Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Consistent Magnification
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Consistent and Regularized Magnification of Images

A. Bourquard, P. Thévenaz, K. Balać, M. Unser

Proceedings of the 2008 Fifteenth IEEE International Conference on Image Processing (ICIP'08), San Diego CA, USA, October 12-15, 2008, pp. 325-328.


Because more output data must be created than is available from the input, magnification is an ill-posed problem. Traditional magnification relies on resampling an interpolation model at the appropriate rate; unfortunately, this simple solution is blind to the presence of the analog filter that was implicitly present when the samples of the function to be magnified were acquired. Consistent resampling has been introduced to take this into account, but it turns out that this solution is still under-constrained. In this paper, we propose regularization as a way to devise a deterministic magnification method that fully satisfies consistency constraints in the absence of noise, and at the same time that produces an output that best fulfills a wide class of criteria for regularity. Contrarily to many other methods, ours has been designed without ever leaving the continuous domain. We conduct experiments that show the benefit of our approach.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/bourquard0801.html,
AUTHOR="Bourquard, A. and Th{\'{e}}venaz, P. and Bala{\'{c}}, K. and
	Unser, M.",
TITLE="Consistent and Regularized Magnification of Images",
BOOKTITLE="Proceedings of the 2008 Fifteenth {IEEE} International
	Conference on Image Processing ({ICIP'08})",
YEAR="2008",
editor="",
volume="",
series="",
pages="325--328",
address="San Diego CA, USA",
month="October 12-15,",
organization="",
publisher="",
note="")

© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved