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THE WAVELET TRANSFORM

= Wavelet basis functions

Dilation and translation of a single prototype
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From “legos” to wavelets

Signal processing perspective

Mathematical properties

1-2




Motivation for using wavelets

m Remarkable wavelet properties m New computational paradigm

= Multi-scale decomposition = Multi-resolution formulation
= Self-similarity = Filterbank algorithms: O(NN') complexity
= One-to-one vs. redundant = Regularization via sparsity constraints
= Decoupling: (bi-)orthogonality
= Vanishing moments m Classes of problems

— Nl pelymEmiE = Data compression: JPEG2000 ...

— Sparse representation . . .

. . ) = Data processing: filtering, denoising,
of piecewise-smooth functions .
inverse problems
— Multi-scale differentiation
= Data analysis: singularities, texture,

= Joint time-frequency localization fractals ...
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Image processing task  Application / modality Principal Authors
WAV ELETS Image compression * MRI Angelis 94; DeVore 95;
2 Siziie . Manduca 95; Wang 96;
in Medicine - ammograms etc... ?
and BIOIOgy * Angiograms, efc...
PR Filtering Image enhancement Laine 94, 95;
i + Digital radiograms Lu, 94; Qian 95;
*MRI Guang 97;
* Mammograms etc...
* Lung X-rays, CT
Denoising Weaver 91;
*MRI Xu 94; Coifman 95;
+ Ultrasound (speckle) Abdel-Malek 97; Laine 98;
+ SPECT Novak 98, 99
Feature extraction Detection of micro-calcifications Qian 95; Yoshida 94;
+ Mammograms Strickland 96; Dhawan 96;

Baoyu 96; Heine 97; Wang 98

Texture analysis and classification ~ Barman 93; Laine 94; Unser

* Ultrasound 95; Wei 95; Yung 95; Busch
«CT, MRI 97; Mojsilovic 97
* Mammograms
Wave I ets i nm Ed i ca I | m ag i Nn g - Snakes and active contours Chuang-Kuo 96
* Ultrasound
S u rvey 1 99 1 - 1 999 Wavelet encoding + Magnetic resonance imaging Weaver-Healy 92;

Panych 94, 96; Geman 96;
Shimizu 96; Jian 97

Image reconstruction + Computer tomography Olson 93, 94; Peyrin 94;
References + Limited angle data Walnut 93; Delaney 95;
+» Unser and Aldroubi, Proc IEEE, 1996 * Optical tomography Sahiner 96; Zu 97;
. . « PET, SPECT Kolaczyk 94; Raheja 99
* Lame’ Annual Rev Biomed Eng’ 2000 Statistical data analysis  Functional imaging Ruttimann 93, 94, 98;
«PET Unser 95; Feilner 99; Raz 99
. « fMRI
) SpeCIaI Issue, IEEE Trans Med lm’ 2003 Multi-scale Registration ~ Motion correction Unser 93; Thévenaz 95, 98;
« fMRI, angiography Kybic 99
Multi-modality imaging
* CT, PET, MRI
3D visualization + CT, MRI Gross 95, 97; Muraki 95;

Kamath 98; Horbelt 99




Wavelets: Haar transform revisited

.. so(z) Signal representation
: FH so(z) =Y clklo(x — k)
: ke
{2 ‘j L1 | Scaling function
| si(x) I@(@")
. o 5 8 Multi-scale signal representation
so(x)

3 si(@) = cilklpsp()
: kEL

M S Multi-scale basis functions
: s3() oin(@) = @ <x —2i21k)
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Wavelets: Haar transform revisited
3 Wavelet:
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Wavelets

: Haar transform revisited

Wavelet:
2 4 Ny \ T
¥ s(z) = Zc
k

4

[Ke(x — k)
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Signal processing perspective

Splitting and putting together again ...

m Perfect reconstruction filterbank

diff _.@ @_. diff }

——o—
Identity operator: *l D D |>

m Tree-structured wavelet transform

m Subband decomposition

D 1 Wavelet filterbank

2
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Multi-rate operations

m Filtering stransform:  z[k] < X(2)=> a[k]z7F
keZ
— % H() — (hxx)[k] =Y hlllafk—1] < H(z)-X(2)
leZ

m Down-sampling

H@_, (D)W =o2h < 5 (XE) 4 X(-212)

m Up-sampling

0, kodd ; )
( ) (@)ralk] { z[l], 20 =k even X()
m Down-sampling and up-sampling

(@)rall] <

(X(2) + X(=2))

N =
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Perfect reconstruction filterbanks

Xow(2) = H(2) (H(=)X (2) + H(=2")X (=2))+G(2) (G X (2) + G(-271)X(~2))

m Perfect reconstruction conditions
(PR-1) H(z"YWH(2) +G(z~1)G(2) =1 (distortion-free)

(PR2) H(—zNH(z)+G(—2"1)G(z) =0 (aliasing-free)

m Wavelet transform design

Construct 4 filters such that (PR-1) and (PR-2) are satisfied.
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CONSTRUCTION OF WAVELET BASES

= Scaling functions

Multiresolution analysis
= From scaling functions to wavelets

The lego revisited

Fractional B-splines
= Wavelet bases of L>

Scaling function

Definition: ¢(z) is an admissible scaling function of L iff:

= Riesz basis condition

Veely, A-|clle, < < B |lc[le,

Lo

> clklp(x — k)

kEZ

= Two-scale relation

p(@/2) =23 hlkp(z — k)

kez 5 .

= Partition of unity

Zap(:ﬂ—k)zl

kEZ




Multiresolution analysis of L>

- R &

se Vo . i
© = Multiresolution basis functions: ¢; () = 27%/%¢ (%“)
—‘ = Subspace at resolution i: V(;) = span {p; i } <5
4 & 8

2

s1 € Vo

Two-scale relation = V(;) C V(;),fori >j

\ Partition of unity & (U, Vis) = L2(R)

From scaling functions to wavelets

= Wavelet bases of L, [Mallat-Meyer, 1989]

Theorem: For any given admissible scaling function of Lo, ¢(x), there
exists a wavelet ¢ (z/2) = 23, _, g[k]¢(z — k) such that the family
of functions

9—i/2 (a:—z_ik) }
{ vt i€, ke

forms a Riesz basis of Ls.

A1 4

\

m Constructive approach: perfect reconstruction filterbank




The lego revisited

Continuous derivative Discrete version (finite difference)

§ F Ciw
D{.}:% T jw Ay = 1-e

m Construction of the B-spline of degree 0

Step function: 9 = D~'{4(z)} Bl(z) =2} — (x—1)% = Al

|

m Fourier domain formula

Discrete operator (finite difference)

1—e v

Continuous operator (derivative)

Beyond legos: fractional splines

m Fractional B-splines

1—e v
0 — A, g0 F
By () +T4 i
P e A S 1— e
- P(a+1) jw

0,

One-sided power function: x5 = {

m Properties (Unser & Blu, SIAM Rev, 2000)

= {B%(x — k)},, is a valid Riesz basis for o < —3

= Convolution property: 85" x 35> = g3 ezt




Binomial refinement filter

m Dilation by a factor of 2 Hint for the proof:

B (x/2) =23 hY[K]BS (x — k) Ho (o) = B (2w) _

1+e

= Brw)

(

2

—jw)o‘"'l

m Generalized binomial filter

N 1 (a+1 . N 1421\

u I(u+1)
where () = T(o+ )T (u—v+ 1)

m Example: piecewise linear splines: o = 1

1

1/2 1/2

Fractional B-spline wavelets

)k a
ITDED D ol G F s (AR SIS

n
kEZ neN

2g[k]

(
)

Fractional B-spline wesvelet of degree 0

(Unser and Blu, SIAM Review, 2000)

= Remarkable property
Each of these wavelets generates a Riesz basis of L,




Wavelet basis of L,

m Family of wavelet templates (basis functions) W i“} \H} w] W

Yik :2—1‘/21/)1 (x—2i21k> | /\ o /\ - /\
VV VV VV

m Semi-orthogonal wavelet basis
(Wit V) = Gijoi
Vi(x) € Lo, f(x) =YY (fithin) Cik

1€Z k€L

m Orthogonal wavelet basis (Generalized Battle-Lemarié)
(Vi j0) = dimjk—i
Vi(@) € Ly, f(x) =D (f,%ik) ik

1€Z k€L

Extension to higher dimension: separability

Split rows Split columns

and iterate ...

e

Tensor-product basis functions:

Yy oo ke (X100 Tp) = Uiy (T1) X iy (T2) -+ X U, ()
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2D wavelet decomposition: example

Wavelet transform

'¢ Inverse wavelet transform

0.00%

Discarding “small coefficients”
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Other popular wavelet families

m Basic paradigm: PR filterbank design

Implicit definition: solution of two-scale relation

Daubechies wavelet: L=2
p(e/2) =2 hlklp(a — k) /
keZ ‘/
m Daubechies wavelets / a
. . ~—
Shortest orthogonal filter such that: \(
H(z)=(1+2z"1)%Q(z)  (order constraint)

m Biorthogonal splines (Cohen-Daubechies-Feauveau)

9/7 scaling function

m JPEG2000 wavelets

= biorthogonal 5/3: linear spline
(2 vanishing moments)

= biorthogonal 9/7: symmetric, near-orthogonal
(4 vanishing moments) S R
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WAVELET THEORY

= Order of approximation

= Factorization theorem

= Reproduction of polynomials
= Vanishing moments

Multi-scale differentiation

Smoothness

1-23

Order of approximation

m General “shift-invariant” space at scale a

Valp) = {sa(x)—Zc[k]Qp (g—k) :CEEQ} /

keZ

v

m Projection operator A

S T it ==

m Order of approximation
Definition
A scaling/generating function ¢ has order of approximation -y iff.

vieWs, If =Paflle. <C-a” - [fO|z,




B-spline factorization

s Factorization theorem

A valid scaling function ¢ (x) has order of approximation - iff

o(z) = (6% * ¢o) ()

where 3¢ with o =« — 1: regular, B-spline part

o € S’ irregular, distributional part

/’/l“ N\
/o /N
[ \'\; = AN ‘

Il

= Refinement filter: general case
Z—l 0l
e = (F5) - e

(Unser-Blu, IEEE-SP, 2003)

with |Q(e’¥)| < 400

——
%’_/ distributional part
spline part
1-25
Reproduction of polynomials
m B-splines reproduce polynomials of degree N = [«
a=20
Y Bla—k) = 1 ;
kEZ 5 5 10 15
Y KB x—k) = 2" 4@z 4 toan
keZ a=1/2

o

Il

—
a3
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Reproduction of polynomials (Cont’d)

Proposition: If p(x) = (3% * o) () with $o(0) = 1, then o(z) reproduces the
polynomials of degree N = [a].

8 8
1.5 Z«p(x—k)%l 10 Zk(p(m—k)%m—kb
1.25) ¢ k=0 k=0
1 8
1
0.75 6
0.5
0.25 4
2 4 6 8 0 2
-0.25 i\
-0.5
Argument: = woxa" =z +bia" T 4+ by
" Zk”(p(m—k) :w()*Zk"ﬂi(z—k) =2+ e,
kez kez

Strang-Fix (1971): Conversely, if () reproduces the polynomials of degree N
and is compactly supported, then ¢(z) = (B * o) (z).
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Vanishing moments

Proposition B-spline wavelets:
If o(z) reproduces the polynomials of degree N, then the L=1
analysis wavelet zZ(x) has L = N + 1 vanishing moments:

/ g"P(zx)dz =0, n=0,---,N
z€R

L=2
[C=> < Kkills all polynomials of degree n < N
Vp(x) € o, / p(x)(z/a — b)dz =0
z€R s
Argument
= Polynomial reproduction < p(x) € span{p(xz — k) }rez
{ = 1(z) is perpendicular to V(i) by construction t

= 1 is perpendicular to p(z)




Differentiation and regularity

m Fractional differential operators

Derivative of order s: o° L (jw)®
Finite difference of order s: A% & (1 — e 9v)s

m B-spline differentiation formula

8°63 (z) = A} A5 (z)

Sketch of the proof:
. P . 1— e_jw a+1 s 1— e_jw a—s+1
s Lo G (FE0) —a-err (B2

Jw Jw

m Continuity and differentiability

Holder smoothness: 3¢ € C* = 0“3% bounded

Sobolev smoothness: 3¢ € Wi, r <a+3 < 9"3% € Ly(R)

1-29

Multi-scale differentiation

m Perfect reconstruction conditions
(H(z) G(z) ).(I?(z-l) @_2—1)):][
H(-z) G(-2) G(z™") G(==7Y)

Proposition: For a stable filterbank, the order constraint is equivalent
to G(z) = (1 — 2)7 - P(z) with | P(e’%)| < 4.

Theorem: Let ¢ and ¢ be two valid biorthogonal scaling functions.
Then,  is of order v (i.e., ¢ = B1 " * o) iff P(w) = O(Jw|7).

m Wavelet transform as a multi-scale differentiator

= (@), 9z — ) = {6+ f} ()

Smoothing kernel: ¢(w) = v+ () /(jw)?




Wavelet regularity: peeling Daubechies

Theorem: If ., (z) = 81" * p,—,(x) with ,_, € Ly, then

0"y, € Ly; i.e., ¢, has r derivatives in L,-sense.

B-spline peeling mechanism:
Pry—r

—_——
S ﬂ171 * o = B * (ﬂl_T_l * ©0)
= g, = (0" :_1) * oy = Aoy

peeling off a spline of degree -1

Note: 57 (z) = 6()

Theorem: If ¢ is a valid scaling function such that 9"y € Lo,
then p(z) = [31_1 * po(x) with g € Lo.

1-31
Splines: The key to wavelet theory
Sobolev smoothness
°p € Lo
U v=s
B-spline factorization: Approximation order: Multi-scale differentiator
p=0L" k0 | | f— Pufll, = 0(@) | | d(w) x (), w =0
U. 'ﬂ‘ generalcase: N <y< N +1
compact support: v = N + 1 (Strang-Fix)

Polynomial reproduction
degree: N = [y — 1]

g

Vanishing moments:
/x"@(m)dx =0,n=0,---,N

(Unser and Blu, IEEE-SP, 2003)
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FURTHER (ANTHROPOMORPHIC) ARGUMENTS ...

= Localization properties
= Wavelets and the uncertainty principle

1-33

Localization properties

frequency
w . ”(x - XO)UJ(X)”L

A = - 7

TR
- o),
A, =min = 2

o[l

X
time or space

= Heisenberg’s uncertainty relation

Ax ’ Aw == . / b N
2
~:{;{\)" &f’ ’A;:s‘;-r_-a
with equality if.  ¢(z) = a - e~b(@—20) Hiwoz \ %

Question: are there Gabor-like wavelet bases ?
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Are there optimally localized wavelet bases ?

Theorem

The B-spline wavelets converge (in L,-norm) to
modulated Gaussians as the degree goes to infinity :

yfﬁ{ﬁf (x)} = C- ) 1204

o+1
aa=1/
12

_allp
VU

oa=3

Cubic B-spline wavelets:

. il WP 2
hm{wf(x)} =C' e 20 cos(wyx +6,)
o—0 v )

Gaussian . .
sinusoid

o, =B o, with B=2.59

B-spline wavelet of degree 0

within 2% of the uncertainty limit ! Y
(Unser et al., IEEE-IT, 1992) 1-35
SPATIAL MTF m.ﬂm
o
> 3
2 k]
g ]
Are there wavelets =« L

in my brain ?

LOGNLOG FREQUENCY RESPONSE WAVELET BASIS FUNCTION (reverted)

TV

0.1 1 2

frequency

- ®

Fig. 2. Similarity between the receptive field of simple cortical
cells and a wavelet basis function. (a) Response of a simple X cell
from a monkey visual cortex and its fitted Gabor elementary signal
[26), [67, Fig. 3]. (b) Semi-orthogonal cubic B-spline wavelet and
its log-log frequency response [100].




CONCLUSION

= |Important wavelet features
Simple, fast implementation: Mallat’s filterbank algorithm

Mathematical properties: Riesz basis, vanishing moments,
polynomial reproduction, order of approximation, ...

Fundamental connection between splines and wavelets
Simulates the organization of the primary visual system

= Many successful applications
Data compression
Filtering, denoising (non-linear)
Detection and feature extraction
Inverse problems: wavelet regularization

= Current topics in wavelet research
Non-separable multidimensional wavelets: isotropic vs. directional
Complex wavelets, Bandelets
Wavelet frames, ridgelets, curvelets, etc... 1.37
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