 ≤ |x| < 1

1
6 (2− |x|)3, 1 ≤ |x| < 2
0, otherwise
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Discrete operator
Reduction of degree

!2 !1 1 2

!2
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Example: cubic B-spline

3. Simple manipulations

19

Dmβn(x) = ∆mβn−m(x)

Derivative of a B-spline (exact)

Derivative operator

Df(x) = df(x)
dx

Finite-difference operator (centered)

∆f(x) �= f(x + 1
2 )− f(x− 1

2 )

The polynomial spline family is closed with respect to differentiation

Reference: (Schoenberg, 1946)
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4. Link with system theory: C-to-D converters

20

Exponential B-splines = the mathematical translators between 
continuous-time and discrete-time LSI system theories

poles

zeros

Continuous domain
 - differential equations
 - circuits, analog filters

Discrete domain
 - difference equations
 - digital filters

 - Laplace transform:  - z-transform:

mapping: zn = eαn

Reference: “Think analog, act digital” (Unser, IEEE-SP 2006)

HC(s) =
�M

m=1(s− γm)
�N

n=1(s− αn)
HD(z) =

1
�N

n=1(z − zn)

Associated B-spline: β�α(t) = L−1

�
HC(s)
HD(es)

�
(t)
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Example: 1st order system
■ Continuous-time impulse response

■ Discrete-time counterpart

21

Discrete-time signal

Continuous-time signal Compactly-supported basis functions

! 

1

βα(t)

eα

t

1st-order exponential B-spline

hC(t) = 1+(t) · eαt =
+∞�

k=0

eαkβα(t− k) =
�

k∈Z
hD[k] βα(t− k)

hD[k] = hC(k) z←→ HD(z) =
1

z − eα

hC(t) = 1+(t) · e
αt =

�
e
αt

, t ≥ 0
0, t < 0

L←→ HC(s) =
1

s− α

1-

5. Best cost-performance tradeoff
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Polynomial B-splines have
 - maximum order of approximation for a minimum support (MOMS) 
 - a low asymptotic approximation constant.
This explains their superior performance in imaging applications.

Reference: (Strang-Fix, 1973; Blu-U., IEEE-SP 1999)

a 2a 3a 4a

βn(x) has order of approximation γ = n + 1 and Cγ,min =
√

2ζ(2γ)

(2π)γ

Approximation of a function at scale a

Va(ϕ) =

�
sa(x) =

�

k∈Z
c[k]ϕ

�x

a
− k

�
: c ∈ �2

�

Definition: A generating function ϕ has order of approximation γ iff.

∀f ∈ W γ
2 , arg min

sa∈Va

�f − sa�L2 ≤ Cγ · aγ · �f (γ)�L2
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Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins !

Truncated sinc Cubic splineTruncated sinc Cubic spline

Bilinear Windowed-sinc Cubic spline

1-24

High-quality image interpolation

Thévenaz et al., Handbook of Medical Image Processing, 2000

35

30

25

20

15

Le
na

 2
56

 x
 2

56
, r

ot
at

io
n 

15
 x

 2
4°

, c
en

tra
l 1

28
 x

 1
28

 S
N

R
 (d

B
)

1.41.21.00.80.60.40.20.0
Execution time (s rot-1)

Bspline(2)

Bspline(4)

Bspline(5)

Bspline(3)

Bspline(6)

German [1997]
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6. Link with wavelet theory

25

β0
+(x/2) = β0

+(x) + β0
+(x− 1)

Polynomial B-splines have remarkable dilation properties.
They play a fundamental role in wavelet theory.

B-spline dilation property: βn
+(x/2) =

�

k∈Z
h

n
2 [k]βn

+(x− k)

Binomial filter: H
n
2 (z) =

1
2n

n+1�

k=0

�
n + 1

k

�
z
−k =

1
2n

�
1 + z

−1
�n+1

! Generalized Lego™/Duplo™ relation
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B-spline factorization theorem

! 

"=

spline part
distributional part

H(z) =
�

1 + z
−1

2

�γ

� �� �
· Q(z)� �� � with |Q(ejω)| < +∞

! Refinement filter: general case

(U.-Blu, IEEE-SP, 2003)

Theorem: A valid scaling function ϕ(x) has order of approximation γ iff.

ϕ(x) =
�
βα

+ ∗ ϕ0

�
(x)

where βα
+ with α = γ − 1: regular, B-spline part

ϕ0 ∈ S�: irregular, distributional part
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Splines: the key to wavelet theory
Sobolev smoothness

       

B-spline factorization:
   

Approximation order:
    !

  c

! !

!
Multi-scale differentiator

    !

∂sϕ ∈ L2

γ ≥ s

ˆ̃ψ(ω) ∝ (−jω)γ , ω → 0ϕ = βγ−1
+ ∗ ϕ0 �f − Paf�L2 = O(aγ)

Polynomial reproduction
degree: N = �γ − 1�

Vanishing moments:�
xnψ̃(x)dx = 0, n = 0, · · · , N

compact support: γ = N + 1 (Strang-Fix)

general case: N < γ ≤ N + 1

Reference: Wavelet theory demystified (Unser-Blu, IEEE-SP, 2003)
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7. Link with regularization theory
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! Smoothing-spline estimator

Smoothing 
algorithm

Discrete, noisy input:

References: theory (Schoenberg, 1964), recursive filtering algorithm (Unser, 1993)

f [k] = sref(k) + noise
s(x) =

�

k∈Z
c[k]βn(x− k)

Spline estimators are optimal from a variational point of view.

Continuous-domain estimate:

Theorem: The solution (among all functions) of the smoothing-spline problem

min
s(x)

�
�

k∈Z
|f [k]− s(k)|2 + λ

� +∞

−∞
|Dms(x)|2dx

�

is a cardinal spline of degree 2m− 1. In addition, its coefficients c[k] = hλ ∗ f [k]
can be obtained by suitable digital filtering of the input samples f [k].
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Courtesy of Carl de Boor
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8. Link with Shannonʼs sampling theory

Impulse response Frequency response

References: (Schoenberg, 1973; Unser, Proc. IEEE, 2000)

+!

1

2

0.5 1 1.5 2

1

0.5

π 2π 3π 4π

! Polynomial spline interpolator

! Asymptotic property

ϕn
int(x) F←→ ϕ̂n

int(ω) =
�

sin(ω/2)
ω/2

�n+1

� �� �
β̂n(ω)

H
n
int(e

jω)

The Hilbert-space formulation of polynomial spline approximation 
provides an extension of Shannonʼs classical sampling theorem.

The cardinal-spline interpolators converge to the sinc interpolator (ideal filter) as the
degree goes to infinity:

lim
n→∞

ϕn
int(x) = sinc(x), lim

n→∞
ϕ̂n

int(ω) = rect
� ω

2π

�
(in all Lp-norms)



Splines and stochastic processes
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Splines are in direct correspondence with stochastic processes 
(stationary or fractals) that are solution of the same partial 
differential equation, but with a random driving term.

References: stationary proc. (Unser, IEEE-SP 2006), fractals (Blu, IEEE-SP 2007)

non-empty null space of L, boundary conditions

Defining operator equation: L{s(·)}(x) = r(x)

Specific driving terms

r(x) = δ(x) ⇒ s(x) = L−1{δ}(x) : Green function

r(x) =
�

k∈Zd

a[k]δ(x− k) ⇒ s(x) : Cardinal L-spline

r(x): white noise ⇒ s(x): generalized stochastic process

Example: Brownian motion synthesis 
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Brownian motion
white Gaussian noise

 

fBm; H = 0.50

(Wiener, 1926)

s(x)

L = d
dx ⇒ L−1: integrator

L−1{·}r(x) = w(x)



Example: going fractional (fBm)
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(Mandelbrot, 1968)

fractional Brownian motion
white Gaussian noise

s(x)L−1{·}

fractional B-splines (2000)

r(x) = w(x)

L F←→ (jω)H+ 1
2 ⇒ L−1: fractional integrator

Poisson; H = 0.50

Example: Compound Poisson process (sparse)

34

(Paul Lévy, 1934)

 

Jump size distribution: a � dP (a)

Random jumps with rate λ (Poisson point process)

Compound Poisson process

s(x)

L = d
dx ⇒ L−1: integrator

L−1{·}

random stream of Diracs

r(x) =
�

k

akδ(x− xk)
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2D generalization: the Mondrian process

35

λ = 30

L = DxDy
F←→ (jωx)(jωy)

1-

10. Link with estimation theory

36

Smoothing splines are minimum-mean-square-error estimators 
(e.g., hybrid Wiener filters) for a corresponding class
of stochastic processes (stationary and fractal)

References: stationary proc. (Unser, IEEE-SP 2006), fBm (Blu, IEEE-SP 2007)

ϕL∗L(x): L∗L-spline generator

hλ[k]: smoothing spline filter

λ = σ2/σ2
0 : regularization factor

Measurement model: f [k] = s(x)|x=k + n[k]

s(x): realization of a Gaussian stationary or fractal (fBm) process s.t.

E [Ls(x1) · Ls(x2)] = σ2
0 δ(x1 − x2) (whitening operator L)

n[k]: white Gaussian noise with variance σ2

MMSE spline estimator of signal s(x):

E [s(x)|f ] =
�

k∈Zd

(hλ ∗ f)[k]ϕL∗L(x− k)
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... ADDITIONAL ONES ...
! Attractive Hilbert-space framework for

continuous/discrete signal and image processing
! Splines are “! times” better than Daubechies 

wavelets
! Polynomial splines can be extended to fractional 

(and even complex) exponents
! Scale invariance and link with fractals (polynomial 

and fractional splines)
! Generalized (non-stationary) wavelet bases
!       ...
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Splines and biomedical imaging
Image processing task Specific operation Imaging modality

Tomographic
reconstruction

• Filtered backprojection
• Fourier reconstruction
• Iterative techniques
• 3D + time

Commercial CT (X-rays)
EM
PET, SPECT
Dynamic CT, SPECT, PET

Sampling grid
conversion

• Polar-to-cartesian coordinates
• Spiral sampling
• k-space sampling
• Scan conversion

Ultrasound (endovascular)
Spiral CT, MRI
MRI

2D operations
• Zooming, panning, rotation
• Re-sizing, scaling

All

• Stereo imaging
• Range, topography

Fundus camera
OCT

3D operations
• Re-slicing
• Max. intensity projection
• Simulated X-ray projection

CT, MRI, MRA

Visualization

Surface/volume rendering
• Iso-surface ray tracing
• Gradient-based shading
• Stereogram

CT
MRI

Geometrical correction • Wide-angle lenses
• Projective mapping
• Aspect ratio, tilt
• Magnetic field distortions

Endoscopy
C-Arm fluoroscopy
Dental X-rays
MRI

Registration • Motion compensation
• Image subtraction
• Mosaicking
• Correlation-averaging
• Patient positioning
• Retrospective comparisons
• Multi-modality imaging
• Stereotactic normalization
• Brain warping

fMRI, fundus camera
DSA
Endoscopy, fundus camera,
EM microscopy
Surgery, radiotherapy

CT/PET/MRI

• Contours
• Ridges
• Differential geometry

AllFeature detection

Contour extraction
• Snakes and active contours MRI, Microscopy (cytology)
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Spline approximation: LS resizing 
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Spline space at scale a

Va =

�
s(x) =

�

k∈Z
c[k]βn

a (x− ak) : c[k] ∈ �2

�

Rescaled basis function: βn
a (x) := βn

�
x
a

�

Dual B-spline: β̃n
a (x) such that �β̃n

a (x),βn
a (x− ak)� = δ[k]

a = 1 a = 2

Minimum error spline approximation at scale a

Continuous-space input f(x) c[k] = �f, β̃n
a (·− ak)�

such that min
s∈Va

�f − s�2
L2

f [k] = s(k) + n[k]

Orthogonal projection onto Va (cubic spline)

a = 1 → 10

20

Approximation at arbitrary scales: differential approach using splines

Minimum error approximation (orthogonal projection)

fa(x) = arg min
ca

�f(x)−
�

k∈Z
ca[k]βn(x/a− k)�2

L2(R)

1-

Application: image resizing

" Spline projectorSNR=22.94 dB

! Interpolation
! Resizing algorithm

! scaling= 70%
! Linear splines
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+ 5.419 dB

Application: image resizing (LS)

(Munoz et al., IEEE Trans. Imag. Proc, 2001)

! Orthogonal projector
! Resizing algorithm

! scaling= 70%

SNR=28.359 dB

! Linear splines

Exit

1-

Elastic registration problem

42

Problem constraints

Similarity measure to compare images

Smooth deformation field (regularization)

Parametric model (for better efficiency)

Optional specification of landmarks: x(n)
S → x(n)

T

Find a diffeomorphism (warping): x→ g(x) such that fS( g(x) ) ≈ fT(x)

fS(x): source image

fT(x): target image (or reference)

g(x) = g(x|Θ): parametric deformation map
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Cubic-spline deformation map

43

Transformed image: fS (g(x|Θh))

Deformation map: g(x|Θh) =

�
g1(x)
g2(x)

�
=

�

k∈Z2

�
c1[k]
c2[k]

�
β3

�x

h
− k

�

Parametric model (control points)
Θh = (· · · , c1[k, l], c2[k, l], · · · )

Resolution controlled by mesh size h

Smooth deformation (cubic splines)

Rich variety of spatial mappings,
including rigid body, affine, etc.

1-

Registration as an optimization problem

44

fS(x)→ fS (g(x|Θopt)) where Θopt = arg min
Θ

{Ereg(fS, fT,Θ)}

Ereg(fS, fT,Θ) = Eimage(fS, fT,Θ) + Erough(Θ) + Elandmark(Θ)

Least-squares similarity criterion

Eimage(fS, fT,Θ) =
�

k

|fS(g(k|Θ))− fT[k]|2

Vector-spline roughness penalty

Erough(Θ) = λdiv

���∇ div g(x|Θ)
���

2

L2(R2)
+ λrot

��∇ rot g(x|Θ)
��2

L2(R2)

Landmark contraints: x(n)
S → x(n)

T

Elandmark(Θ) =
λ

N

N�

n=1

���g(x(n)
S |Θ)− x(n)

T

���
2
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UnwarpJ: Implementation details

45

Continuous image representation
- cubic splines

Consistent implementation
- analytical derivatives
- multilevel B-spline discretization

Quasi-Newton optimization
- exact gradient of criterion

Full multiresolution strategy
- coarse-to-fine on images
- coarse-to-fine on deformation
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CONCLUSION
! B-splines are attractive computationally

! Simple to manipulate; smooth and well-behaved
! Fast recursive filtering algorithms (O(1) per sample)
! Multiresolution properties (pyramid, multigrid, wavelets)

! Splines: a unifying conceptual framework 
! Approximation theory
! Link with wavelet theory
! Signals and systems, sampling theory
! Stochastic processes; regularization and estimation theories

! Practical Hilbert-space framework (SP counterpart of FE) for 
continuous/discrete image processing
! “Think analog, act digital”
! Toolbox: digital filters, convolution operators
! Flexibility: piecewise-constant to bandlimited
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