Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Iterated Filter Banks
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Iterated Rational Filter Banks—Underlying Limit Functions

T. Blu

Proceedings of the IEEE Signal Processing Society Digital Signal Processing Workshop, Utica IL, USA, September 13-16, 1992, pp. 1.8.1-1.8.2.


The term “Rational Filter Bank” (RFB) stands for “Filter Bank with Rational Rate Changes”. An analysis two-band RFB critically sampled is shown with its synthesis counterpart in figure 1. G stands typically for a low-pass FIR filter, whereas H is high-pass FIR. We are interested, in this paper in the iteration of the sole low-pass branch, which leads, in the integer case (q = 1), to a wavelet decomposition.

Kovacevic and Vetterli have wondered whether iterated RFB could involve too, a discrete wavelet transform. Actually, Daubechies proved that whenever p/q is not an integert and G is FIR, this could not be the case. We here show that despite this discouraging feature, there still exists, not only one function (then shifted), as in the integer case, but an infinite set of compactly supported functions φs(t). More importantly, under certain conditions, these functions appear to be "almost" the shifted version of one sole function. These φs are constructed the same way as in the dyadic case (p = 2, q = 1), that is to say by the iteration of the low-pass branch of a synthesis RFB, but in this case the initialization is meaningful.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/blu9201.html,
AUTHOR="Blu, T.",
TITLE="Iterated Rational Filter Banks---{U}nderlying Limit
	Functions",
BOOKTITLE="Proceedings of the {IEEE} Signal Processing Society
	Digital Signal Processing Workshop",
YEAR="1992",
editor="",
volume="",
series="",
pages="1.8.1--1.8.2",
address="Utica IL, USA",
month="September 13-16,",
organization="",
publisher="",
note="")

© 1992 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved