Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Seminars
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Seminars


Seminar 00253.txt

Machine Vision forum in Heidelberg
Virginie Uhlmann, EPFL STI LIB

Test Run • 17 August 2016 • BM 4 233

Abstract
Title: Spline-based models for image segmentation Abstract: Splines provide a unifying framework for solving a whole variety of image-processing problems that are best formulated in the continuous domain. In particular, splines can be used to de ne a particular type of active contour algorithm called spline-snakes [1]. Active contours (or snakes) are very popular methods for image segmentation that consist in a curve evolving in the image from an initial position to the boundaries of the object of interest. Many di erent snake algorithms exist, which can usually be grouped into three main categories, namely point-based, level sets and parametric snakes. Spline-snakes are a subcategory of parametric snakes which bene t from a continuous-domain representation, hence involving less parameters and being easy to handle analytically. In addition, spline-snakes are well-suited for semi-automated analysis pipelines and therefore hold a strong potential for user-friendly segmentation frameworks. Spline-snake algorithms rely on two main ingredients. The first one is the de nation of the snake model, which includes the choice of a spline generator that serves as basis function. The snake curve is then continuously-de ned using the spline basis to interpolate between a collection of discrete control points on the image. The second ingredient is the so-called snake energy, an appropriately de ned cost function that, upon minimization, drives the deformation of the snake curve to t object boundaries. The snake energy is generally composed of external and internal forces, which attract the curve towards prominent image features (data delity) or constrain its rigidity (regularization), respectively. Out of these two aspects (snake curve model and energy), a whole zoo of spline-snakes with different properties can be defined. In this way, spline-snakes can yield both multi-purpose segmentation methods as well as approaches speci cally tuned to match the features of particular problems. In this talk, we will present in more details the general spline-snake construction and illustrate its use through a collection of applications to segmentation in 2- and 3-D biomedical images. References [1] R. Delgado-Gonzalo, V. Uhlmann, D. Schmitter, and M. Unser, \Snakes on a Plane: A Perfect Snap for Bioimage Analysis," IEEE Signal Processing Magazine, vol. 32, no. 1, pp. 41--48, January 2015.
  • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
  • Publications
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved