Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Fluorescence Tomography
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

A Primal-Dual Reconstruction Algorithm for Fluorescence and Bioluminescence Tomography

J.-C. Baritaux, M. Unser

Proceedings of the Eighth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'11), Chicago IL, USA, March 30-April 2, 2011, pp. 960-963.


We introduce a new primal-dual reconstruction algorithm for fluorescence and bioluminescence tomography. As often in optical tomography, image reconstruction is performed by optimizing a multi-term convex cost function. Current reconstruction methods employed in the field are usually limited to cost functions with a smooth data fidelity term; quadratic in general. In addition, the use of a composite regularization term (a sum of multiple terms) requires a substantial adaptation of these methods. Typically one would have to solve a subproblem via a primal-dual method at each iteration. The primal-dual scheme presented here is designed to handle directly cost functions composed of multiple, possibly non-smooth, terms. This allows more freedom for the design of tailored cost functions leading to enhanced reconstructions. We illustrate the method on two cases. First, we use a cost function composed of ℓ1 fidelity and regularization terms. We compare to the reconstructions obtained with the quadratic fidelity counterpart. Second, we employ a cost function composed of three terms : ℓ1 for data fidelity, total-variation plus (2,1)-mixed norms for regularization.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/baritaux1101.html,
AUTHOR="Baritaux, J.-C. and Unser, M.",
TITLE="A Primal-Dual Reconstruction Algorithm for Fluorescence and
	Bioluminescence Tomography",
BOOKTITLE="Proceedings of the Eighth {IEEE} International Symposium on
	Biomedical Imaging: {F}rom Nano to Macro ({ISBI'11})",
YEAR="2011",
editor="",
volume="",
series="",
pages="960--963",
address="Chicago IL, USA",
month="March 30-April 2,",
organization="",
publisher="",
note="")

© 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved