Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Shifted Interpolation
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

How a Simple Shift Can Significantly Improve the Performance of Linear Interpolation

T. Blu, P. Thévenaz, M. Unser

Proceedings of the 2002 Ninth IEEE International Conference on Image Processing (ICIP'02), Rochester NY, USA, September 22-25, 2002, pp. III.377-III.380.


We present a simple, original method to improve piecewise linear interpolation with uniform knots: We shift the sampling knots by a fixed amount, while enforcing the interpolation property.

Thanks to a theoretical analysis, we determine the optimal shift that maximizes the quality of our shifted linear interpolation. Surprisingly enough, this optimal value is nonzero and it is close to 1 ⁄ 5.

We confirm our theoretical findings by performing a cumulative rotation experiment, which shows a significant increase of the quality of the shifted method with respect to the standard one. Most interesting is the fact that we get a quality similar to that of high-quality cubic convolution at the computational cost of linear interpolation.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/blu0204.html,
AUTHOR="Blu, T. and Th{\'{e}}venaz, P. and Unser, M.",
TITLE="How a Simple Shift Can Significantly Improve the Performance of
	Linear Interpolation",
BOOKTITLE="Proceedings of the 2002 Ninth {IEEE} International Conference
	on Image Processing ({ICIP'02})",
YEAR="2002",
editor="",
volume="{III}",
series="",
pages="377--380",
address="Rochester NY, USA",
month="September 22-25,",
organization="",
publisher="",
note="")

© 2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved