Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Na+ Transients
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Spontaneous Na+ Transients in Individual Mitochondria of Intact Astrocytes

G. Azarias, D. Van De Ville, M. Unser, J.-Y. Chatton

Glia, vol. 56, no. 3, pp. 342-353, February 2008.


Mitochondria in intact cells maintain low Na+ levels despite the large electrochemical gradient favoring cation influx into the matrix. In addition, they display individual spontaneous transient depolarizations. We report here that individual mitochondria in living astrocytes exhibit spontaneous increases in their Na+ concentration (Namit+ spiking), as measured using the mitochondrial probe CoroNa Red. In a field of view with ∼30 astrocytes, up to 1,400 transients per minute were typically detected under resting conditions. Namit+ spiking was also observed in neurons, but was scarce in two nonneural cell types tested. Astrocytic Namit+ spikes averaged 12.2 ± 0.8 s in duration and 35.5 ± 3.2 mM in amplitude and coincided with brief mitochondrial depolarizations; they were impaired by mitochondrial depolarization and ruthenium red pointing to the involvement of a cation uniporter. Namit+ spiking activity was significantly inhibited by mitochondrial Na+/H+ exchanger inhibition and sensitive to cellular pH and Na+ concentration. Ca2+ played a permissive role on Namit+ spiking activity. Finally, we present evidence suggesting that Namit+ spiking frequency was correlated with cellular ATP levels. This study shows that, under physiological conditions, individual mitochondria in living astrocytes exhibit fast Na+ exchange across their inner membrane, which reveals a new form of highly dynamic and localized functional regulation.

The associated software is available here.

@ARTICLE(http://bigwww.epfl.ch/publications/azarias0801.html,
AUTHOR="Azarias, G. and Van De Ville, D. and Unser, M. and Chatton,
	J.-Y.",
TITLE="Spontaneous ${\mathrm{Na}}^{+}$ Transients in Individual
	Mitochondria of Intact Astrocytes",
JOURNAL="Glia",
YEAR="2008",
volume="56",
number="3",
pages="342--353",
month="February",
note="")

© 2008 Wiley-Liss. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Wiley-Liss. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved