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Variational formulation of inverse problem

m Linear forward model y=Hs+n

Integral operator

S Problem: recover s from noisy measurements y
m Reconstruction as an optimization problem

Srec = arg min [y — Hs|j3 + A[Ls|} , p=1,2

SERN N ~~ \W_/
data consistency  regularization

Linear inverse problems (20th century theory)

m Dealing with ill-posed problems: Tikhonov regularization
R(s) = ||Ls||3: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

minR(s) subjectto |y —Hs|3 < o2

S

m Equivalent variational problem Andrey N. Tikhonov (1906-1993)

s* = argmin ||y — Hs||5 + A|Ls||3
——— N——

data consistency  regularization
. s _ T Ty\—1ygT,, —
Formal linear solution: s=(H"H+ AL'L)" " H'y =R, -y

Interpretation: “filtered” backprojection



Learning as a (linear) inverse problem
but an infinite-dimensional one ...

Given the data points (Z,,,y,,) € R¥*L find f : RY — R such that
flxm) mymform=1....M

m Introduce smoothness or regularization constraint (Poggio-Girosi 1990)

R(f) =3 = ILflI7, = /N ILf()|*dz: regularization functional
R

M
mingey R(f) subjectto Y |ym — f(zm)|* < 0

m=1

m Regularized least-squares fit

M
. 2 .
frRKHS = arg min (Z [ym — f(xm)|” + )\HfH%_[) = kernel estimator

m=1

Unifying continuous-domain formulation

Unknown is a function f : R — R

m Regularization functional: R(f) : B(R?) — R

Promotes smoothness (Sobolev norm) or sparsity (gTV)

m Native space B(R) Banach vs. Hilbert space (RKHS)
BRY ={f:R? - R: R(f) < oo}

m Linear measurement operator H: B — RM  Lijnear functionals vs. point values

H:(h1,~-~,hM):f'_>((hl’f>7"'7<hMﬂf>)

m Regularized functional fit to the data Arbitrary convex loss vs. least squares
M
fopt = arg I}ﬁg (Z ym — (ham, ) + AR(f)) (Schoélkopf 2001; Rosasco 2004)
€
m=1

- 4

E(y,H{f})




Prologue: Discrete-domain regularization

Classical least-squares fit with /; regularization

= Linear measurement model:
Ym = (W, x) +nfm], m=1,....M

= System matrix of size M x N: H = [h;---hy]7

xus = arg min [ly — Hx|3 + A[x|

= xp5 = (H'H+ A\y) 'H'y

M
=H"'a= ) aph, where a=(HH” + )y
m=1

Interpretation: xrg € span{h,, }M_,

Lemma
(H™H + \y)'H” = HT(HH” 4 \I;)~!
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Switch to /; regularization = sparsifying effect

= Linear measurement model:
Ym = (W, x) +n[m], m=1,...,M

= System matrix of size M x N : H = [h;---hy]7

(P1): V =arg min ||y — Hx|)5 + A||x|¢,
xERN

Representer theorem for unconstrained /; minimization

The solution set V of (P1) is convex, compact with extreme points of the form
K
Xsparse — Z Ap€n, with K = HxsparseHO < M.

k=1 \
element of canonical basis with [e;,],, = dm—n

If CS condition on H is satisfied,
then solution is unique

(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016)

Geometry of I> vs. 1 minimization

m Prototypical inverse problem

m}in {||y — HXH?2 + A HXHZ} o m}in llx||¢, subjectto |y — HXH%2 < g2

min {[ly — Hx|[7, + A|xle, } < min x|, subjectto [y —Hx|, <o

T
i) C y]- = hl X
N ) D 7 1
S ," L"‘qﬁo
Kg-ballz |£L'1|2 + |£C2|2 = CQ

{1-ball: |.I‘1| + |132| =

10



Geometry of > vs. [y minimization

m Prototypical inverse problem

m}in {Hy — HXHE2 + A HxHi} & m}in llx||¢, subjectto |y — HXHE2 < g2

min {lly —Hx||}, + XMx[.,} & min |[x[[¢, subjectto [ly — Hx|7, < o?
T

y1 =hyx

sparse extreme points

’

’
’

P

.

N ’ T

N ’ 1
.
N ’

< lyball: |22 + |22 = Cy

{1-ball: |.131| + |.132| =4

Configuration for non-unique /7 solution
1

Part Il: Continuous-domain theory
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Continuous-domain regularization (L2 scenario)
Regularization functional:  ||Lf||7, :/ ILf(x)]?da
Rd
L: suitable differential operator

m Theory of reproducing kernel Hilbert spaces (Aronszajn 1950)
<f7 g>7’l = <Lf7 Lg>

m Interpolation and approximation theory
m Smoothing splines (Schoenberg 1964, Kimeldorf-Wahba 1971)

m Thin-plate splines, radial basis functions (Duchon 1977)

m Machine learning

m Radial basis functions, kernel methods (Poggio-Girosi 1990)

m Representer theorem(s) (Schélkopf-Smola 2001)

13

Splines are analog, but intrinsically sparse

L{-}: admissible differential operator
§(- — xo): Dirac impulse shifted by ¢y € R¢

Definition
The function s : RY — R is a (non-uniform) L-spline with knots (z)X_; if

K
L{s} = Z ard(- —xx) = ws : spline’s innovation
k=1

Spline theory: (Schultz-Varga, 1967)

14



Spline synthesis: example

d
L=D= o Null space: Np =span{p1}, pi(z) =1

pp(z) = D71{§}(z) = 1, (x): Heaviside function

T ws(x) = Zaké(a: — xg)

t
T **

=

» s(z) =bip1(x) + Z aply(z — x)
k

a1

y 1

\VH
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Spline synthesis: generalization
L: spline admissible operator (LSI)
pL(x) = L~} (x): Green’s function of L

Finite-dimensional null space: N1, = span{p, }.°,

Spline’s innovation: ws(x) = Z ard(x — xk)

Requires specification of boundary conditions

A\ 4

T

16



RKHS representer theorem for L. regularization

(P2) arg mln (Z Y — f(@m)|* + )‘“fHH)

ry : R x RY — R is the (unique) reproducing kernel for the Hilbert # if
= 73(x0,-) € H forallrg € R?
u f(w0> = <T‘7.L(£Bo, ~), f>7.[ forall f € Hand zg € R?

Convex loss function: F : RM x RM — R Sample values: f = (f(z1),...,f(zwm))
(P2) arg %173 (F(y, f) + Al fII3) (Schélkopf-Smola 2001)

Representer theorem for Lo-regularization
The generic parametric form of the solution of (P2’) is

M
= Z amrﬁ(w,wm)
m=1

Supports the theory of SVM, kernel methods, variational splines, etc.
17

L2 representer theorem for variational splines

Theoretical difficulty: I£113, — ILfI2, (only a semi-norm 1)

(P2) arg mln <Z Ym — f(@m) |2 + >‘||Lf||L2(]Rd)>
pL+L(x) = (L*L)~1{d}(x): Green’s function of (L*L)

(Schoenberg 1964, Kimeldorf-Wahba 1971)

L- representer theorem for variational splines
The solution of (P2) is unique and of the form

M Ny
= Z aJmpL*L(zC - wm) = Z bnpn(m)

i.e., itis a (L*L)-spline with knots at the {z,,, }.

Example: L = D? with ppa(z) oc [2]> = f(z) is a cubic spline

18



Quest for sparsity

In a continuous world




Sparsity and continuous-domain modeling

m Compressed sensing (CS)

m Generalized sampling and infinite-dimensional CS (Adcock-Hansen 2011)

m Xampling: CS of analog signals (Eldar 2011)

m Recovery of Dirac impulses from Fourier measurements (Vetterli et al. 2002)

(Bredies 2013; Candes & Fernandez-Granda 2014; Duval-Peyré 2015)

m Splines and approximation theory
(Fisher-derome 1975)

m [ splines
m Locally-adaptive regression splines (Mammen-van de Geer 1997)
m Generalized TV (Steid! et al. 2005; Bredies et al. 2010)

m Statistical modeling

m Sparse stochastic processes (Unser et al. 2011-2014)

Proper continuous counterpart of ¢;(Z%)

S (Rd): Schwartz’s space of smooth and rapidly decaying test functions on R

S’(R%): Schwartz’s space of tempered distributions

m Space of bounded Radon measures on R?

M(Rd) _ (CO(Rd)>’ _ {w € S’(Rd) wlm = eS(Riyﬁ) ” :1(w,90) < oo},

where w : ¢ — (w, @) = [pq @(r)w(r)dr

m Equivalent definition of “total variation” norm

|w||pm = sup (w, @)
P€CH(R): ]l o=1
m Basic inclusions

] (5( — .’,Bo) S M(Rd) with ||(5( — w())HM =1 for any xg € Rd
= [ fllm = Iz, e forall f € Li(RY) = Li(R?) € M(R)

22



Representer theorem for gTV regularization

fGML(Rd)

(P1) arg min (Z Y — (him, f) |2+>\||Lf||M>

= L: spline-admissible operator with null space N, = span{pn}ﬁ’il

= gTV semi-norm: |[L{s}||m = sup, <1 (L{s}, )

= Measurement functionals h,, : M (R%) — R  (weaks-continuous)

Convex loss function: F : RM x RM 5 R v M — RM
P1’ F AlL ith — ((h1, f)s- .., (hars
(P1’) argf@\rzur(le)( (y.v(f)) + A|Lfllm) with v(f) = ((h1, f) (har, )

Representer theorem for gTV-regularization
The extreme points of (P1’) are non-uniform L-spline of the form

Kknots No
feptine(®) = D appr(x — @p) + > bppn ()
k=1 n=1

with py, such that L{pr,} = 9, Kxnots < M — Ny, and ||L fspiine|| 1 = ||2ll¢, -

(U.-Fageot-Ward, SIAM Review 2017)
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Example: 1D inverse problem with TV(2 regularization

Sspline = min (Z ‘ym - m7 |2 + ATV(z)( )>

sEMQD(R)

m Total 2nd-variation: TV®(s) = SUD ||| <1(D?s, ©) = [[D?slm

d2

L=D%?=
da?

pp2(x) = (z)4: RelLU Np:z = span{1, z}

m Generic form of the solution A

K
Sspline(2) = b1 + box + Y an(x — k)4

/' k=1

no penalt
p y Tk

with K < M and free parameters b1, b and (ag, Tg )1,
24



Other spline-admissible operators

m L=D" (pure derivatives)

= polynomial splines of degree (n — 1) (Schoenberg 1946)

mL=D"+a,1D" ' +.--4agl (ordinary differential operator)

= exponential splines (Dahmen-Micchelli 1987)
= Fractional derivatives: L =D <« (jw)?

= fractional splines (U.-Blu 2000)
= Fractional Laplacian: (—A)? PN |w||”

= polyharmonic splines (Duchon 1977)

= Elliptical differential operators; e.g, L = (—A + al)”
= Sobolev splines (Ward-U. 2014)

25

Discretization: compatible with CS paradigm

1
Ssparse — aI'g Iél]g}l( (i”y - HS“% + )\HUHI) subjectto u = Ls
s

ADMM algorithm

1
La(s,u.e) = 3 lly = Hsll; + A [[ula] + " (Ls = w) + ZI|Ls — u}

Linear step

Fork =0, K1 g mrm g unrn) ™ (ao + 244

\ with  z8T = L7 (pu® — af)
& j ot = o + p(LsHH — ut)
- Proximal step = pointwise non-linearity

2
uF ! = prox (Ls**! + ia’”l; ”7)




Example: ISMRM reconstruction challenge

L regularization (Laplacian) {1/ TV regularization

(Guerquin-Kern IEEE TMI 2011)

OUTLINE

= Linear inverse problems and regularization v/

= Continuous-domain theory v/

Splines and operators
Classical Lz regularization: theory of RKHS
Minimization of gTV: the optimality of splines

= From compressed sensing to deep networks
Image recovery with sparsity constraints
FBPConvNet
Representer theorem for deep neural networks
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When is unrolled ADMM a deep ConvNet ?

Answer: when H” H and L are both convolutions

1
EA(S,U, a) = 5 ||y - HSH% + 02 Z |[1l

ADMM algorithm

Fork=0,..., K

Jol + @ (Ls — w) + £[Ls — u}
Initialization
zo=H"y u’ =0
SO = 0 aO — O
Linear step = Convolutions
ghtl — (HTH + MLTL)f1 (zo + z’“’l)
with  zFT = L7 (pu® — af)

g ) R

= pointwise non-linearity

Proximal step

uFt! = = prox,. |(LskJrl + = ak+1, %)

Recent appearance of Deep ConvNets

(Jin et al. 2016; Adler-Oktem 2017; Chen et al. 2017; ...)

m CT reconstruction based on Deep ConvNets

= Input: Sparse view FBP reconstruction

= Training: Set of 500 high-quality full-view CT reconstructions

= Architecture: U-Net with skip connection

(Jin et al., IEEE TIP 2017)

Skip connection

64 64 64 < # of channels

spatial dimension :512x 512

U-net

12864 64 1

‘»‘»‘—» >®~>

1

2

128128

| 256x256

256 128 128

~>—>

512 256 256 - 3x3conv.+BN

{
128" 256 256
-1
128x 128
Y 512 512

[256
64xe4_ H-IH-

1024

| [Eie

skip connection
512 512 J

3x3up-conv 2.

(sui
32x32 —

1024

T1024 +BN +RelU
- E— - 1x1conv.

+RelU
¥ 2x2max pooling
3

and concatenation




CT data Dose reduction by 7: 143 views

FBP TV FBPConvNet
Ground truth SNR 24.06 SNR 29.64 SNR 35.38

Reconstructed from
from 1000 views (Jin et al., IEEE Trans. Im Proc., 2017)

('Q‘-p MAYO CLINIC

CT data Dose reduction by 20: 50 views

FBP TV FBPConvNet
Ground truth SNR 13.43 SNR 24.89 SNR 28.53

Reconstructed from

from 1000 views (Jin et al., IEEE Trans. Im Proc., 2017)

rq‘—p MAYO CLINIC




Finale:

Representer theorem for deep learning

33

Deep neural networks and splines

m Preferred choice of activation function: ReLU

m RelLU works nicely with dropout / ¢1-regularization (Glorot ICAIS 2011)

m Networks with hidden ReLU are easier to train

m State-of-the-art performance (LeCun-Bengio-Hinton Nature 2015)

m Deep nets as Continuous PieceWise-Linear maps

m MaxOut = CPWL (Goodfellow PMLR 2013)

m ReLU = CPWL
m CPWL = Deep RelLU network (Wang-Sun IEEE-IT 2005)

(Montufar NIPS 2014)

34



Feedforward deep neural network

Layers: ¢ =1,...,L

= Neuron or node index: (n, /), n =

= Activations functions: 0,, o : R — R

Linear step: RN¢e-1 — RN¢
foix— fylx) =Wz +by

= Nonlinear step: RV¢ — RN¢

or:x o) = (01,e($1), e aUNe,é(fUNe))

Conventional design: 0, = o

layers

Deep structure descriptor: (Ng, N1,---, Np)

Action of layer £ : RNe-1 — RNe

Zy=0,0 f[(zé—l)

O¢—1 Oy O¢+1

O
foyr O
n-1,0 QO
neuron O (n, ¢)

_ T
Zng = Ony (Wn’gzé—l 4 bn,e)

nodes

facep(x) = (0 0o froop_10---0020 fyooi0 f)(x)

35

Deep neural net with optimized activations

s Layers: ¢ =1,...,L

= Deep structure descriptor: (No, N1, , Np)
= Neuron or node index: (n,¢), n=1,---, Ny

= Activations functions: o, , : R — R

= Linear step: RVe-1 — RNe

oz folx) =W+ by

= Nonlinear step: R™V¢ — RN¢

or:x o) = (01,4(%), e 7O-Ng,£(mNg))

New adaptive design: = — o, ¢(z)

layers

Action of layer ¢ : RNe-1 — RN¢

zp =00 fo(ze-1)

O¢—1 Oy O¢+1
O
feri O
neuron (n,()

Zng = Ony (Wz;gzl—l + bn,z)

nodes

TV(Q)(O'n,g) minimum

faeep(x) = (0o froop_10---0020 fyooi0 f)(x)
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New representer theorem for deep neural networks
(Unser, arXiv:1802.09210, Feb 2018)

Theorem (TV(Q)—optimaIity of deep spline networks)

= neural network f : R0 — RNz with deep structure (Ny, Ny, ..., Ny)
z—f(x)=(ocpolpoop_10---0ly00104)(x)

= normalized linear transformations £, : RVt — RN 2 +— U,z with weights U, =
[ul)g uNM]T € RNVexNe-1 gych that ||un’g|| =1

= free-form activations oy = (01,¢,...,0n,,¢) : RV — RN with 01¢,...,0n,0 € BV®)(R)

Given a series of M data points y,,, ~ f(x.,), we then define the training problem

M N L Ng
arg min E(y,,. f(@m)) 1> Re(Ug) + A V&, | (1)

s F: RNt x RNt — R*: arbitrary convex error function

» Ry, : RNexNe 5 RF: convex cost

If solution of (1) exists, then it is achieved by a deep spline network with activations of the form

Ky
U7z,é(x) = bl,n,f + b2,n.2x + Z alc.,n.ﬁ(aj - Tk,n,l)—l-v
k=1
with adaptive parameters K’nl < M -2, Timny -y TK, o0l € R, and bl,'rz,,éabZ,n.K-, A1,n,0,

e K, ol € R.

Outcome of representer theorem

Each neuron (fixed index (n, ¢)) is characterized by
e its number 0 < K = K, , of knots (ideally, much smaller than M);

e the location {7, = Tk,n,g}fznf of these knots (ReLU biases);

e the expansion coefficients b, ¢ = (b1.n.¢, b2.n.¢) € R?,

An ¢ = (al’n’g, R ,aK’n’g) € RX.

These parameters (including the number of knots) are data-dependent and
need to be adjusted automatically during training.

m Link with ¢; minimization techniques

Kn,@
TVO{onet = larmnel = lanelh
k=1

37
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Comparison of linear interpolators

Deep spline networks: Discussion

m Global optimality achieved with spline activations

m State-of-the-art ReLU networks (Knye =1, by =0)
= No need to normalize:

(Wg,zw — Zne)4 = (an,guglw — Zne)+ = an,e(UZ,zw — Tn,e)+

m Key features

= Produces a global mapping « — f(x) that is continuous and piecewise-linear
» Direct control of complexity (number of knots): adjustment of A

= Ability to suppress unnecessary layers

m Backward compatibility

= Linear regression: A — oo = K, =0

\/

= Compressed sensing / 1 minimization

z
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SUMMARY: Controlling smoothness vs. sparsity

= New findings resonate with what is known in discrete setting
I, solution lives in a fixed subspace of dimension M
Tikhonov solution is intrinsically “blurred”
Minimization of /; favors sparse solutions (independently of sensing matrix)

= Specificities of continuous-domain formulation se X
Functional model: class of signals + physics s — z = H{s}
M
Smoothing-splines: minimum “spline” energy ~ (L"L){5cmootn | = Z A P
m=1

K
L-splines = signals with “sparsest” innovation  L{ssparse} = Z ard(- — o)
k=1

= Practical implications
Infinite-dimensional optimization is feasible (parametric form of solution)
gTV regularization favors sparse innovations with adaptive knots
Non-uniform L-splines: universal solutions of linear inverse problems

and deep neural networks ... 41
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