Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Oblique Projections
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Oblique Projections in Discrete Signal Subspaces of l2 and the Wavelet Transform

A. Aldroubi, M. Unser

Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing II, San Diego CA, USA, July 24-29, 1994, vol. 2303, pp. 36-46.


We study the general problem of oblique projections in discrete shift-invariant spaces of l2 and we give error bounds on the approximation. We define the concept of discrete multiresolutions and wavelet spaces and show that the oblique projections on certain subclasses of discrete multiresolutions and their associated wavelet spaces can be obtained using perfect reconstruction filter banks. Therefore we obtain a discrete analog of the Cohen-Daubechies-Feauveau results on biorthogonal wavelets.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/aldroubi9401.html,
AUTHOR="Aldroubi, A. and Unser, M.",
TITLE="Oblique Projections in Discrete Signal Subspaces of {$l_{2}$}
	and the Wavelet Transform",
BOOKTITLE="Proceedings of the {SPIE} Conference on Mathematical
	Imaging: {W}avelet Applications in Signal and Image Processing
	{II}",
YEAR="1994",
editor="",
volume="2303",
series="",
pages="36--46",
address="San Diego CA, USA",
month="July 24-29,",
organization="",
publisher="",
note="")
© 1994 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved