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PREAMBLE

• BIG simply loves maths.

• “We are a continuous lab.” - M. Unser

• 20 years in 20 minutes: 1/500 000

• We do applied and even applicable mathematics.

• The BIG question: How to model signals?  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THE GAME OF THE INNOVATION AND THE OPERATOR

The characters:

the Innovation

the Operator

The story of how they combine to model signals

Ls = w
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FROM SCHOENBERG TO UNSER

Fractional splines
L = D�

[BU’00,BU’07,UB’07]

L = DN

piecewise polynomial
[S’64,U’99,BTU’01]

Exponential splines
[UB’05,U’05]

L = D� ↵I

generalL
“spline-admissible”

[UB’05]

=A function    is a uniform    -spline if s L

Ls =
X

k2Z
ak�(·� k)
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“AND HERE, YOU SEE! SPLINES!” - AN ENTHUSIASTIC RESEARCHER

• Statistical optimality: MMSE estimator of sampled Gaussian processes

• Minimal support properties: “The shorter, the better.” - a spline aficionado

• Reproduction properties: polynomials, exponentials

• Localization:        -splines          L =

(
s(t) =

X

k2Z
bk�L(t� k)

)

• Approximation power:
T

ks � Pspline
T {s}kL2 when T ! 0

• Minimum curvature: minkD2skL2 such that s(k) = yk
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THE BLU-UNSER COLLABORATION

A textbook case: How well can you approximate with splines?

• Second order question: What is the constant?

C =
1

(2⇡)N

vuut2
1X

k=1

1

k2N
[BU’99b,UB’05]

• Comparison: splines vs. Daubechies wavelets

⇡ = lim
N!1

T
spline order N

T
Daubechies order N

[BU’99c]

• First order question: The order of approximation?

[BU’99a,BU’99b]ks� Pspline order N
T {s}kL2  CTNks(N)kL2
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ARE YOU SPLINE-ADMISSIBLE?

• An operator is spline-admissible if you can do splines with it.

• More precisely?

[UB’07]

[UB’05]

[UT’14]

[UFW’17]

[FUU’17]
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ARE YOU SPLINE-ADMISSIBLE?

• An operator is spline-admissible if you can do splines with it.

• More precisely?

• The answer:  
A. Amini, M. Unser, A universal formula for generalized cardinal B-splines, 
Applied and Computational Harmonic Analysis, in press.
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THE RISE AND FALL OF GAUSSIAN MODELS

• The Fourier-Gauss-Hilbert realm

Fourier transforms optimally represent Gaussian processes [U’84] 

Quadratic optimization equivalent to optimal Gauss-based estimation

• But… sparsity!

New mathematical methods: wavelets, FRI, compressed sensing, ….

Stochastic models for sparse signals?

Gaussian is not sparse

=

•              = Gaussian white noise
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FROM PIECEWISE-SMOOTH TO SPARSE PROCESSES

• Innovation: random, independent at every point, stationary

• Definition: A sparse stochastic process satisfies Ls = w

= Lévy white noise

L = D

Gauss Poisson Cauchyw

•              = Poisson white noise

When random processes are splines [UT’11] 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MATHEMATICS OF SPARSE STOCHASTIC PROCESSES

• Signal processing: probabilistic model for sparse signals

• Mathematics: analysis of stochastic differential equations driven by a Lévy white noise

• Estimation methods based on sparse priors  
[BKNU’13,KPAM’13]

• Wavelets are optimal to compress sparse processes  
[PU’15]

• The foundations: construct your mathematics  
[UT’14,FAU’14]

• The mathematical meaning of sparsity 
[AFU’17,FUW’17]
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OPTIMIZATION METHODS FOR SPARSE SIGNALS

[GFU’18]

L⇤L{s
optimal

} =
MX

m=1

bm�(·� tm)

Representer Theorem in L2

min
MX

m=1

(ym � s(tm))2 + �kLsk2
L2

min
MX

m=1

(ym � s(tm))2 + �kLskM

M L1(the real      )Representer Theorem in 

First complete mathematical framework to analyse sparse promoting regularization 
in continuous-domain [UFW’17,U&co’19]

New algorithms to reconstruct sparse signals  
Harshit Gupta, Shayan Aziznejad, Thomas Debarre

K  ML{s
optimal

} =
KX

k=1

ck�(· � xk)



• From the particular to the general, and back

• Original contributions to mathematics:  
approximation theory, stochastic processes, functional analysis

• Facing nowadays challenges in signal processing
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