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We will see that not all B-splines are positive functions
and
We will claim that a partition of the unity may be more efficient
if “definite-positive” instead of positive
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Part 1:
Various B-splines



usual Cardinal cubic B-spline (with regular knots)

Definition :
Let o = 35 |«[> ; then p(*) = Dirac , and so §(w) = ﬁ
Let 62 such that for any f € F(R),

62f = h=2(f(= — h) — 2f + f(= + h)), and let §}f = 62(52f)
Then §2f(w) = —4h~2sin? 1 f(w)
Now let define B, by | B=hé} | = hd} D™ *Dirac

Cubic B—spline




Some properties of cardinal cubic B-splines

4
B\(w) _ h 2 sin hTW ...easy to prove : @(w) = ﬁ
hw

b
and 63f(w) = (=4 h=2sin2())2 F(w))

Partition of unity: VxcR, B(x) >0 and ) ;.5 B(x—ih)=1

B is a positive definite function (“pdf”) (connected to Bw) > 0) :
VneN, V(Nj)ji—tn€R", V(x)j=1n€R", 32, 1., N A B(x — x) > 0

Multiscale equation: B(x/h) =>;_ 5,3 B(2x/h—))

Riesz Basis: c||y|> < szezij(-/hf h)HL2(R) < Cllyll2

Curve construction: C(t)y=>,_1.,PiB(t/h—1i)

1s




Order m (degree 2m — 1) cardinal B-splines

Very similar

Let ¢ = |2m—1 (2m) _

then ¢ Dirac , and so

1 |a
2(2m—1)!
Pw) = 1=

Let define B, by | B=hé2™ | = h§2™ D~2™Dirac

Some properties

2 sin hw 2m
=~y sin ==
Bm ((A)) = h < hoo 2 ) (...same proof as for cubic B-spline)

Partition of unity: VxcR, B(x) >0 and ) ; ., B(x—ih)=1

B is a positive definite function (“pdf”) (connected to Bw) > 0) :
VREN , Y(N)i—tn€ R", V(x)icun € R, 3, 1 \iM Blxg — i) = 0

Multiscale equation: Bm(x)=>"_, aB(2x —))

j=—m

Riesz Basis: ¢y |y < szezyj Bum(» — jh) < Cmllyll

L2(R)

Curve construction... _
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Order a € R, cardinal B-spline ... that’s BIG, isn't it ?

Definition :
Let « € Ry, a > 1/2. Let ¢, be such that p,(w) = ﬁ
o ol "2~ 1in|® |2 if o is a half integer number
Vo meets Y, = { z}_ L

2 «
Let now B, be defined by é;(w) =h <(2 SIIZuhzw> )

Remark: | B, = h(ﬁa ol =h 5,270‘ D—2%Dirac

Properties :

The (B,) are positive definite functions, but most are not positive:
VnelN s V()\j)j:l;,,G R" s V(Xj)j:l;,,G R" s Zj,k:l:n )\j Ak Ba(Xj — Xk) >0

“pdf-partition of unity”: VxcR, ) .., B(x—ih)=1

Riesz Basis : c||y|» < sz-ezyj B (= —jh)‘

<
oy < €l

Multiscale equation: Ba(x) = > . aj Ba(2x — )
-7

j=—m



Fractional B-splines, Annette Unser




Art in Toulouse metro BIG art, Annette Unser



(elementary) Cardinal polyharmonic B-splines

Definition :  m > d/2, mclN or meR. ; “knots” hZ?; ¢ : A"y = Dirac
Dpp=h"2 3 1 q(p(® —hek) =20+ @(» + hek))

(Ap: “elementary” discretisation of A)

AT = Ay Dy . Dy B=h'AT¢p = h? A7 A~"Dirac
‘o Bl — pe [ 2Zecrasn? 5T g (st |2
Properties: B(w)=h ( S = h H o 7
...easy to prove : A”¢p = Dirac = p(w) = % , and E\hf(w) = —4 h_ZH sm(“’T)H2 f(w)
Support(B) = R? 5 [os B(x)dx = B(0) = h? ; B(x) = O(lIxlI=*~2)
X||— 00

B is NOT a positive function, but B is a positive definite function:
VYnelN s V()\j)j:l;nG R" s V(Xj)j:l;nG(Rd)n s Zj,k:l:n )\j )\k B(Xj — Xk) > 0

pdf-partition of unity: VxR, Y. B(x—ih)=1

Riesz Basis : ¢ |y < szemyj B(s —j h)) ey < €Iz

Multiscale equation: ~ B(x) =3, a3 B(2x —j) , aj =—— oI~

H [|—=o0

1N



Thin Plate B-spline (m order 3 B-spline (d

Elementary Thin Plate B-Spline Tri-harmonic B-spiine
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Elementary Thin Plate B-Spline

Tri-harmonic B-spline
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£ = =Y 0 1 2 3 35 = o 1 2 3
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Some other Thin plate B-splines (m=d=2)

X = X
¢ =1 l=IIn]la]? = X =
X = X

Apaisp = h2(o(w —he))+@(n +her)+ (s —he) + (s +he) —4¢)
Andingp = "5 (p(» — h(er + &) ) + (= + h(es + &) )
+p(n —hler—e) )+ (= +hles—e) ) —4p)

Crossed B-spline: B = i’ A axis Db diag ¢
min,cg2 B(x) ~ —.012 ; max,cz2 B(x) ~ .42

Mixed B-spline: B =3 Beiementary + 3 Berossed) = h* (5 A} avis + 3 Doaxis D diag ) ¢
min, g2 B(x) ~ —.0017 ; max,cge B(x) ~ .50

Isotropic B-spline (BIG!): B = b (2 Apovis + A4 aing)’
B(w) 1+ O(lw|*) 5 mingege B(x) ~ —.00089 ; maxc g2 B(x) ~ .52

[w][—0

Hexagonal B-spline, or “Bees-spline”
Ah Jhexa® =

%Z(ﬂ-—mn+a +her) + o(w = h(F + %5)) (= + h(§ + %2))
+o(r = h($ = H2) + (= + (G - 22) - 6y)
A2,.0 ;7 mingge B(x) >~ —.0041 ; max,cge B(x) =~ .56

B="1y3

1



Crossed Thin Plate B-Spline

Crossed Thin Plate B-Spiine
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Some other Thin plate B-splines (m=d=2)

X = X
¢ =1 l=IIn]la]? = X =
X = X

Apaisp = h2(o(w —he))+@(n +her)+ (s —he) + (s +he) —4¢)
Andingp = "5 (p(» — h(er + &) ) + (= + h(es + &) )
+p(n —hler—e) )+ (= +hles—e) ) —4p)

Crossed B-spline: B = i’ A axis Db diag ¢
min,cg2 B(x) ~ —.012 ; max,cz2 B(x) ~ .42

Mixed B-spline: B =3 Beiementary + 3 Berossed) = h* (5 A} avis + 3 Doaxis D diag ) ¢
min, g2 B(x) ~ —.0017 ; max,cge B(x) ~ .50

Isotropic B-spline (BIG!): B = b (2 Apovis + A4 aing)’
B(w) 1+ O(lw|*) 5 mingege B(x) ~ —.00089 ; maxc g2 B(x) ~ .52

[w][—0

Hexagonal B-spline, or “Bees-spline”
Ah Jhexa® =

%Z(ﬂ-—mn+a +her) + o(w = h(F + %5)) (= + h(§ + %2))
+o(r = h($ = H2) + (= + (G - 22) - 6y)
A2,.0 ;7 mingge B(x) >~ —.0041 ; max,cge B(x) =~ .56

B="1y3
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To compute polyharmonic B-splines
Integer m
Explicit value possible :  B(x) = h? AT p,(x)
Cancellation effect (not a too big problem, actually)
since B(x) = > Aip(x —x;) with > A => Aix;i=0 and go(x)moo
(and even more : Vg€ Pr_1, >, Aig(x;) =0)
O(n) operations for the computation of n values of B(x) ;
scattered values possible.
Any m (real or integer) :

Use B and FFT ! (BIG way 1)

~ 2 h“’k

B _ hd I sin hw >l _ hd 2%, 1dsm
() ( BTk g

bi=B(/r)  and b= B(h) = (FFT(B))

Easy even for non-integer m. No cancellation effect
O(nln n) operations for the computation of n values of B(x).
Values must be on a regular gri1da.



Please remember from this first part

There are lots of B-splines; they are obtained by applying a
discretization of a differential operator (as D* D?™, A2?™..))
to the fundamental solution of it (even for real m).

Only “elementary” polynomial B-splines are positive
functions

All B-splines are positive defined functions,
and form pdf-partitions of unity.

Their Fourier transform is a quite simple one

17



Part 2

High level B-splines
and

rate of convergence of B-spline approximation

10



High level cubic B-splines

Idea: Use a “better” approximation of D? :
h=262f = h™2(f(= — h) —2f + f(= + h)) is Ps-exact
h=26;5f = h™2(65f — 15 04f) s Ps-exact

As a consequence, P7-exact approximations of 7V :
T4 (07.5)2F = h (ShF — £ OSF + 135 05F)
h=4 84 p7f = h=* (6} — %52f)

Definition: Let p =120
We call level 1 cubic B-spline the functions
Bl :=hh* (547;,’7@ =hh* (547;,,7 D~*Dirac

Ct:=hh=*(6;5)%¢ = hh™* (6} 5)* D *Dirac

¢ = Dirac and p(w) = %)

Properties: Vanishing moment: [, x*B*(x)dx = [, x*C'(x)dx =0
_ 2sin(%) 2 . Bl o (hw R M
Let u(w) = ( i ) © Bl(w)=h [ u(@)2+82 y(w)? ) =B(w) [ 1+ 522 y(w)

Ci(w)=h (wm#%u(wm(ﬁ“ u(w)) B(w) (1+ P )y )t uW)

The level 1 cubic B-splines are NOT positive functions,
but form pdf-partitions o1fnunity



Level 1 cubic B-splines m =2

Levels 0, 1 and 1 cubic B-splines
T T T
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Level / m-harmonic B-spline : same idea!

Approximation of A™
Apsf =h2 (5%6 +5heg — %(54

he

+04,)) f is Ps-exact

(Bns)"F(w)=h=2m ((2(sin (P58 )+sin?(752))+ 2 (sin* (“71>+sin4(”%2>))2) *
Definition of level 1 m-harmonic B-spline

et e = By ]

The level 1 m-harmonic B-spline BL is defined

by its Fourier transform: Bi(w)=h (u(w) + %v(w))m
Some properties: Higher levels are possible (useful only for £ < m — 1)

B. is a positive definite function (any ¢ € IN)

(<m—-1= B (x)

x |—2€—d—2)

[[x|—o00
Vanishing moments : £ < m— 1= [pa||x||*Bf(x) dx =0

in B(x) ~ —.036 ; B ~ —.09; B(x) ~ .66; B3(x) ~.9
i 56 min Ba0) = —09 - max Blx) = 66; max Ba()



Levels 1 and 2 quintic B-splines (m=3)

Levels 0, 1 and 2 quintic B-splines
T T T
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Elementary

Elementary Thin Plate B-Spline

High level Thin Plate B-Spiine

and level 1 Thin Plate B-spline

Elementary Thin Plate 8-Spiine
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High level Thin Plate B-Spiine
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B-spline approximation on a cardinal grid

Definition: feF(hZ?, R)
An(f) := 2 eza FU) Br(= — jh) ; AL(F) = 3 e o F(jh) Bi(= — jh)
An(y) = Zjezdyj By(= —jh) ; AL(f) = Zjezdyj Bi(= — jh)

General shape of A,f and A}f
Ap is Pi-reproducing : VfePy, Apf =1F
<m-1= Ai is Pyyyi-reproducing :  Vfe PngAf,f =f

Apf and A f follow the general form of (jh, f(jh));ene

Convergence: Let feC‘(R?), then:
o pe—CT LR
t<m—1= ||Af — fllo go O(h" ey

Same order of convergence for a finite sum, further than e from the

boundary, for any €.

Consequence: A}f is closer to f than Apf
Af, is closer to y than Ai‘l y

Remark: Convergence rate is all the bigger that the negative

part is more important o






Please remember from this second part

By applying a high order discretization of a differential
operator (as D* D> A?"...) to the fundamental
solution of it, we obtain “better” “B-splines” (not with
minimal support) :

Higher rate of convergence of 3.4 f(jh) Ba(» — jh) towards f.
Reproducing polynomial of higher degree
Higher rate of decay when ||x|| — oo ; vanishing moments
> jemd Pi Bf (= — jh) is closer to the control points (P;)jcz
(or (Pj)j=1..n)-
Besides

All B-splines are positive defined functions,
and form pdf-partitions of unity.

Their Fourier transform is a quite simple one

NA



Part 3

Appeal for

Positive definite partitions of unity

~N7



Use high order B-splines
instead of elementary B-splines

In order the a; in 3 ;7 a; BK(s — jh) are closer to the obtain
function

In order the obtained curve }_; 4 P; BK(= — jh) is closer to the
control points

In order to accelerate convergence of any iterative method

Remarks

The Riesz relation guaranties stability

It is still possible to use Fourier transform, and so to work
with fractional order splines... and so BIG researchers can use
them!

O



Use positive definite partitions of unity
instead of positive ones

“Positive definite” means, in some way “essentially
positive”, or “the negative parts are of small importance”, and...

In many situations, having (small) negative part is a bit
counter-intuitive, but it often gives better results:

Wavelets with various vanishing moments are usually more
efficient than those with a small number of them.

The negative part, if not “too important”, gives the way to
phenomenons such as Gibbs phenomenon, which frequently
need to be modellised.

My guess is that the “positive definite” condition guaranties
the stability of the process. But, sorry, I did not prove it

IaYe)



As a conclusion...

Try and use “high level B-splines”, it’s high level fun (and
high level efficiency)!

Forget the implicit word “positive” in “partition of unity”, by
replacing it by the explicit words “positive definite”

Thanks to Michael, Dimitri and all others for the various uses
of (fractional order) splines, vectorial splines and more...

Thanks to the organizers of this very special day...
and of Chamonix trip!

Enjoy the end of the day, enjoy the coming end of the week...

. e
Enjoy your life!



High level Cubic and Quintic B-spline curves

high level cubic and quintic B—spline approximations
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