Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Compressed Imaging
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Binary Compressed Imaging

A. Bourquard, M. Unser

IEEE Transactions on Image Processing, vol. 22, no. 3, pp. 1042-1055, March 2013.


Compressed sensing can substantially reduce the number of samples required for conventional signal acquisition at the expense of an additional reconstruction procedure. It also provides robust reconstruction when using quantized measurements, including in the one-bit setting. In this paper, our goal is to design a framework for binary compressed sensing that is adapted to images. Accordingly, we propose an acquisition and reconstruction approach that complies with the high dimensionality of image data and that provides reconstructions of satisfactory visual quality. Our forward model describes data acquisition and follows physical principles. It entails a series of random convolutions performed optically followed by sampling and binary thresholding. The binary samples that are obtained can be either measured or ignored according to predefined functions. Based on these measurements, we then express our reconstruction problem as the minimization of a compound convex cost that enforces the consistency of the solution with the available binary data under total-variation regularization. Finally, we derive an efficient reconstruction algorithm relying on convex-optimization principles. We conduct several experiments on standard images and demonstrate the practical interest of our approach.

@ARTICLE(http://bigwww.epfl.ch/publications/bourquard1303.html,
AUTHOR="Bourquard, A. and Unser, M.",
TITLE="Binary Compressed Imaging",
JOURNAL="{IEEE} Transactions on Image Processing",
YEAR="2013",
volume="22",
number="3",
pages="1042--1055",
month="March",
note="")

© 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved