Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Subdivision Snakes
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Multiresolution Subdivision Snakes

A. Badoual, D. Schmitter, V. Uhlmann, M. Unser

IEEE Transactions on Image Processing, vol. 26, no. 3, pp. 1188-1201, March 2017.


We present a new family of snakes that satisfy the property of multiresolution by exploiting subdivision schemes. We show in a generic way how to construct such snakes based on an admissible subdivision mask. We derive the necessary energy formulations and provide the formulas for their efficient computation. Depending on the choice of the mask, such models have the ability to reproduce trigonometric or polynomial curves. They can also be designed to be interpolating, a property that is useful in user-interactive applications. We provide explicit examples of subdivision snakes and illustrate their use for the segmentation of bioimages. We show that they are robust in the presence of noise and provide a multiresolution algorithm to enlarge their basin of attraction, which decreases their dependence on initialization compared to singleresolution snakes. We show the advantages of the proposed model in terms of computation and segmentation of structures with different sizes.

@ARTICLE(http://bigwww.epfl.ch/publications/badoual1701.html,
AUTHOR="Badoual, A. and Schmitter, D. and Uhlmann, V. and Unser, M.",
TITLE="Multiresolution Subdivision Snakes",
JOURNAL="{IEEE} Transactions on Image Processing",
YEAR="2017",
volume="26",
number="3",
pages="1188--1201",
month="March",
note="")

© 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved