Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Spline Formula
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

A Universal Formula for Generalized Cardinal B-Splines

A. Amini, R. Madani, M. Unser

Applied and Computational Harmonic Analysis, vol. 45, no. 2, pp. 341-358, September 2018.


We introduce a universal and systematic way of defining a generalized B-spline based on a linear shift-invariant (LSI) operator L (a.k.a. Fourier multiplier). The generic form of the B-spline is βL = Ld L−1 δ where L−1 δ is the Green's function of L and where Ld is the discretized version of the operator that has the smallest-possible null space. The cornerstone of our approach is a main construction of Ld in the form of an infinite product that is motivated by Weierstrass' factorization of entire functions. We show that the resulting Fourier-domain expression is compatible with the construction of all known B-splines. In the special case where L is the derivative operator (linked with piecewise-constant splines), our formula is equivalent to Euler's celebrated decomposition of sinc(x) = sin(π x) ∕ (π x) into an infinite product of polynomials. Our main challenge is to prove convergence and to establish continuity results for the proposed infinite-product representation. The ultimate outcome is the demonstration that the generalized B-spline βL generates a Riesz basis of the space of cardinal L-splines, where L is an essentially arbitrary pseudo-differential operator.

@ARTICLE(http://bigwww.epfl.ch/publications/amini1801.html,
AUTHOR="Amini, A. and Madani, R. and Unser, M.",
TITLE="A Universal Formula for Generalized Cardinal \mbox{{B}-Splines}",
JOURNAL="Applied and Computational Harmonic Analysis",
YEAR="2018",
volume="45",
number="2",
pages="341--358",
month="September",
note="")

© 2018 Elsevier. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Elsevier. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved