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The polynomial B-spline basis

Polynomial B-splines are bell shaped compacted supported basis functions for
polynomial splines that find application in many different context

geometric modeling

computer graphics

curve/surface fitting

numerical differentiation/integration

signal/image processing

solution of PDE also via IgA

statistics

....
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The polynomial cardinal B-spline basis: integer simple knots

recurrence : → Bh,i (t) = t−i
i+h−1−i Bh−1,i (t) + i+h−t

i+h−(i+1)
Bh−1,i+1(t), h = 2, ...,N

divided difference of truncated power: → BN =[0, 1, · · · ,N](·)N
+;

convolution: → Bh = Bh−1 ∗ B0, h = 1, · · · ,N;

Green functions of diff. op. : → BN = ∆N (ρ(t)), with DN (ρ(t)) = δ;

limit of (discrete) iterative schemes: subdivision basic limit functions

i support size N + 1 and non negative;

ii CN−1 global regularity;

iii form a partition of unity
∑

i∈Z BN,i = 1;

iv shifted copies of each other BN,i = BN,0(· − i);
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Limits of polynomial B-splines

In spite of the nice properties they have, polynomial B-splines

their use to model manifolds with arbitrary topology is conceptually very
complicated and extremely expensive;

have a low approximation order. A pre-processing of the data is necessary
to get higher approximation order;

are not able reproduce geometries like conic sections which are important
e.g. in geometric modeling, biomedical imaging and IgA.

Costanza Conti 5



B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

Limits of polynomial B-splines

In spite of the nice properties they have, polynomial B-splines

their use to model manifolds with arbitrary topology is conceptually very
complicated and extremely expensive;

have a low approximation order. A pre-processing of the data is necessary
to get higher approximation order;

are not able reproduce geometries like conic sections which are important
e.g. in geometric modeling, biomedical imaging and IgA.

Costanza Conti 5



B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

Limits of polynomial B-splines

In spite of the nice properties they have, polynomial B-splines

their use to model manifolds with arbitrary topology is conceptually very
complicated and extremely expensive;

have a low approximation order. A pre-processing of the data is necessary
to get higher approximation order;

are not able reproduce geometries like conic sections which are important
e.g. in geometric modeling, biomedical imaging and IgA.

Costanza Conti 5



B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

Limits of polynomial B-splines

In spite of the nice properties they have, polynomial B-splines

their use to model manifolds with arbitrary topology is conceptually very
complicated and extremely expensive;

have a low approximation order. A pre-processing of the data is necessary
to get higher approximation order;

are not able reproduce geometries like conic sections which are important
e.g. in geometric modeling, biomedical imaging and IgA.

Costanza Conti 5



B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

Conics in geometric modeling/CAD
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Conics in medical image processing
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NURBS: non uniform rational B-splines

In geometric modeling a B-splines generalization yield in the 90s NURBS

s(t) =
n∑

i=1

Pi BN,i(t), s(t) =

∑n
i=1 Pi BN,i(t)wi∑n

i=1 BN,i(t)wi
=

n∑
i=1

Pi RN,i(t).

They are able to exactly reproduce a huge variety of geometric forms but

need additional parameters or weights which do not have an evident
geometric meaning and whose selection is often unclear;

not exact description of transcendental curves like a helix or a cycloid;

their rational nature make them unpleasant with respect to differentiation
and integration which are crucial operators in analysis;
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An alternative to NURBS: generalized B-splines

To overcome the drawbacks of NURBS an attractive alternative to the rational
model is given by the so called generalized B-splines.

While classical B-splines are piecewise functions with sections in the space
of algebraic polynomials, generalized B-splines are "bell-shaped" piecewise
functions with sections in more general spaces;

With a suitable selection of such spaces (typically including trigonometric or
hyperbolic functions), generalized B-splines allow exact representation of
polynomial curves, conic sections, helices, cicloids;

They possess all fundamental properties of algebraic B-splines (recurrence
construction, minimum support, local linear independence, knot-insertion,
degree elevation, which are shared by NURBS) but behave completely
similar to B-splines with respect to differentiation and integration.

In same instances they are also called Tchebycheffian B-splines
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A subdivision approach for cardinal B-splines
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Cardinal B-splines: refinement properties

An important property of polynomial cardinal B-splines is their refinability:
they can be written as linear combination of shifts of dilates version of themself

B3(t) =
1

8
B3(2t) +

1

2
B3(2t − 1) +

3

4
B3(2t − 2) +

1

2
B3(2t − 3) +

1

8
B3(2t − 4)

+ Coefficients of the cubic B-spline refinement mask: 1
8 ,

1
2 ,

3
4 ,

1
2 ,

1
8
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The binary subdivision scheme for cardinal cubic splines

Using the refinability properties

B3(t) =
∑
j∈Z

a3
j B3(2t − j), where a3 = · · · 0, 1

8
,

1
2
,

3
4
,

1
2
,

1
8
, 0, · · ·

any cubic polynomial spline can be written as

s(t) =
∑
i∈Z

PiB3(t − i) =
∑
i∈Z

Pi

∑
j∈Z

a3
j B3(2(t − i)− j), that is

s(t) =
∑
i∈Z

∑
j∈Z

a3
i−2jPj

B3(2t − i) =
∑
i∈Z

P(1)
i B3(2t − i)

where
P(1)

i =
∑
j∈Z

a3
i−2jPj , i ∈ Z.
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The binary subdivision scheme for cardinal cubic splines

Iterating we can write any cubic polynomial spline as

s(t) =
∑
i∈Z

P(1)
i B3(2t − i) =

∑
i∈Z

P(1)
i

∑
j∈Z

a3
j B3(2(2t − i)− j),

that is

s(t) =
∑
i∈Z

P(2)
i B3(4t − i), · · · s(t) =

∑
i∈Z

P(k+1)
i B3(2k t − i),

where

P(k+1)
i =

∑
j∈Z

a3
i−2jP

(k)
j , i ∈ Z ⇔ P(k+1) = Sa3P(k), k ≥ 0.

+ Since the support of B3(2k ·) shrink for k large enough the coefficients P(k)

are a good discrete representation of s.
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The binary subdivision scheme for degree N splines

More in general, since BN(t) =
∑
i∈Z

aN
j BN(2t − j), starting with an initial

sequence of points P(0), the iterative computation of sequence of points

P(k+1) = SaN P(k), P(k+1)
i =

∑
j∈Z

aN
i−2jP

(k)
j , aN

i =
1

2N

(
N + 1

i

)
, i = 0, · · · ,N

defines the so called subdivision scheme for cardinal degree-N splines whose
limit is a degree N spline associated with the initial control points P(0) and often
denoted as S∞aN P(0).

+ Any degree-N B-splines is the basic limit function of the corresponding
subdivision scheme when starting with the sequence δ = 0, 0, 1, 0, 0.
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Binary subdivision scheme
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A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

Binary subdivision scheme

This subdivision idea allows us to define other type of refinable basis functions
not necessarily piecewise polynomial but useful "generalization" of B-splines.

Sa ⇔


Input P(0)

For k = 0, 1, · · ·
P(k+1) := SaP(k)

· · ·
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B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

Binary subdivision scheme

A subdivision scheme is essentially given by the subdivision coefficients or
subdivision mask, say a = {ai ,∈ R i ∈ Z} (usually finite);

If convergent a sub. defines a compactly supported basic φ = S∞a δ as limit
of the subdivision process starting from δ = 0, 0, 1, 0, 0;

Mostly, this function is not defined analytically. But:

φ =
∑
i∈Z

aiφ(2 · −i);

partition of unity
∑
i∈Z

φ(· − i) = 1;

.....
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B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

Non-stationary or level dependent subdivision scheme

This subdivision recursion idea can also be implemented by changing the set of
coefficients at each level.

{Sa(k) , k ≥ 0} ⇔


Input P(0)

For k = 0, 1, · · ·
P(k+1) := Sa(k) f(k) level dep. rules

+ In that case we have a family of basic limit functions

{φm, m ≥ 0}, φm = lim
k→∞

Sa(k) · · ·Sa(m)δ.

+ They still satisfy a refinability property: φm =
∑
i∈Z

a(m)
i φm+1(2 · −i).
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B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

The role of symbols in subdivision schemes

How to prove convergence or other properties of a subdivision scheme?

An advantage of the cardinal framework is that we can make use of standard
mathematical tools of signal processing which simplify all formulations and
derivations considerably.

In the subdivision community a similar notion to the z-trasform is used: the
subdivision symbol associated with the subdivision mask .

Subdivision symbol

The symbol of a subdivision mask {ai , i ∈ Z} is the Laurent polynomial

a(z) =
∑
i∈Z

ai z i , z ∈ C \ {0}.
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B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

The role of symbols in subdivision schemes

The mask symbol a(z) fully identifies a stationary subdivision scheme;

In the level dependent case the sequence of symbols {a(k)(z), k ≥ 0}
associated with the sequence of masks identifies the subdivision scheme;

Many of the properties of a subdivision scheme can be easily checked
using algebraic conditions on the subdivision symbols;

This is also true for the properties of the basic limit functions
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B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

Exponential-polynomial B-splines:
a "perfect" base for the space of exponential-polynomial splines
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B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

Cardinal exponential-polynomial B-splines

Exponential-polynomial Splines S(EPΓ)

Exp-polynomial splines are generalized splines whose sections are in EPΓ

Exponential-polynomials
Let n ∈ N and let Γ = {(θ1, τ1), . . . , (θn, τn)} with θi ∈ R ∪ iR, θi 6= θj if i 6= j and τi ∈ N, i = 1, · · · , n.
We define the space of exponential polynomials EPΓ

EPΓ = span{ x ri eθi x , ri = 0, · · · , τi − 1, i = 1, · · · , n}.

+ EPΓ is a linear space of dim. N =
∑n
`=1 τ`.

It contains polynomials as special case.
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B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

Cardinal Exponential B-splines and Green functions

The way exponential B-splines are constructed is simple in the "first order " case
Γ = {(θ, 1)} by the help of Green functions of the differential operator

Take the first oder diff. operator Dθ = D − θ I;

Take its Green function ρθ = eθt 1+(t);

Construct the discrete version of Dθ , ∆θ , such that ∆θ f = f − eθ f(· − 1);

Define the "first order" exponential B-spline as Bθ(t) = ∆θ (ρθ(t)) .

Cardinal exponential B-spline for Γ = {(θ1, τ1), . . . , (θn, τn)} are defined as

Definition of exponential B-splines

BN,Γ = Bθ1︸︷︷︸
τ1−times

∗ Bθ2︸︷︷︸
τ2−times

∗ · · · ∗ Bθn︸︷︷︸
τn−times

, Bθ(t) = ρθ(t)− eθρθ(t − 1).
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B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

Cardinal exponential B-splines and subdivision schemes

Cardinal exponential B-splines can be defined via level dependent subdivision
schemes by directly constructing their symbols:

Symbols of exponential B-splines

For Γ = {(θ1, τ1), . . . , (θn, τn)} the symbols of exponential B-splines of order

N =
∑n

`=1 τ`, are given by B(k)
N,Γ(z) = F (k)

N

n∏
`=1

(1 + e
θ`

2k+1 z)τ` , k ≥ 0.

The subdivision scheme based on {B(k)
N,Γ(z), k ≥ 0} converges;

The corresponding basic limit function is BN,Γ (a base for S(EPΓ));

When Γ = {(0,N)} the symbols reduce the symbol of polynomial B-spline
of order N (degree N − 1) given by BN−1(z) = 1

2N−1 (1 + z)N .
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B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

Exponential B-splines: four dimension ("cubic") case

Support:
[0, 4]

Knot vector:
{1, 2, 3, }, M = (1, 1, 1)

Pieces in the space:
{1, t, eθ t , e−θ t}, θ ∈ R ∪ iR

P(k+1)
2i = 1

4(v(k)+1)
P(k)

i−1 + 1+2v(k)

2(v(k)+1)
P(k)

i + 1
4(v(k)+1)

P(k)
i+1

P(k+1)
2i+1 = 1

2 P(k)
i + 1

2 P(k)
i+1

For v(k) =
1

2

(
e

θ
2k+1 + e

−θ

2k+1

)
, v(k) =

√
1 + v(k−1)

2
, k ≥ 0, v(−1) > −1

Basic limit functions for different values of v(−1) ∈ {−0.9, −0.5, 0.5, 0.25, 0.45}
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B-splines: merits and limits
A subdivision approach for cardinal B-splines

...and for Exponential-polynomial B-splines
Beyond B-splines and Exponential B-splines

Cardinal Exponential B-splines

Are B-splines and Exponential B-splines enough?
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Beyond B-splines and Exponential B-splines

They both have low approximation order;

The approximation order of (any) subdivision scheme is strictly connected
with its generation/reproduction properties;

By subdivision we can define pseudo-splines (pol. and exp. pol.) that have
higher approximation order and generalize B-splines;

In both cases the first member of the family of pseudo-splines is
a B-splines the last an interpolatory basis function

Pseudo-splines give a wide range of choices balancing
approximation order, length of the support and regularity;

are good candidate for application in different contexts.
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Thanks for your attention
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Happy birthday Michael!
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