Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  OCT Deconvolution
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

A New High-Resolution Processing Method for the Deconvolution of Optical Coherence Tomography Signals

T. Blu, H. Bay, M. Unser

Proceedings of the First IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI'02), Washington DC, USA, July 7-10, 2002, vol. III, pp. 777-780.


We show the feasibility and the potential of a new signal processing algorithm for the high-resolution deconvolution of OCT signals.

Our technique relies on the description of the measures in a parametric form, each set of four parameters describing the optical characteristics of a physical interface (e.g., complex refractive index, depth). Under the hypothesis of a Gaussian source light, we show that it is possible to recover the 4K parameters corresponding to K interfaces using as few as 4K uniform samples of the OCT signal. With noisy data, we can expect the robustness of our method to increase with the oversampling rate—or with the redundancy of the measures.

The validation results show that the quality of the estimation of the parameters (in particular the depth of the interfaces) is narrowly linked to the noise level of the OCT measures—and not to the coherence length of the source light—and to their degree of redundancy.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/blu0203.html,
AUTHOR="Blu, T. and Bay, H. and Unser, M.",
TITLE="A New High-Resolution Processing Method for the Deconvolution of
	Optical Coherence Tomography Signals",
BOOKTITLE="Proceedings of the First {IEEE} International Symposium on
	Biomedical Imaging: {M}acro to Nano ({ISBI'02})",
YEAR="2002",
editor="",
volume="{III}",
series="",
pages="777--780",
address="Washington DC, USA",
month="July 7-10,",
organization="",
publisher="",
note="")

© 2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved