Local All-Pass Image Registration

Thierry Blu

Department of Electronic Engineering The Chinese University of Hong Kong

Common work with Chris Gilliam (RMIT) and Xinxin Zhang (CUHK)

Geometric deformations

A geometric deformation is a 2D mapping

$$
\mathbf{r} \mapsto \mathbf{D}(\mathbf{r})=\mathbf{r}+\mathbf{u}(\mathbf{r})
$$

where $\mathbf{u}(\mathbf{r})$ is the displacement induced by the transformation.

Image deformations

Given a "source" image $I_{S}(\mathbf{r})$, an image deformation transforms this image into a "target" image $I_{t}(\mathbf{r})$ according to

■ $I_{t}(\mathbf{r})=I_{s}(\mathbf{r}+\mathbf{u}(\mathbf{r}))$ (brightness consistency, monomodal case)
■ $I_{t}(\mathbf{r})=\mathscr{F}\left\{I_{s}(\mathbf{r}+\mathbf{u}(\mathbf{r}))\right\}$ (intensity changes, multimodal case)

Image registration

Given I_{s} and I_{t} find $\mathbf{u}(\mathbf{r})$ and, if applicable, find \mathscr{F}.

Applications

- Medical applications

■ Remote sensing

■ Optical flow estimation (computer vision, tracking etc.)

Registration algorithms

Typical settings
■ Global parametric registration (AECC: Evangelidis, PAMI 2008)
■ Elastic (local) registration (Demons: Thirion, Medical Image Analysis 1998; Lombaert, Neuroimage 2009)
■ Landmark-based registration (Rohr, TMI 2001)

Typical optimization criterion

- Mean-square error (monomodal)

■ Mutual information (multimodal)

Idea 1: Shifting is all-pass filtering

Geometric shifting is equivalent to analytic convolution.

Idea 2: Representation of all-pass filters

All-pass filters $h(\mathbf{r})$ are characterized by $|H(\boldsymbol{\omega})|=1$. Any real all-pass filter can be expressed as

$$
H(\boldsymbol{\omega})=\frac{P(\boldsymbol{\omega})}{P(-\boldsymbol{\omega})}
$$

where $P(\boldsymbol{\omega})$ is the Fourier transform of some real "forward" filter $p(\mathbf{r})$.

The brightness consistency equation $I_{t}(\mathbf{r})=I_{s}(\mathbf{r}+\mathbf{u})$ can then be expressed as

$$
\underbrace{p(-\mathbf{r})}_{\text {backward }} * I_{t}(\mathbf{r})=\underbrace{p(\mathbf{r})}_{\text {forward }} * I_{s}(\mathbf{r})
$$

Idea 3: Approximation and minimization

The forward filter can be approximated using three local elementary filters

$$
p(\mathbf{r})=g(\mathbf{r})+a \frac{\partial g(\mathbf{r})}{\partial x}+b \frac{\partial g(\mathbf{r})}{\partial y}
$$

where $g(\mathbf{r})=\exp \left(-\frac{\|\mathbf{r}\|^{2}}{2 \sigma^{2}}\right)$.

Minimizing for the coefficients a and b the MSE

$$
\left\|p(-\mathbf{r}) * I_{t}(\mathbf{r})-p(\mathbf{r}) * I_{s}(\mathbf{r})\right\|^{2}
$$

gives $\mathbf{u} \approx(2 a, 2 b)$ with excellent accuracy.

Note: solution of a linear system of equations, fast.

Local displacement estimation

Local shift assumption

The elastic displacement can be approximated locally by a shift \sim "local all-pass" filter.

At central pixel: Estimate local all-pass filter, then extract motion from the filter.

Multiscale LAP

■ Estimation of the displacement at different scales \leadsto change σ_{j}
■ Estimation of erroneous displacements (e.g., too large, boundaries) \leadsto inpainting

- smoothing

Synthetic result

Median error $=0.003$ pixel, mean error $=0.05$ pixel, computation time $3 s(512 \times 512$ image $)$.

Real result

Error Comparison for the PF-LAP and a Selection of Image Registration Algorithms on Images From the Oxford Affine Dataset [61]

	Bikes			Leuven			Wall		
	$\mathrm{E}_{\text {Med }}$	$\mathrm{E}_{\text {Mean }}$	Time	$\mathrm{E}_{\text {Med }}$	$\mathrm{E}_{\text {Mean }}$	Time	$\mathrm{E}_{\text {Med }}$	$\mathrm{E}_{\text {Mean }}$	Time
PF-LAP	0.223	0.292	12.10	0.171	0.217	10.41	0.506	0.866	11.80
Demons [21]	0.458	0.702	15.09	0.243	0.395	11.83	1.383	21.66	13.16
bUnwarpJ [24]	0.220	0.308	8.54	0.189	0.229	11.59	10.57	30.28	30.69
MIRT [26]	0.726	4.228	129.9	0.363	0.813	87.76	0.571	1.874	110.4

* Bold values indicate the best results

Real result

source and target

Demons 8.75 s

AECC 12.61s

LAP 18.82s

MIRT 82.32s

LAP with parametric fitting 18.58s

Retinal image registration

source and target

AECC 25.36s

MIRT 219.05s

Multispectral registration-green and NIR

source and target

Demons

AECC

LAP

MIRT

LAP with parametric fitting

Extensions: 3D MRI

	Lung Segmentation ${ }^{[3]}$		Image Registration Computation	
	Dice-Coefficients ${ }^{[4]}$	Cross-Correlation	PSNR (dB)	Time
3D LAP	$\mathbf{0 . 9 0}(0.01)$	$\mathbf{0 . 9 7}(0.01)$	$\mathbf{3 9 . 9}$	$\mathbf{3 6 . 3}$
Elastix $^{[1]}$	$0.87(0.02)$	$0.95(0.02)$	37.3	61.6
Demons $^{[2]}$	$0.73(0.05)$	$0.92(0.02)$	38.2	434.6

*Image Size $=256$ by 256 by 72 voxels

Extensions: video

Conclusion

■ Estimated motion using Local All-Pass Filters

- Shifting by a constant displacement \Longrightarrow All-pass filtering
- Assume motion is locally constant \Longrightarrow Local All-Pass Filters
- Fast and efficient implementation
- Applied to Biomedical Images
- Demonstrated accuracy using synthetic images
- Accurate removal of respiratory motion from MRI data
- Motivate the idea of analysing scene dynamics

Main paper: Gilliam, C. \& Blu, T.," Local All-Pass Geometric Deformations", IEEE Transactions on Image Processing, Vol. 27 (2), pp. 1010-1025, February 2018.

